RESUMO
Induction of fetal hemoglobin (HbF) is highly beneficial for patients carrying ß-thalassemia, and novel HbF inducers are highly needed. Here, we describe a new class of promising HbF inducers characterized by an isoxazole chemical skeleton and obtained through modification of two natural molecules, geldanamycin and radicicol. After preliminary biological assays based on benzidine staining and RT-qPCR conducted on human erythroleukemic K562 cells, we employed erythroid precursors cells (ErPCs) isolated from ß-thalassemic patients. ErPCs weretreated with appropriate concentrations of isoxazole derivatives. The accumulation of globin mRNAs was studied by RT-qPCR, and hemoglobin production by HPLC. We demonstrated the high efficacy of isozaxoles in inducing HbF. Most of these derivatives displayed an activity similar to that observed using known HbF inducers, such as hydroxyurea (HU) or rapamycin; some of the analyzed compounds were able to induce HbF with more efficiency than HU. All the compounds were active in reducing the excess of free α-globin in treated ErPCs. All the compounds displayed a lack of genotoxicity. These novel isoxazoles deserve further pre-clinical study aimed at verifying whether they are suitable for the development of therapeutic protocols for ß-thalassemia.
Assuntos
Hemoglobina Fetal , Talassemia beta , Humanos , Hemoglobina Fetal/genética , Células Precursoras Eritroides , Talassemia beta/tratamento farmacológico , Bioensaio , Hidroxiureia/farmacologia , IsoxazóisRESUMO
There is a general agreement that pharmacologically mediated stimulation of human γ-globin gene expression and increase of production of fetal hemoglobin (HbF) is a potential therapeutic approach in the experimental therapy of ß-thalassemia and sickle cell anemia. Here, we report the development and characterization of cellular biosensors carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and ß-globin gene promoters, respectively; these dual-reporter cell lines are suitable to identify the induction ability of screened compounds on the transcription in erythroid cells of γ-globin and ß-globin genes by FACS with efficiency and reproducibility. Our experimental system allows to identify (a) HbF inducers stimulating to different extent the activity of the γ-globin gene promoter and (b) molecules that stimulate also the activity of the ß-globin gene promoter. A good correlation does exist between the results obtained by using the EGFP/RFP clones and experiments performed on erythroid precursor cells from ß-thalassemic patients, confirming that this experimental system can be employed for high-throughput screening (HTS) analysis. Finally, we have demonstrated that this dual-reporter cell line can be used for HTS in 384-well plate, in order to identify novel HbF inducers for the therapy of ß-thalassemia and sickle cell anemia. Graphical abstract.
Assuntos
Técnicas Biossensoriais , Diferenciação Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Regiões Promotoras Genéticas , Transcrição Gênica , Globinas beta/genética , gama-Globinas/genética , Eritrócitos/citologia , Hemoglobina Fetal/genética , Proteínas de Fluorescência Verde/genética , Humanos , Células K562 , Reprodutibilidade dos TestesRESUMO
The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from ß-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of ß-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter.
Assuntos
Talassemia beta , gama-Globinas , Humanos , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Plicamicina/farmacologia , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Expressão Gênica , Fatores de Transcrição Kruppel-Like/genéticaRESUMO
INTRODUCTION: Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the ß-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED: Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION: The comprehension of the mechanisms involved in the ß-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Assuntos
Hemoglobina Fetal , Globinas beta , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobina Fetal/farmacologia , Globinas beta/farmacologia , Fatores de Transcrição , Transdução de SinaisRESUMO
Beta-thalassemia is a genetic disorder characterized by the impaired synthesis of the betaglobin chain of adult hemoglobin. The disorder has a complex pathophysiology that affects multiple organ systems. The main complications of beta thalassemia are ineffective erythropoiesis, chronic hemolytic anemia and hemosiderosis-induced organ dysfunction. Regular blood transfusions are the main therapy for beta thalassemia major; however, this treatment can cause cardiac and hepatic hemosiderosis - the most common cause of death in these patients. This review focuses on unique future therapeutic interventions for thalassemia that reverse splenomegaly, reduce transfusion frequency, decrease iron toxicity in organs, and correct chronic anemia. The targeted effective protocols include hemoglobin fetal inducers, ineffective erythropoiesis correctors, antioxidants, vitamins, and natural products. Resveratrol is a new herbal therapeutic approach which serves as fetal Hb inducer in beta thalassemia. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for beta thalassemia major and is preferred over iron chelation and blood transfusion for ensuring long life in these patients. Meanwhile, several molecular therapies, such as ActRIIB/IgG1 Fc recombinant protein, have emerged to address complications of beta thalassemia or the adverse effects of current drugs. Regarding gene correction strategies, a phase III trial called HGB-207 (Northstar-2; NCT02906202) is evaluating the efficacy and safety of autologous cell transplantation with LentiGlobin. Advanced gene-editing approaches aim to cut DNA at a targeted site and convert HbF to HbA during infancy, such as the suppression of BCL11A (B cell lymphoma 11A), HPFH (hereditary persistence of fetal hemoglobin) and zinc-finger nucleases. Gene therapy is progressing rapidly, with multiple clinical trials being conducted in many countries and the promise of commercial products to be available in the near future.
Assuntos
Terapia Genética/métodos , Talassemia beta/genética , Talassemia beta/terapia , Transfusão de Sangue/métodos , Edição de Genes/métodos , Hemoglobinas/genética , Humanos , Terapia de Alvo Molecular/métodosRESUMO
Sickle cell disease (SCD) is a monogenetic disease but has a wide range of phenotypic expressions. Some of these differences in phenotype can be explained by genetic polymorphisms in the human globin gene. These polymorphisms can result in different responses to typical treatment, sometimes leading to inadequate therapeutics. Research is revealing more polymorphisms, and therefore, new targets for intervention to improve outcomes in SCD. This area of pharmacogenomics is continuing to develop. We provide a brief review of the current literature on pharmacogenomics in SCD and possible targets for intervention.