Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(17): e2215253120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068229

RESUMO

Strategies to overcome irreversible cochlear hair cell (HC) damage and loss in mammals are of vital importance to hearing recovery in patients with permanent hearing loss. In mature mammalian cochlea, co-activation of Myc and Notch1 reprograms supporting cells (SC) and promotes HC regeneration. Understanding of the underlying mechanisms may aid the development of a clinically relevant approach to achieve HC regeneration in the nontransgenic mature cochlea. By single-cell RNAseq, we show that MYC/NICD "rejuvenates" the adult mouse cochlea by activating multiple pathways including Wnt and cyclase activator of cyclic AMP (cAMP), whose blockade suppresses HC-like cell regeneration despite Myc/Notch activation. We screened and identified a combination (the cocktail) of drug-like molecules composing of small molecules and small interfering RNAs to activate the pathways of Myc, Notch1, Wnt and cAMP. We show that the cocktail effectively replaces Myc and Notch1 transgenes and reprograms fully mature wild-type (WT) SCs for HC-like cells regeneration in vitro. Finally, we demonstrate the cocktail is capable of reprogramming adult cochlea for HC-like cells regeneration in WT mice with HC loss in vivo. Our study identifies a strategy by a clinically relevant approach to reprogram mature inner ear for HC-like cells regeneration, laying the foundation for hearing restoration by HC regeneration.


Assuntos
Orelha Interna , Células Ciliadas Auditivas , Camundongos , Animais , Proliferação de Células/fisiologia , Células Ciliadas Auditivas/fisiologia , Orelha Interna/metabolismo , Cóclea/fisiologia , Regeneração/fisiologia , Mamíferos
2.
EMBO Rep ; 24(9): e56562, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37492931

RESUMO

Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming; however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 re-expression increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71's RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.


Assuntos
Cóclea , Células Ciliadas Auditivas , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Cóclea/metabolismo , Perfilação da Expressão Gênica , Células Ciliadas Auditivas/metabolismo , Células-Tronco/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Mol Life Sci ; 80(12): 349, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930405

RESUMO

Atoh1 overexpression is essential for hair cell (HC) regeneration in the sensory epithelium of mammalian auditory and vestibular organs. However, Atoh1 overexpression alone cannot induce fully mature and functional HCs in the mammalian inner ear. In the current study, we investigated the effect of Atoh1 constitutive overexpression in native HCs by manipulating Atoh1 expression at different developmental stages. We demonstrated that constitutive overexpression of Atoh1 in native vestibular HCs did not affect cell survival but did impair vestibular function by interfering with the subtype differentiation of HCs and hair bundle development. In contrast, Atoh1 overexpression in cochlear HCs impeded their maturation, eventually leading to gradual HC loss in the cochlea and hearing dysfunction. Our study suggests that time-restricted Atoh1 expression is essential for the differentiation and survival of HCs in the inner ear, and this is pivotal for both hearing and vestibular function re-establishment through Atoh1 overexpression-induced HC regeneration strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Orelha Interna , Células Ciliadas Auditivas , Animais , Diferenciação Celular , Sobrevivência Celular , Cóclea , Mamíferos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia
4.
Cell Mol Life Sci ; 80(4): 86, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917323

RESUMO

Mechanosensitive hair cells (HCs) in the cochlear sensory epithelium are critical for sound detection and transduction. Mammalian HCs in the cochlea undergo cytogenesis during embryonic development, and irreversible damage to hair cells postnatally is a major cause of deafness. During the development of the organ of Corti, HCs and supporting cells (SCs) originate from the same precursors. In the neonatal cochlea, damage to HCs activates adjacent SCs to act as HC precursors and to differentiate into new HCs. However, the plasticity of SCs to produce new HCs is gradually lost with cochlear development. Here, we delineate an essential role for the guanine nucleotide exchange factor Net1 in SC trans-differentiation into HCs. Net1 overexpression mediated by AAV-ie in SCs promoted cochlear organoid formation and HC differentiation under two and three-dimensional culture conditions. Also, AAV-Net1 enhanced SC proliferation in Lgr5-EGFPCreERT2 mice and HC generation as indicated by lineage tracing of HCs in the cochleae of Lgr5-EGFPCreERT2/Rosa26-tdTomatoloxp/loxp mice. We further found that the up-regulation of Wnt/ß-catenin and Notch signaling in AAV-Net1-transduced cochleae might be responsible for the SC proliferation and HC differentiation. Also, Net1 overexpression in SCs enhanced SC proliferation and HC regeneration and survival after HC damage by neomycin. Taken together, our study suggests that Net1 might serve as a potential target for HC regeneration and that AAV-mediated gene regulation may be a promising approach in stem cell-based therapy in hearing restoration.


Assuntos
Transdiferenciação Celular , Células Ciliadas Auditivas , Animais , Camundongos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cóclea , Camundongos Transgênicos
5.
Mol Cell Neurosci ; 120: 103736, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577314

RESUMO

The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.


Assuntos
Orelha Interna , Perda Auditiva , Animais , Orelha Interna/fisiologia , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/terapia , Mamíferos , Camundongos , Células-Tronco
6.
Proc Natl Acad Sci U S A ; 117(36): 22225-22236, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32826333

RESUMO

Mechano-sensory hair cells within the inner ear cochlea are essential for the detection of sound. In mammals, cochlear hair cells are only produced during development and their loss, due to disease or trauma, is a leading cause of deafness. In the immature cochlea, prior to the onset of hearing, hair cell loss stimulates neighboring supporting cells to act as hair cell progenitors and produce new hair cells. However, for reasons unknown, such regenerative capacity (plasticity) is lost once supporting cells undergo maturation. Here, we demonstrate that the RNA binding protein LIN28B plays an important role in the production of hair cells by supporting cells and provide evidence that the developmental drop in supporting cell plasticity in the mammalian cochlea is, at least in part, a product of declining LIN28B-mammalian target of rapamycin (mTOR) activity. Employing murine cochlear organoid and explant cultures to model mitotic and nonmitotic mechanisms of hair cell generation, we show that loss of LIN28B function, due to its conditional deletion, or due to overexpression of the antagonistic miRNA let-7g, suppressed Akt-mTOR complex 1 (mTORC1) activity and renders young, immature supporting cells incapable of generating hair cells. Conversely, we found that LIN28B overexpression increased Akt-mTORC1 activity and allowed supporting cells that were undergoing maturation to de-differentiate into progenitor-like cells and to produce hair cells via mitotic and nonmitotic mechanisms. Finally, using the mTORC1 inhibitor rapamycin, we demonstrate that LIN28B promotes supporting cell plasticity in an mTORC1-dependent manner.


Assuntos
Células Ciliadas Auditivas/fisiologia , Células Labirínticas de Suporte/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Camundongos , MicroRNAs/genética , Organoides , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/genética
7.
Dev Biol ; 446(2): 133-141, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30605626

RESUMO

Damage or loss of auditory hair cells leads to irreversible sensorineural hearing loss in human, thus regeneration of these cells to reconstruct auditory sensory epithelium holds the promise for the treatment of deafness. Regulatory factors involved in the development of auditory sensory epithelium play crucial roles in hair cell regeneration and hearing restoration. Here, we first focus on the transcription factor Atoh1 which is critical for hair cell development and regeneration, and comprehensively summarize the current understanding of the protein structure, target binding motif, developmental expression pattern, functional role, and upstream and downstream regulatory mechanism of Atoh1 in the context of controlling the cell fate commitment to hair cells or transdifferentiation from supporting cells. We also discuss cellular context dependency of Atoh1 in hair cell induction which should be taken into consideration when using Atoh1 gene therapy for hair cell regeneration. Next, we review the roles of Gfi1, Pou4f3, and Barhl1 in hair cell maturation and maintenance, and suggest that manipulation of these genes and their downstream targets will be helpful for the generation of functional hair cells with long-term viability. Finally, we provide an overview of the interplay between Notch, Wnt, Shh, and FGF signaling pathways during auditory sensory epithelium development. By analyzing crosstalk between these pathways, we suggest that combination of Wnt signaling activation with Hey1 and Hey2 inhibition will be crucial for hair cell regeneration and hearing restoration. Furthermore, this review highlights the importance of deeper understanding of the cellular context for hair cell development and the interconnection between these key regulators in developing new strategies to treat sensorineural hearing loss.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Orelha Interna/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Órgão Espiral/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Orelha Interna/embriologia , Orelha Interna/crescimento & desenvolvimento , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Órgão Espiral/embriologia , Órgão Espiral/crescimento & desenvolvimento , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Adv Exp Med Biol ; 1218: 129-157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32060875

RESUMO

Notch signalling is a major regulator of cell fate decisions and tissue patterning in metazoans. It is best known for its role in lateral inhibition, whereby Notch mediates competitive interactions between cells to limit adoption of a given developmental fate. However, it can also function by lateral induction, a cooperative mode of action that was originally described during the patterning of the Drosophila wing disc and creates boundaries or domains of cells of the same character. In this chapter, we introduce these two signalling modes and explain how they contribute to distinct aspects of the development and regeneration of the vertebrate inner ear, the organ responsible for the perception of sound and head movements. We discuss some of the factors that could influence the context-specific outcomes of Notch signalling in the inner ear and the ongoing efforts to target this pathway for the treatment of hearing loss and vestibular dysfunction.


Assuntos
Diferenciação Celular , Orelha Interna/embriologia , Orelha Interna/fisiologia , Receptores Notch/metabolismo , Regeneração , Transdução de Sinais , Animais , Orelha Interna/citologia , Orelha Interna/metabolismo , Perda Auditiva/metabolismo , Perda Auditiva/fisiopatologia , Humanos
9.
Semin Cell Dev Biol ; 65: 69-79, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27836639

RESUMO

The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict inner ear sensory hair cell regeneration.


Assuntos
Epigênese Genética , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Organogênese/genética , Fatores de Transcrição Otx/genética , Animais , Diferenciação Celular , Embrião de Galinha , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/citologia , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Fatores de Transcrição Otx/metabolismo , Regeneração/genética
10.
Development ; 143(5): 841-50, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26932672

RESUMO

Determination of cell fate within the prosensory domain of the developing cochlear duct relies on the temporal and spatial regulation of the bHLH transcription factor Atoh1. Auditory hair cells and supporting cells arise in a wave of differentiation that patterns them into discrete rows mediated by Notch-dependent lateral inhibition. However, the mechanism responsible for selecting sensory cells from within the prosensory competence domain remains poorly understood. We show in mice that rather than being upregulated in rows of cells, Atoh1 is subject to transcriptional activation in groups of prosensory cells, and that highly conserved sites for Hes/Hey repressor binding in the Atoh1 promoter are needed to select the hair cell and supporting cell fate. During perinatal supporting cell transdifferentiation, which is a model of hair cell regeneration, we show that derepression is sufficient to induce Atoh1 expression, suggesting a mechanism for priming the 3' Atoh1 autoregulatory enhancer needed for hair cell expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas de Ciclo Celular/fisiologia , Linhagem da Célula , Cóclea/embriologia , Células Ciliadas Auditivas/fisiologia , Proteínas de Homeodomínio/fisiologia , Órgão Espiral/fisiologia , Proteínas Repressoras/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Diferenciação Celular , Transdiferenciação Celular , Cóclea/fisiologia , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Órgão Espiral/embriologia , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição HES-1
11.
Mol Ther ; 26(5): 1313-1326, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29680697

RESUMO

Deafness is commonly caused by the irreversible loss of mammalian cochlear hair cells (HCs) due to noise trauma, toxins, or infections. We previously demonstrated that small interfering RNAs (siRNAs) directed against the Notch pathway gene, hairy and enhancer of split 1 (Hes1), encapsulated within biocompatible poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) could regenerate HCs within ototoxin-ablated murine organotypic cultures. In the present study, we delivered this sustained-release formulation of Hes1 siRNA (siHes1) into the cochleae of noise-injured adult guinea pigs. Auditory functional recovery was measured by serial auditory brainstem responses over a nine-week follow-up period, and HC regeneration was evaluated by immunohistological evaluations and scanning electron microscopy. Significant HC restoration and hearing recovery were observed across a broad tonotopic range in ears treated with siHes1 NPs, beginning at three weeks and extending out to nine weeks post-treatment. Moreover, both ectopic and immature HCs were uniquely observed in noise-injured cochleae treated with siHes1 NPs, consistent with de novo HC production. Our results indicate that durable cochlear HCs were regenerated and promoted significant hearing recovery in adult guinea pigs through reversible modulation of Hes1 expression. Therefore, PLGA-NP-mediated delivery of siHes1 to the cochlea represents a promising pharmacologic approach to regenerate functional and sustainable mammalian HCs in vivo.


Assuntos
Células Ciliadas Auditivas , Nanopartículas , RNA Interferente Pequeno/genética , Regeneração , Fatores de Transcrição HES-1/genética , Animais , Cóclea/fisiologia , Feminino , Cobaias , Audição/genética , Imuno-Histoquímica , RNA Interferente Pequeno/administração & dosagem , Regeneração/genética
12.
Adv Exp Med Biol ; 1130: 165-180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915707

RESUMO

Permanent hearing loss was considered which cannot be cured since cochlear hair cells and primary afferent neurons cannot be regenerated. In recent years, due to the in-depth study of stem cell and its therapeutic potential, regenerating auditory sensory cells is made possible. By using two strategies of endogenous stem cell activation and exogenous stem cell transplantation, researchers hope to find methods to restore hearing function. However, there are complex factors that need to be considered in the in vivo application of stem cell therapy, such as stem cell-type choice, signaling pathway regulations, transplantation approaches, internal environment of the cochlea, and external stimulation. After years of investigations, some theoretic progress has been made in the treatment of hearing loss using stem cells, but there are also many problems which limited its application that need to be solved. Understanding the future perspective of stem cell therapy in hearing loss, solving the encountered problems, and promoting its development are the common goals of audiological researchers. In this review, we present critical experimental findings of stem cell therapy on treatment of hearing loss and intend to bring hope to researchers and patients.


Assuntos
Surdez/urina , Perda Auditiva/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Cóclea , Células Ciliadas Auditivas , Humanos , Neurônios Aferentes
13.
Adv Exp Med Biol ; 1130: 1-16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915698

RESUMO

Cochlear hair cells are mechanoreceptors of the auditory system and cannot spontaneously regenerate in adult mammals; thus hearing loss due to hair cell damage is permanent. In contrast, hair cells in nonmammalian vertebrates such as birds and in the zebrafish lateral line have the ability to regenerate after hair cell loss. Many regulatory factors, including signaling pathways, transcription factors, and epigenetic regulators, play roles in hair cell regeneration in various species. In this chapter, we review the history of hair cell regeneration research, the methods used in the study of hair cell regeneration, the properties and modulating factors of inner ear stem cells, and the re-formation of cochlear ribbon synapses and hearing function recovery.


Assuntos
Orelha Interna , Células Ciliadas Auditivas/citologia , Regeneração , Animais , Aves , Células-Tronco/citologia , Peixe-Zebra
14.
ORL J Otorhinolaryngol Relat Spec ; 80(5-6): 326-337, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359973

RESUMO

INTRODUCTION: Fibroblast growth factor, nerve growth factor neurotrophins, and insulin-like growth factor 1 are considered 3 families of growth factors that can be involved in the process of otic neurogenesis. In this respect, otic neurons can also be connected with mechanoreceptors in the ear, the hair cells (HCs), as well as the central nervous system. As a growth factor is combined with gene transfer technology, it can be used for hair cell regeneration. Gene therapy can be similarly employed to introduce genes into a system in order to induce the expression of genes for therapeutic agents, to replace defective genes, or to re-program supporting or surrounding cells to acquire the phenotype of lost or damaged cells in order to repair or regenerate the damaged tissue. OBJECTIVE: The purpose of this review article was to investigate the epigenetic and growth factors involved in the differentiation pathway of embryonic stem cells (ESCs) into HCs and auditory neurons (ANs). METHODS: To this end, the databases of Directory of Open Access Journals, Google Scholar, PubMed (NLM), LISTA (EBSCO), as well as Web of Science were searched. RESULTS: Given the results available in the related literature, the differentiation efficacy of ESCs toward the ANs and the HCs, the important role of growth factors, and 3 different strategies of application of miRNA, epigenetic regulation, and preparation of three-dimensional (3D) environments were suggested to be taken into consideration in order to improve these studies in the future. Furthermore, the role of epige-netic mechanisms and miRNA in this differentiation process became quite obvious; hence, the utilization of such procedures in the near future would be significant. CONCLUSION: Combining several techniques with a synergic effect (such as growth factor gene therapy and 3D environments) seemed to lead to obtaining the best results as a therapeutic strategy.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Terapia Genética , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/terapia , Regeneração , Técnicas de Cultura de Células/métodos , Terapia Combinada , Células-Tronco Embrionárias/transplante , Epigênese Genética , Humanos , MicroRNAs/fisiologia
15.
Neurosci Bull ; 40(1): 113-126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787875

RESUMO

Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.


Assuntos
Orelha Interna , Células Ciliadas Auditivas Internas , Recém-Nascido , Humanos , Células Ciliadas Auditivas Internas/fisiologia , Orelha Interna/fisiologia , Células Ciliadas Auditivas/fisiologia , Regeneração/genética , Células-Tronco
16.
Adv Sci (Weinh) ; 11(29): e2304551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810137

RESUMO

Mammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved. Single-cell nuclear sequencing and lineaging tracing results showed that the majority of new Atoh1-derived HCs are in a state of initiating differentiation, while GP (Gfi1, Pou4f3) and GPS (Gfi1, Pou4f3, and Six1) enhanced the Atoh1-induced new HCs into inner and outer HCs. Moreover, the patch-clamp analysis indicated that newborn inner HCs induced by GPAS forced expression have similar electrophysiological characteristics to those of native inner HCs. Also, GPAS can induce HC regeneration in the HC-damaged mice model. In summary, the study demonstrates that AAV-mediated co-regulation of multiple genes, such as GPAS, is an effective means to achieve functional HC regeneration in the mouse cochlea.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Reprogramação Celular , Dependovirus , Células Ciliadas Auditivas , Regeneração , Animais , Camundongos , Dependovirus/genética , Reprogramação Celular/genética , Regeneração/genética , Regeneração/fisiologia , Células Ciliadas Auditivas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo , Diferenciação Celular/genética , Vetores Genéticos/genética , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas de Homeodomínio
17.
Hear Res ; 441: 108916, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103445

RESUMO

Flat epithelium (FE) is a condition characterized by the loss of both hair cells (HCs) and supporting cells and the transformation of the organ of Corti into a simple flat or cuboidal epithelium, which can occur after severe cochlear insults. The transcription factors Gfi1, Atoh1, Pou4f3, and Six1 (GAPS) play key roles in HC differentiation and survival in normal ears. Previous work using a single transcription factor, Atoh1, to induce HC regeneration in mature ears in vivo usually produced very few cells and failed to produce HCs in severely damaged organs of Corti, especially those with FE. Studies in vitro suggested combinations of transcription factors may be more effective than any single factor, thus the current study aims to examine the effect of co-overexpressing GAPS genes in deafened mature guinea pig cochleae with FE. Deafening was achieved through the infusion of neomycin into the perilymph, leading to the formation of FE and substantial degeneration of nerve fibers. Seven days post neomycin treatment, adenovirus vectors carrying GAPS were injected into the scala media and successfully expressed in the FE. One or two months following GAPS inoculation, cells expressing Myosin VIIa were observed in regions under the FE (located at the scala tympani side of the basilar membrane), rather than within the FE. The number of cells, which we define as induced HCs (iHCs), was not significantly different between one and two months, but the larger N at two months made it more apparent that there were significantly more iHCs in GAPS treated animals than in controls. Additionally, qualitative observations indicated that ears with GAPS gene expression in the FE had more nerve fibers than FE without the treatment. In summary, our results showed that co-overexpression of GAPS enhances the potential for HC regeneration in a severe lesion model of FE.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Animais , Cobaias , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Ciliadas Auditivas/patologia , Epitélio/metabolismo , Cóclea/metabolismo , Neomicina
18.
Hear Res ; 443: 108962, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295585

RESUMO

Nestin expression is associated with pluripotency. Growing evidence suggests nestin is involved in hair cell development. The objective of this study was to investigate the morphology and role of nestin-expressing cells residing in the early postnatal murine inner ear. A lineage-tracing nestin reporter mouse line was used to further characterize these cells. Their cochleae and vestibular organs were immunostained and whole-mounted for cell counting. We found Nestin-expressing cells present in low numbers throughout the inner ear. Three morphotypes were observed: bipolar, unipolar, and globular. Mitotic activity was noted in nestin-expressing cells in the cochlea, utricle, saccule, and crista. Nestin-expressing cell characteristics were then observed after hair cell ablation in two mouse models. First, a reporter model demonstrated nestin expression in a significantly higher proportion of hair cells after hair cell ablation than in control cochleae. However, in a lineage tracing nestin reporter mouse, none of the new hair cells which repopulated the organ of Corti after hair cell ablation expressed nestin, nor did the nestin-expressing cells change in morphotype. In conclusion, Nestin-expressing cells were identified in the cochlea and vestibular organs. After hair cell ablation, nestin-expressing cells did not react to the insult. However, a small number of nestin-expressing cells in all inner ear tissues exhibited mitotic activity, supporting progenitor cell potential, though perhaps not involved in hair cell regeneration.


Assuntos
Cóclea , Vestíbulo do Labirinto , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Nestina/genética , Nestina/metabolismo , Sáculo e Utrículo/metabolismo , Vestíbulo do Labirinto/metabolismo
19.
Cell Rep ; 43(3): 113822, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393948

RESUMO

Hearing starts, at the cellular level, with mechanoelectrical transduction by sensory hair cells. Sound information is then transmitted via afferent synaptic connections with auditory neurons. Frequency information is encoded by the location of hair cells along the cochlear duct. Loss of hair cells, synapses, or auditory neurons leads to permanent hearing loss in mammals. Birds, in contrast, regenerate auditory hair cells and functionally recover from hearing loss. Here, we characterized regeneration and reinnervation in sisomicin-deafened chickens and found that afferent neurons contact regenerated hair cells at the tips of basal projections. In contrast to development, synaptic specializations are established at these locations distant from the hair cells' bodies. The protrusions then contracted as regenerated hair cells matured and became functional 2 weeks post-deafening. We found that auditory thresholds recovered after 4-5 weeks. We interpret the regeneration-specific synaptic reestablishment as a location-preserving process that might be needed to maintain tonotopic fidelity.


Assuntos
Galinhas , Perda Auditiva , Animais , Células Ciliadas Auditivas/fisiologia , Audição , Som , Mamíferos
20.
Heliyon ; 10(12): e32952, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994119

RESUMO

Sensorineural hearing loss (SNHL) is a prevalent condition in otolaryngology. A key obstacle is finding effective strategies for regenerating damaged cochlear hair cells in adult animals. A practical and reliable approach has been developed to create a superior cell source for stem cell transplantation in the inner ear to treat SNHL. Atoh1 is involved in the differentiation of neurons, intestinal secretory cells, and mechanoreceptors including auditory hair cells, and thus plays an important role in neurogenesis. Lentivirus-mediated transfection of bone marrow mesenchymal stem cells (BMSCs) was utilized to achieve stable expression of the essential transcription factor Atoh1, which is crucial for developing auditory hair cells without compromising cell survival. By manipulating the induction conditions through altering the cell growth environment using anti-adherent culture, the synergistic impact of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) was effectively applied to significantly improve the differentiation efficiency of bone marrow-derived mesenchymal stem cells (BMSC) into neural stem cells (NSCs) following Atoh1 transfection, thereby reducing the induction time. The study indicated that the newly proposed transdifferentiation method effectively transformed BMSCs into NSCs in a controlled environment, presenting a potential approach for stem cell transplantation to promote hair cell regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA