Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768347

RESUMO

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Assuntos
Tato , Realidade Virtual , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Tato/fisiologia , Pele , Robótica/instrumentação , Robótica/métodos
2.
Proc Natl Acad Sci U S A ; 120(9): e2219394120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802437

RESUMO

Vocal fatigue is a measurable form of performance fatigue resulting from overuse of the voice and is characterized by negative vocal adaptation. Vocal dose refers to cumulative exposure of the vocal fold tissue to vibration. Professionals with high vocal demands, such as singers and teachers, are especially prone to vocal fatigue. Failure to adjust habits can lead to compensatory lapses in vocal technique and an increased risk of vocal fold injury. Quantifying and recording vocal dose to inform individuals about potential overuse is an important step toward mitigating vocal fatigue. Previous work establishes vocal dosimetry methods, that is, processes to quantify vocal fold vibration dose but with bulky, wired devices that are not amenable to continuous use during natural daily activities; these previously reported systems also provide limited mechanisms for real-time user feedback. This study introduces a soft, wireless, skin-conformal technology that gently mounts on the upper chest to capture vibratory responses associated with vocalization in a manner that is immune to ambient noises. Pairing with a separate, wirelessly linked device supports haptic feedback to the user based on quantitative thresholds in vocal usage. A machine learning-based approach enables precise vocal dosimetry from the recorded data, to support personalized, real-time quantitation and feedback. These systems have strong potential to guide healthy behaviors in vocal use.


Assuntos
Canto , Distúrbios da Voz , Voz , Humanos , Retroalimentação , Distúrbios da Voz/etiologia , Voz/fisiologia , Prega Vocal/fisiologia
3.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38267257

RESUMO

Visual and haptic perceptions of 3D shape are plagued by distortions, which are influenced by nonvisual factors, such as gravitational vestibular signals. Whether gravity acts directly on the visual or haptic systems or at a higher, modality-independent level of information processing remains unknown. To test these hypotheses, we examined visual and haptic 3D shape perception by asking male and female human subjects to perform a "squaring" task in upright and supine postures and in microgravity. Subjects adjusted one edge of a 3D object to match the length of another in each of the three canonical reference planes, and we recorded the matching errors to obtain a characterization of the perceived 3D shape. The results show opposing, body-centered patterns of errors for visual and haptic modalities, whose amplitudes are negatively correlated, suggesting that they arise in distinct, modality-specific representations that are nevertheless linked at some level. On the other hand, weightlessness significantly modulated both visual and haptic perceptual distortions in the same way, indicating a common, modality-independent origin for gravity's effects. Overall, our findings show a link between modality-specific visual and haptic perceptual distortions and demonstrate a role of gravity-related signals on a modality-independent internal representation of the body and peripersonal 3D space used to interpret incoming sensory inputs.


Assuntos
Percepção do Tato , Vestíbulo do Labirinto , Humanos , Masculino , Feminino , Percepção Visual , Tecnologia Háptica , Cognição , Percepção Espacial
4.
Ophthalmology ; 131(4): 445-457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37914042

RESUMO

PURPOSE: To evaluate the influence of a capsular tension ring (CTR) on rotational stability, decentration, tilt, and axial stability of an 11.0-mm plate haptic intraocular lens (IOL). DESIGN: Intraindividual, randomized, double-masked, controlled clinical trial. PARTICIPANTS: Patients scheduled for sequential same-day bilateral cataract surgery. METHODS: All patients were randomized to receive a CTR and a plate haptic IOL in one eye and a plate haptic IOL in the fellow eye only. Intraocular lens axis assessment was performed at the end of surgery, 1 hour, 1 week, 1 month, and 6 months using a high-precision evaluation method. Decentration and tilt of the crystalline and pseudophakic lenses were assessed before surgery and at 1 week and 6 months using an anterior segment OCT. MAIN OUTCOME MEASURES: Rotational stability from the end of surgery to 6 months and at all follow-up visits, decentration and tilt at 6 months, and differences in axial shift between 1 week and 6 months. RESULTS: One hundred thirty eyes of 65 patients were included in the study. Absolute rotation from the end of surgery to 6 months was 2.8 ± 3.9° and 3.2 ± 5.3° for the CTR and control groups, respectively (P = 0.613). Intraocular lens decentration and IOL tilt at 6 months were 0.29 ± 0.1 mm and 0.24 ± 0.1 mm and 6.7 ± 2.8° and 5.6 ± 1.6° for the CTR and control groups, respectively (P = 0.058; P < 0.01). A posterior IOL shift of 0.31 ± 0.31 mm and 0.19 ± 0.14 mm was observed in the CTR and control groups, respectively. CONCLUSIONS: Concomitant implantation of a CTR and a plate haptic IOL did not improve the overall rotational stability of the IOL compared with the control group. Against expectations, higher values of decentration, tilt, and axial shift were observed in the CTR group. The simultaneous use of a CTR and a plate haptic IOL in the absence of zonular weakness at the time of cataract surgery should be considered with caution. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Catarata , Cápsula do Cristalino , Lentes Intraoculares , Facoemulsificação , Humanos , Implante de Lente Intraocular/métodos , Tecnologia Háptica , Facoemulsificação/métodos , Cápsula do Cristalino/cirurgia
5.
Exp Brain Res ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970654

RESUMO

High-definition transcranial direct current stimulation (HD-tDCS) is a non-invasive brain stimulation technique that has been shown to be safe and effective in modulating neuronal activity. The present study investigates the effect of anodal HD-tDCS on haptic object perception and memory through stimulation of the lateral occipital complex (LOC), a structure that has been shown to be involved in both visual and haptic object recognition. In this single-blind, sham-controlled, between-subjects study, blindfolded healthy, sighted participants used their right (dominant) hand to perform haptic discrimination and recognition tasks with 3D-printed, novel objects called "Greebles" while receiving 20 min of 2 milliamp (mA) anodal stimulation (or sham) to the left or right LOC. Compared to sham, those who received left LOC stimulation (contralateral to the hand used) showed an improvement in haptic object recognition but not discrimination-a finding that was evident from the start of the behavioral tasks. A second experiment showed that this effect was not observed with right LOC stimulation (ipsilateral to the hand used). These results suggest that HD-tDCS to the left LOC can improve recognition of objects perceived via touch. Overall, this work sheds light on the LOC as a multimodal structure that plays a key role in object recognition in both the visual and haptic modalities.

6.
Exp Brain Res ; 242(7): 1731-1744, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38819648

RESUMO

Dysfunctions in sensory processing are widely described in individuals with autism spectrum disorder (ASD), although little is known about the developmental course and the impact of these difficulties on the learning processes during the preschool and school ages of ASD children. Specifically, as regards the interplay between visual and haptic information in ASD during developmental age, knowledge is very scarce and controversial. In this study, we investigated unimodal (visual and haptic) and cross-modal (visuo-haptic) processing skills aimed at object recognition through a behavioural paradigm already used in children with typical development (TD), with cerebral palsy and with peripheral visual impairments. Thirty-five children with ASD (age range: 5-11 years) and thirty-five age-matched and gender-matched typically developing peers were recruited. The procedure required participants to perform an object-recognition task relying on only the visual modality (black-and-white photographs), only the haptic modality (manipulation of real objects) and visuo-haptic transfer of these two types of information. Results are consistent with the idea that visuo-haptic transfer may be significantly worse in ASD children than in TD peers, leading to significant impairment in multisensory interactions for object recognition facilitation. Furthermore, ASD children tended to show a specific deficit in haptic information processing, while a similar trend of maturation of visual modality between the two groups is reported. This study adds to the current literature by suggesting that ASD differences in multisensory processes also regard visuo-haptic abilities necessary to identify and recognise objects of daily life.


Assuntos
Transtorno do Espectro Autista , Reconhecimento Psicológico , Percepção do Tato , Humanos , Transtorno do Espectro Autista/fisiopatologia , Masculino , Feminino , Criança , Pré-Escolar , Percepção do Tato/fisiologia , Reconhecimento Psicológico/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa/métodos , Transtornos da Percepção/fisiopatologia , Transtornos da Percepção/etiologia
7.
Exp Brain Res ; 242(5): 1047-1060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467759

RESUMO

Electrotactile stimulation through matrix electrodes is a promising technology to restore high-resolution tactile feedback in extended reality applications. One of the fundamental tactile effects that should be simulated is the change in the size of the contact between the finger and a virtual object. The present study investigated how participants perceive the increase of stimulation area when stimulating the index finger using static or dynamic (moving) stimuli produced by activating 1 to 6 electrode pads. To assess the ability to interpret the stimulation from the natural cues (natural decoding), without any prior training, the participants were instructed to draw the size of the stimulated area and identify the size difference when comparing two consecutive stimulations. To investigate if other "non-natural" cues can improve the size estimation, the participants were asked to enumerate the number of active pads following a training protocol. The results demonstrated that participants could perceive the change in size without prior training (e.g., the estimated area correlated with the stimulated area, p < 0.001; ≥ two-pad difference recognized with > 80% success rate). However, natural decoding was also challenging, as the response area changed gradually and sometimes in complex patterns when increasing the number of active pads (e.g., four extra pads needed for the statistically significant difference). Nevertheless, by training the participants to utilize additional cues the limitations of natural perception could be compensated. After the training, the mismatch in the activated and estimated number of pads was less than one pad regardless of the stimulus size. Finally, introducing the movement of the stimulus substantially improved discrimination (e.g., 100% median success rate to recognize ≥ one-pad difference). The present study, therefore, provides insights into stimulation size perception, and practical guidelines on how to modulate pad activation to change the perceived size in static and dynamic scenarios.


Assuntos
Sinais (Psicologia) , Dedos , Percepção do Tato , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Dedos/fisiologia , Percepção do Tato/fisiologia , Estimulação Elétrica/métodos , Tato/fisiologia , Percepção de Tamanho/fisiologia , Estimulação Física
8.
Headache ; 64(5): 482-493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693749

RESUMO

OBJECTIVE: In this cross-sectional observational study, we aimed to investigate sensory profiles and multisensory integration processes in women with migraine using virtual dynamic interaction systems. BACKGROUND: Compared to studies on unimodal sensory processing, fewer studies show that multisensory integration differs in patients with migraine. Multisensory integration of visual, auditory, verbal, and haptic modalities has not been evaluated in migraine. METHODS: A 12-min virtual dynamic interaction game consisting of four parts was played by the participants. During the game, the participants were exposed to either visual stimuli only or multisensory stimuli in which auditory, verbal, and haptic stimuli were added to the visual stimuli. A total of 78 women participants (28 with migraine without aura and 50 healthy controls) were enrolled in this prospective exploratory study. Patients with migraine and healthy participants who met the inclusion criteria were randomized separately into visual and multisensory groups: Migraine multisensory (14 adults), migraine visual (14 adults), healthy multisensory (25 adults), and healthy visual (25 adults). The Sensory Profile Questionnaire was utilized to assess the participants' sensory profiles. The game scores and survey results were analyzed. RESULTS: In visual stimulus, the gaming performance scores of patients with migraine without aura were similar to the healthy controls, at a median (interquartile range [IQR]) of 81.8 (79.5-85.8) and 80.9 (77.1-84.2) (p = 0.149). Error rate of visual stimulus in patients with migraine without aura were comparable to healthy controls, at a median (IQR) of 0.11 (0.08-0.13) and 0.12 (0.10-0.14), respectively (p = 0,166). In multisensory stimulation, average gaming score was lower in patients with migraine without aura compared to healthy individuals (median [IQR] 82.2 [78.8-86.3] vs. 78.6 [74.0-82.4], p = 0.028). In women with migraine, exposure to new sensory modality upon visual stimuli in the fourth, seventh, and tenth rounds (median [IQR] 78.1 [74.1-82.0], 79.7 [77.2-82.5], 76.5 [70.2-82.1]) exhibited lower game scores compared to visual stimuli only (median [IQR] 82.3 [77.9-87.8], 84.2 [79.7-85.6], 80.8 [79.0-85.7], p = 0.044, p = 0.049, p = 0.016). According to the Sensory Profile Questionnaire results, sensory sensitivity, and sensory avoidance scores of patients with migraine (median [IQR] score 45.5 [41.0-54.7] and 47.0 [41.5-51.7]) were significantly higher than healthy participants (median [IQR] score 39.0 [34.0-44.2] and 40.0 [34.0-48.0], p < 0.001, p = 0.001). CONCLUSION: The virtual dynamic game approach showed for the first time that the gaming performance of patients with migraine without aura was negatively affected by the addition of auditory, verbal, and haptic stimuli onto visual stimuli. Multisensory integration of sensory modalities including haptic stimuli is disturbed even in the interictal period in women with migraine. Virtual games can be employed to assess the impact of sensory problems in the course of the disease. Also, sensory training could be a potential therapy target to improve multisensory processing in migraine.


Assuntos
Transtornos de Enxaqueca , Humanos , Feminino , Adulto , Estudos Transversais , Transtornos de Enxaqueca/fisiopatologia , Estudos Prospectivos , Jogos de Vídeo , Percepção Visual/fisiologia , Adulto Jovem , Realidade Virtual , Estimulação Luminosa/métodos , Percepção Auditiva/fisiologia
9.
Cereb Cortex ; 33(15): 9280-9290, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37280751

RESUMO

Shape processing, whether by seeing or touching, is pivotal to object recognition and manipulation. Although the low-level signals are initially processed by different modality-specific neural circuits, multimodal responses to object shapes have been reported along both ventral and dorsal visual pathways. To understand this transitional process, we conducted visual and haptic shape perception fMRI experiments to test basic shape features (i.e. curvature and rectilinear) across the visual pathways. Using a combination of region-of-interest-based support vector machine decoding analysis and voxel selection method, we found that the top visual-discriminative voxels in the left occipital cortex (OC) could also classify haptic shape features, and the top haptic-discriminative voxels in the left posterior parietal cortex (PPC) could also classify visual shape features. Furthermore, these voxels could decode shape features in a cross-modal manner, suggesting shared neural computation across visual and haptic modalities. In the univariate analysis, the top haptic-discriminative voxels in the left PPC showed haptic rectilinear feature preference, whereas the top visual-discriminative voxels in the left OC showed no significant shape feature preference in either of the two modalities. Together, these results suggest that mid-level shape features are represented in a modality-independent manner in both the ventral and dorsal streams.


Assuntos
Reconhecimento Visual de Modelos , Percepção Visual , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Lobo Occipital/diagnóstico por imagem , Tato/fisiologia , Lobo Parietal , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
10.
Cereb Cortex ; 33(13): 8382-8390, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37032623

RESUMO

The current research investigates the role of tactile information and its associated neural substrates in controlling the action. We employ a combination of motor and sensory components by asking participants to imagine exerting force with the index finger while either touching or not touching a surface. Assuming action imagination and action performance present similar patterns of activation along the motor system, we applied single-pulse transcranial magnetic stimulation over the primary motor cortex (M1) during action imagination. We observed increased amplitude of motor-evoked potentials (MEPs) of the relevant muscle when imagined actions were performed concurrently with tactile stimulation, suggesting a facilitatory effect of touch on the motor system. The motor system activity was scaled-based on the different amounts of force required, and crucially, this effect was specific to the body part involved in the action imagined. An intriguing positive correlation was observed between participants' ratings of their imagery level of vividness and the activation of the motor system, indicating that those participants exhibiting MEPs scaled correctly also had strong visualization abilities, as reflected by their capacity to accurately distinguish between varying levels of force.


Assuntos
Percepção do Tato , Tato , Humanos , Imagens, Psicoterapia , Imaginação/fisiologia , Estimulação Magnética Transcraniana , Músculo Esquelético/fisiologia , Potencial Evocado Motor/fisiologia , Movimento/fisiologia , Eletromiografia
11.
Surg Endosc ; 38(8): 4222-4228, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858248

RESUMO

INTRODUCTION: Despite the advancements in technology and organized training for surgeons in laparoscopic surgery, the persistent challenge of not being able to feel the resistance and characteristics of the tissue, including pulsations, remains unmet. A recently developed grasper (Optigrip®) with real time haptic feedback, based on photonic technology, aims to address this issue by restoring the tactile sensation for surgeons. The key question is whether pulsations can be detected and at what minimal size level they become clinical significant. METHODS: To simulate arterial conditions during laparoscopic procedures, four different silicone tubes were created, representing the most prevalent arteries. These tubes were connected to a validated pressure system, generating a natural pulse ranging between 80 and 120 mm Hg. One control tube without pressure was added. The surgeons had to grasp these tubes blindly with the conventional grasper or the haptic feedback grasper in a randomized order. They then indicated whether they felt the pressure or not and the percentage of correct answers was calculated. RESULTS: The haptic grasper successfully detected 96% of all pulsations, while the conventional grasper could only detect 6%. When considering the size of the arteries, the Optigrip® identified pulsations in 100% the 4 and 5 mm arteries and 92% of the smallest arteries. The conventional grasper was only able to feel the smallest arteries in 8%. These differences were highly significant (p < 0.0001). CONCLUSION: This study demonstrated that the newly developed haptic feedback grasper enables detection of arterial pulsations during laparoscopy, filling an important absence in tactile perception within laparoscopic surgery.


Assuntos
Artérias , Laparoscopia , Laparoscopia/métodos , Humanos , Desenho de Equipamento , Tato , Retroalimentação Sensorial
12.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 847-855, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37672101

RESUMO

OBJECTIVE: To study the effect of astigmatism correction, rotational stability, and related factors of two different haptic type toric intraocular lenses. METHODS: A prospective, randomized, controlled trial. Cataract patients with preoperative corneal astigmatism of > 1 D were randomly implanted with C-loop haptic toric IOL (AcrySof-toric IOL) (group A) or plate-haptic toric IOL (AT TORBI 709 M IOL) (group B). The residual astigmatism, intraocular lens rotation, and visual quality were determined and compared between the two groups at 3 months after surgery. RESULTS: Seventy-nine eyes were included in this study, including 40 eyes in the group A and 39 eyes in the group B. No significant difference in preoperative visual acuity, intraocular pressure, and ophthalmic biological parameters was found between the two groups. There was no significant difference in residual astigmatism between the two groups at 3 months after surgery (P > 0.05). The rotation degree in the group A was 3.85 ± 2.92°, the rotation degree in the group B was 2.33 ± 2.31°, and a significant difference in intraocular lens rotation was identified between the two groups (P < 0.05). Upon exploring the rotation-related factors of the two different haptic type toric intraocular lenses, the rotation after implanting C-loop haptic toric IOL was positively correlated with axial length (Pearson r = 0.522, P = 0.01) and corneal white-to-white distance (Pearson correlation analysis r = 0.356, P = 0.024). CONCLUSIONS: The two different haptic type toric intraocular lenses effectively corrected regular corneal astigmatism and provided a good rotational stability after surgery. But the stability of plate-haptic toric IOL was better than that of C-loop haptic toric IOL. The rotational stability of C-loop haptic toric IOL was often related to axial length and corneal white-to-white distance.


Assuntos
Astigmatismo , Doenças da Córnea , Lentes Intraoculares , Humanos , Astigmatismo/cirurgia , Tecnologia Háptica , Estudos Prospectivos , Córnea
13.
J Exp Child Psychol ; 238: 105774, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37703720

RESUMO

Cross-sectioning is a shape understanding task where the participants must infer and interpret the spatial features of three-dimensional (3D) solids by depicting their internal two-dimensional (2D) arrangement. An increasing body of research provides evidence of the crucial role of sensorimotor experience in acquiring these complex geometrical concepts. Here, we focused on how cross-sectioning ability emerges in young children and the influence of multisensory visuo-haptic experience in geometrical learning through two experiments. In Experiment 1, we compared the 3D printed version of the Santa Barbara Solids Test (SBST) with its classical paper version; in Experiment 2, we contrasted the children's performance in the SBST before and after the visual or visuo-haptic experience. In Experiment 1, we did not identify an advantage in visualizing 3D shapes over the classical 2D paper test. In contrast, in Experiment 2, we found that children who had the experience of a combination of visual and tactile information during the exploration phase improved their performance in the SBST compared with children who were limited to visual exploration. Our study demonstrates how practicing novel multisensory strategies improves children's understanding of complex geometrical concepts. This outcome highlights the importance of introducing multisensory experience in educational training and the need to make way for developing new technologies that could improve learning abilities in children.


Assuntos
Percepção do Tato , Percepção Visual , Criança , Humanos , Pré-Escolar , Tecnologia Háptica , Tato , Aprendizagem
14.
J Exp Child Psychol ; 241: 105856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38306737

RESUMO

Sound-shape correspondence refers to the preferential mapping of information across the senses, such as associating a nonsense word like bouba with rounded abstract shapes and kiki with spiky abstract shapes. Here we focused on audio-tactile (AT) sound-shape correspondences between nonsense words and abstract shapes that are felt but not seen. Despite previous research indicating a role for visual experience in establishing AT associations, it remains unclear how visual experience facilitates AT correspondences. Here we investigated one hypothesis: seeing the abstract shapes improve haptic exploration by (a) increasing effective haptic strategies and/or (b) decreasing ineffective haptic strategies. We analyzed five haptic strategies in video-recordings of 6- to 8-year-old children obtained in a previous study. We found the dominant strategy used to explore shapes differed based on visual experience. Effective strategies, which provide information about shape, were dominant in participants with prior visual experience, whereas ineffective strategies, which do not provide information about shape, were dominant in participants without prior visual experience. With prior visual experience, poking-an effective and efficient strategy-was dominant, whereas without prior visual experience, uncategorizable and ineffective strategies were dominant. These findings suggest that prior visual experience of abstract shapes in 6- to 8-year-olds can increase the effectiveness and efficiency of haptic exploration, potentially explaining why prior visual experience can increase the strength of AT sound-shape correspondences.


Assuntos
Tecnologia Háptica , Visão Ocular , Criança , Humanos , Tato , Som , Emoções
15.
Perception ; : 3010066241261772, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053476

RESUMO

Both visual and haptic softness perception have recently been shown to have multiple dimensions, such as deformability, granularity, fluidity, surface softness, and roughness. During haptic exploration, people adjust their hand motions (exploratory procedures, EPs) based on the material qualities of the object and the particular information they intend to acquire. Some of these EPs are also shown to be associated with perceived softness dimensions, for example, stroking a silk blouse or applying pressure to a pillow. Here, we aimed to investigate whether we can manipulate observers' judgments about softness attributes through exposure to videos of others performing various EPs on everyday soft materials. In two experiments, participants watched two videos of the same material: one with a corresponding EP and the other without correspondence; then, they judged these materials based on 12 softness-related adjectives (semantic differentiation method). The results of the second experiment suggested that when the EP is congruent with the dimension from which the material is chosen, the ratings for the adjectives from the same dimension are higher than the incongruent EP. This study provides evidence that participants can assess material properties from optic and mechanical cues without needing haptic signals. Additionally, our findings indicate that manipulating the hand motion can selectively facilitate material-related judgments.

16.
Psychol Res ; 88(2): 363-378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37801088

RESUMO

Taking a motor planning perspective, this study investigates whether haptic force cues displayed on the steering wheel are more effective than visual cues in signaling the direction of an upcoming lane change. Licensed drivers drove in a fixed-base driving simulator equipped with an active steering system for realistic force feedback. They were instructed to make lane changes upon registering a directional cue. Cues were delivered according to the movement precuing technique employing a pair of precues and imperative cues which could be either visual, haptic, or crossmodal (a visual precue with a haptic imperative cue, and vice versa). The main dependent variable was response time. Additional analyses were conducted on steering wheel angle profiles and the rate of initial steering errors. Conditions with a haptic imperative cue produced considerably faster responses than conditions with a visual imperative cue, irrespective of the precue modality. Valid and invalid precues produced the typical gains and costs, with one exception. There appeared to be little cost in response time or initial steering errors associated with invalid cueing when both cues were haptic. The results are consistent with the hypothesis that imperative haptic cues facilitate action selection while visual stimuli require additional time-consuming cognitive processing.


Assuntos
Condução de Veículo , Humanos , Condução de Veículo/psicologia , Tecnologia Háptica , Tempo de Reação , Sinais (Psicologia) , Movimento
17.
Surg Today ; 54(4): 375-381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37653350

RESUMO

PURPOSE: To verify the usefulness of haptic feedback in telesurgery and improve the safety of telerobotic surgery. METHODS: The surgeon's console was installed at two sites (Fukuoka and Beppu; 140 km apart), and the patient cart was installed in Fukuoka. During the experiment, the surgeon was blinded to the haptic feedback levels and asked to grasp the intestinal tract in an animal model. The surgeon then performed the tasks at each location. RESULTS: No marked differences in task accuracy or average grasping force were observed between the surgeon locations. However, the average task completion time was significantly longer, and the system usability scale (SUS) was significantly lower rating for remote operations than for local ones. No marked differences in task accuracy or task completion time were observed between the haptic feedback levels. However, with haptic feedback, the organ was grasped with a significantly weaker force than that without it. Furthermore, with haptic feedback, experienced surgeons in robotic surgery tended to perform an equivalent task with weaker grasping forces than inexperienced surgeons. CONCLUSION: The haptic feedback function is a tool that allows the surgeon to perform surgery with an appropriate grasping force, both on site and remotely. Improved safety is necessary in telesurgery; haptic feedback will thus be an essential technology in robotic telesurgery going forward.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgiões , Animais , Humanos , Retroalimentação , Tecnologia Háptica
18.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732782

RESUMO

In robot-assisted microsurgery (RAMS), surgeons often face the challenge of operating with minimal feedback, particularly lacking in haptic feedback. However, most traditional desktop haptic devices have restricted operational areas and limited dexterity. This report describes a novel, lightweight, and low-budget wearable haptic controller for teleoperated microsurgical robotic systems. We designed a wearable haptic interface entirely made using off-the-shelf material-PolyJet Photopolymer, fabricated using liquid and solid hybrid 3D co-printing technology. This interface was designed to resemble human soft tissues and can be wrapped around the fingertips, offering direct contact feedback to the operator. We also demonstrated that the device can be easily integrated with our motion tracking system for remote microsurgery. Two motion tracking methods, marker-based and marker-less, were compared in trajectory-tracking experiments at different depths to find the most effective motion tracking method for our RAMS system. The results indicate that within the 4 to 8 cm tracking range, the marker-based method achieved exceptional detection rates. Furthermore, the performance of three fusion algorithms was compared to establish the unscented Kalman filter as the most accurate and reliable. The effectiveness of the wearable haptic controller was evaluated through user studies focusing on the usefulness of haptic feedback. The results revealed that haptic feedback significantly enhances depth perception for operators during teleoperated RAMS.


Assuntos
Microcirurgia , Procedimentos Cirúrgicos Robóticos , Dispositivos Eletrônicos Vestíveis , Humanos , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Microcirurgia/instrumentação , Algoritmos , Robótica/instrumentação , Desenho de Equipamento , Impressão Tridimensional
19.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676202

RESUMO

Haptic hands and grippers, designed to enable skillful object manipulation, are pivotal for high-precision interaction with environments. These technologies are particularly vital in fields such as minimally invasive surgery, where they enhance surgical accuracy and tactile feedback: in the development of advanced prosthetic limbs, offering users improved functionality and a more natural sense of touch, and within industrial automation and manufacturing, they contribute to more efficient, safe, and flexible production processes. This paper presents the development of a two-finger robotic hand that employs simple yet precise strategies to manipulate objects without damaging or dropping them. Our innovative approach fused force-sensitive resistor (FSR) sensors with the average current of servomotors to enhance both the speed and accuracy of grasping. Therefore, we aim to create a grasping mechanism that is more dexterous than grippers and less complex than robotic hands. To achieve this goal, we designed a two-finger robotic hand with two degrees of freedom on each finger; an FSR was integrated into each fingertip to enable object categorization and the detection of the initial contact. Subsequently, servomotor currents were monitored continuously to implement impedance control and maintain the grasp of objects in a wide range of stiffness. The proposed hand categorized objects' stiffness upon initial contact and exerted accurate force by fusing FSR and the motor currents. An experimental test was conducted using a Yale-CMU-Berkeley (YCB) object set consisted of a foam ball, an empty soda can, an apple, a glass cup, a plastic cup, and a small milk packet. The robotic hand successfully picked up these objects from a table and sat them down without inflicting any damage or dropping them midway. Our results represent a significant step forward in developing haptic robotic hands with advanced object perception and manipulation capabilities.


Assuntos
Dedos , Força da Mão , Robótica , Tato , Robótica/métodos , Robótica/instrumentação , Humanos , Dedos/fisiologia , Tato/fisiologia , Força da Mão/fisiologia , Impedância Elétrica , Mãos/fisiologia , Desenho de Equipamento
20.
Surg Innov ; 31(3): 331-341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38486132

RESUMO

BACKGROUND: Virtual simulations (VSs) enhance clinical competencies and skills. However, a previous systematic review of 9 RCT studies highlighted a paucity of literature on the effects of haptic feedback in surgical VSs. An updated systematic and scoping review was conducted to encompass more studies and a broader range of study methodologies. METHODS: A systematic literature search was conducted on July 31, 2023, in MEDLINE, Embase, and Cochrane. English language studies comparing haptic vs non-haptic conditions and using VSs were included. Studies were evaluated and reported using PRISMA-ScR guidelines. RESULTS: Out of 2782 initial studies, 51 were included in the review. Most studies used RCT (21) or crossover (23) methodologies with medical residents, students, and attending physicians. Most used post-intervention metrics, while some used pre- and post-intervention metrics. Overall, 34 performance results from studies favored haptics, 3 favored non-haptics, and the rest showed mixed or equal results. CONCLUSION: This updated review highlights the diverse application of haptic technology in surgical VSs. Haptics generally enhances performance, complements traditional teaching methods, and offers personalized learning with adequate simulator validation. However, a sparsity of orienting to the simulator, pre-/post-study designs, and small sample sizes poses concerns with the validity of the results. We underscore the urgent need for standardized protocols, large-scale studies, and nuanced understanding of haptic feedback integration. We also accentuate the significance of simulator validation, personalized learning potential, and the need for researcher, educator, and manufacturer collaboration. This review is a guidepost for navigating the complexities and advancements in haptic-enhanced surgical VSs.


Assuntos
Competência Clínica , Treinamento por Simulação , Humanos , Retroalimentação , Cirurgia Geral/educação , Treinamento por Simulação/métodos , Realidade Virtual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA