Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260361

RESUMO

Human pluripotent stem cells (hPSCs), derived from individuals or genetically modified with disease-related mutations and variants, have revolutionised studies of human disease. Researchers are beginning to exploit the extraordinary potential of stem cell technology to screen for new drugs to treat intractable diseases, ideally without side-effects. However, a major problem is that the differentiated cell types on which these models are based are immature; they resemble fetal and not adult cells. Here, we discuss the nature and hurdles of hPSC maturation, using cardiomyocytes as an example. We review methods used to induce cardiomyocyte maturation in culture and consider remaining challenges for their integration into research on human disease and drug development pipelines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos/metabolismo , Diferenciação Celular
2.
J Proteome Res ; 23(8): 3161-3173, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456420

RESUMO

A computational analysis of mass spectrometry data was performed to uncover alternative splicing derived protein variants across chambers of the human heart. Evidence for 216 non-canonical isoforms was apparent in the atrium and the ventricle, including 52 isoforms not documented on SwissProt and recovered using an RNA sequencing derived database. Among non-canonical isoforms, 29 show signs of regulation based on statistically significant preferences in tissue usage, including a ventricular enriched protein isoform of tensin-1 (TNS1) and an atrium-enriched PDZ and LIM Domain 3 (PDLIM3) isoform 2 (PDLIM3-2/ALP-H). Examined variant regions that differ between alternative and canonical isoforms are highly enriched with intrinsically disordered regions. Moreover, over two-thirds of such regions are predicted to function in protein binding and RNA binding. The analysis here lends further credence to the notion that alternative splicing diversifies the proteome by rewiring intrinsically disordered regions, which are increasingly recognized to play important roles in the generation of biological function from protein sequences.


Assuntos
Processamento Alternativo , Proteínas Intrinsicamente Desordenadas , Isoformas de Proteínas , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Ventrículos do Coração/metabolismo , Proteoma/genética , Proteoma/metabolismo , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Miocárdio/química , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/química , Espectrometria de Massas , Tensinas/metabolismo , Tensinas/genética , Especificidade de Órgãos , Ligação Proteica
3.
Biochem Soc Trans ; 52(3): 1045-1059, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38778769

RESUMO

Major advancements in human pluripotent stem cell (hPSC) technology over recent years have yielded valuable tools for cardiovascular research. Multi-cell type 3-dimensional (3D) cardiac models in particular, are providing complementary approaches to animal studies that are better representatives than simple 2-dimensional (2D) cultures of differentiated hPSCs. These human 3D cardiac models can be broadly divided into two categories; namely those generated through aggregating pre-differentiated cells and those that form self-organizing structures during their in vitro differentiation from hPSCs. These models can either replicate aspects of cardiac development or enable the examination of interactions among constituent cell types, with some of these models showing increased maturity compared with 2D systems. Both groups have already emerged as physiologically relevant pre-clinical platforms for studying heart disease mechanisms, exhibiting key functional attributes of the human heart. In this review, we describe the different cardiac organoid models derived from hPSCs, their generation methods, applications in cardiovascular disease research and use in drug screening. We also address their current limitations and challenges as pre-clinical testing platforms and propose potential improvements to enhance their efficacy in cardiac drug discovery.


Assuntos
Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Organoides/citologia , Animais , Coração/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Doenças Cardiovasculares/metabolismo , Modelos Cardiovasculares
4.
Dev Growth Differ ; 66(2): 119-132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193576

RESUMO

Research on cardiomyopathy models using engineered heart tissue (EHT) created from disease-specific induced pluripotent stem cells (iPSCs) is advancing rapidly. However, the study of restrictive cardiomyopathy (RCM), a rare and intractable cardiomyopathy, remains at the experimental stage because there is currently no established method to replicate the hallmark phenotype of RCM, particularly diastolic dysfunction, in vitro. In this study, we generated iPSCs from a patient with early childhood-onset RCM harboring the TNNI3 R170W mutation (R170W-iPSCs). The properties of R170W-iPSC-derived cardiomyocytes (CMs) and EHTs were evaluated and compared with an isogenic iPSC line in which the mutation was corrected. Our results indicated altered calcium kinetics in R170W-iPSC-CMs, including prolonged tau, and an increased ratio of relaxation force to contractile force in R170W-EHTs. These properties were reversed in the isogenic line, suggesting that our model recapitulates impaired relaxation of RCM, i.e., diastolic dysfunction in clinical practice. Furthermore, overexpression of wild-type TNNI3 in R170W-iPSC-CMs and -EHTs effectively rescued impaired relaxation. These results highlight the potential efficacy of EHT, a modality that can accurately recapitulate diastolic dysfunction in vitro, to elucidate the pathophysiology of RCM, as well as the possible benefits of gene therapies for patients with RCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Restritiva , Células-Tronco Pluripotentes Induzidas , Criança , Pré-Escolar , Humanos , Cardiomiopatia Restritiva/genética , Cardiomiopatia Restritiva/terapia , Mutação , Miócitos Cardíacos/fisiologia
5.
Artif Organs ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041632

RESUMO

OBJECTIVES: Engineered Heart Tissue (EHT) is a promising tool to repair heart muscle defects and can additionally be used for drug testing. Due to the absence of an in vitro vascularization, EHT geometry crucially impacts nutrient and oxygen supply by diffusion capacity. We analyzed cardiomyocyte survival in different EHT geometries. METHODS: Different geometries with varying surface-area-to-volume-ratios were calculated (structure A (Ring) AS/V = 58.47 mm2/440 µL3, structure B (Infinity) 25.86 mm2/440 µL3). EHTs were generated from hiPSC-derived cardiomyocytes (4 × 106) and a fibrin/thrombin hydrogel. Cell viability was evaluated by RT-PCR, cytometric studies, and Bioluminescence imaging. RESULTS: Using 3D-printed casting molds, spontaneously beating EHTs can be generated in various geometric forms. At day 7, the RT-PCR analyses showed a significantly higher Troponin-T value in ring EHTs, compared to infinity EHTs. In cytometric studies, we evaluated 15% more Troponin-T positive cells in ring (73% ± 12%), compared to infinity EHTs (58% ± 11%, p = 0.04). BLI visualized significantly higher cell survival in ring EHTs (ROI = A: 1.14 × 106 p/s and B: 8.47 × 105 p/s, p < 0.001) compared to infinity EHTs during longitudinal cultivation process. CONCLUSION: Use of 3D-printing allows the creation of EHTs in all desired geometric shapes. The geometry with an optimized surface-area-to-volume-ratio (ring EHT) demonstrated a significantly higher cell survival measured by RT-PCR, Bioluminescence imaging, and cytometric studies using FACS analysis.

6.
Semin Cell Dev Biol ; 118: 119-128, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33775518

RESUMO

Organoids, or miniaturized organs formed in vitro, hold potential to revolutionize how researchers approach and answer fundamental biological and pathological questions. In the context of cardiac biology, development of a bona fide cardiac organoid enables study of heart development, function, and pathogenesis in a dish, providing insight into the nature of congenital heart disease and offering the opportunity for high-throughput probing of adult heart disease and drug discovery. Recently, multiple groups have reported novel methods for generating in vitro models of the heart; however, there are substantial conceptual and methodological differences. In this review we will evaluate recent cardiac organoid studies through the lens of the core principles of organoid technology: patterned self-organization of multiple cell types resembling the in vivo organ. Based on this, we will classify systems into the following related types of tissues: developmental cardiac organoids, chamber cardiac organoids, microtissues, and engineered heart tissues. Furthermore, we highlight the interventions which allow for organoid formation, such as modulation of highly conserved cardiogenic signaling pathways mediated by developmental morphogens. We expect that consolidation and categorization of existing organoid models will help eliminate confusion in the field and facilitate progress towards creation of an ideal cardiac organoid.


Assuntos
Coração/crescimento & desenvolvimento , Organogênese/fisiologia , Organoides/crescimento & desenvolvimento , Humanos
7.
Semin Cell Dev Biol ; 112: 16-26, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32591270

RESUMO

Cardiac chamber walls contain large numbers of non-contractile interstitial cells, including fibroblasts, endothelial cells, pericytes and significant populations of blood lineage-derived cells. Blood cells first colonize heart tissues a few days before birth, although their recruitment from the bloodstream to the cardiac interstitium is continuous and extends throughout adult life. The bone marrow, as the major hematopoietic site of adult individuals, is in charge of renewing all circulating cell types, and it therefore plays a pivotal role in the incorporation of blood cells to the heart. Bone marrow-derived cells are instrumental to tissue homeostasis in the steady-state heart, and are major effectors in cardiac disease progression. This review will provide a comprehensive approach to bone marrow-derived blood cell functions in the heart, and discuss aspects related to hot topics in the cardiovascular field like cell-based heart regeneration strategies.


Assuntos
Medula Óssea/fisiologia , Coração/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Regeneração/fisiologia , Células da Medula Óssea/fisiologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Células Endoteliais/fisiologia , Coração/fisiopatologia , Cardiopatias/genética , Cardiopatias/fisiopatologia , Humanos
8.
J Proteome Res ; 22(6): 2124-2130, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37040897

RESUMO

Heart tissue sample preparation for mass spectrometry (MS) analysis that includes prefractionation reduces the cellular protein dynamic range and increases the relative abundance of nonsarcomeric proteins. We previously described "IN-Sequence" (IN-Seq) where heart tissue lysate is sequentially partitioned into three subcellular fractions to increase the proteome coverage more than a single direct tissue analysis by mass spectrometry. Here, we report an adaptation of the high-field asymmetric ion mobility spectrometry (FAIMS) coupled to mass spectrometry, and the establishment of a simple one step sample preparation coupled with gas-phase fractionation. The FAIMS approach substantially reduces manual sample handling, significantly shortens the MS instrument processing time, and produces unique protein identification and quantification approximating the commonly used IN-Seq method in less time.


Assuntos
Espectrometria de Mobilidade Iônica , Proteoma , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Manejo de Espécimes
9.
Artigo em Inglês | MEDLINE | ID: mdl-37830983

RESUMO

We seek to elucidate the precise nature of mechanical loading that precipitates conduction deficits in a concealed-phase model of arrhythmogenic cardiomyopathy (ACM). ACM is a progressive disorder often resulting from mutations in desmosomal proteins. Exercise has been shown to worsen disease progression and unmask arrhythmia vulnerability, yet the underlying pathomechanisms may depend on the type and intensity of exercise. Because exercise causes myriad changes to multiple inter-dependent hemodynamic parameters, it is difficult to isolate its effects to specific changes in mechanical load. Here, we use engineered heart tissues (EHTs) with iPSC-derived cardiomyocytes expressing R451G desmoplakin, an ACM-linked mutation, which results in a functionally null model of desmoplakin (DSP). We also use a novel bioreactor to independently perturb tissue strain at different time points during the cardiac cycle. We culture EHTs under three strain regimes: normal physiological shortening; increased diastolic stretch, simulating high preload; and isometric culture, simulating high afterload. DSPR451G EHTs that have been cultured isometrically undergo adaptation, with no change in action potential parameters, conduction velocity, or contractile function, a phenotype confirmed by global proteomic analysis. However, when DSPR451G EHTs are subjected to increased diastolic stretch, they exhibit concomitant reductions in conduction velocity and the expression of connexin-43. These effects are rescued by inhibition of both lysosome activity and ERK signaling. Our results indicate that the response of DSPR451G EHTs to mechanical stimuli depends on the strain and the timing of the applied stimulus, with increased diastolic stretch unmasking conduction deficits in a concealed-phase model of ACM.

10.
Am J Physiol Heart Circ Physiol ; 324(3): H293-H304, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637971

RESUMO

Chronic stimulation of cardiac α1A-adrenergic receptors (α1A-ARs) improves symptoms in multiple preclinical models of heart failure. However, the translational significance remains unclear. Human engineered heart tissues (EHTs) provide a means of quantifying the effects of chronic α1A-AR stimulation on human cardiomyocyte physiology. EHTs were created from thin slices of decellularized pig myocardium seeded with human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and fibroblasts. With a paired experimental design, EHTs were cultured for 3 wk, mechanically tested, cultured again for 2 wk with α1A-AR agonist A61603 (10 nM) or vehicle control, and retested after drug washout for 24 h. Separate control experiments determined the effects of EHT age (3-5 wk) or repeat mechanical testing. We found that chronic A61603 treatment caused a 25% increase of length-dependent activation (LDA) of contraction compared with vehicle treatment (n = 7/group, P = 0.035). EHT force was not increased after chronic A61603 treatment. However, after vehicle treatment, EHT force was increased by 35% relative to baseline testing (n = 7/group, P = 0.022), suggesting EHT maturation. Control experiments suggested that increased EHT force resulted from repeat mechanical testing, not from EHT aging. RNA-seq analysis confirmed that the α1A-AR is expressed in human EHTs and found chronic A61603 treatment affected gene expression in biological pathways known to be activated by α1A-ARs, including the MAP kinase signaling pathway. In conclusion, increased LDA in human EHT after chronic A61603 treatment raises the possibility that chronic stimulation of the α1A-AR might be beneficial for increasing LDA in human myocardium and might be beneficial for treating human heart failure by restoring LDA.NEW & NOTEWORTHY Chronic stimulation of α1A-adrenergic receptors (α1A-ARs) is known to mediate therapeutic effects in animal heart failure models. To investigate the effects of chronic α1A-AR stimulation in human cardiomyocytes, we tested engineered heart tissue (EHT) created with iPSC-derived cardiomyocytes. RNA-seq analysis confirmed human EHT expressed α1A-ARs. Chronic (2 wk) α1A-AR stimulation with A61603 (10 nM) increased length-dependent activation (LDA) of contraction. Chronic α1A-AR stimulation might be beneficial for treating human heart failure by restoring LDA.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Suínos , Agonistas Adrenérgicos/metabolismo , Agonistas Adrenérgicos/farmacologia , Agonistas Adrenérgicos/uso terapêutico , Contração Miocárdica , Células-Tronco Pluripotentes Induzidas/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos/uso terapêutico , Receptores Adrenérgicos alfa 1/metabolismo
11.
J Transl Med ; 21(1): 617, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697391

RESUMO

BACKGROUND: Vibrational spectroscopy can be a valuable tool to monitor the markers of cardiovascular diseases. In the present work, we explored the vibrational spectroscopy characteristics of the cardiac tissue in an experimental model of heart failure with preserved ejection fraction (HFpEF). The goal was to detect early cardiac chemical modifications associated with the development of HFpEF. METHODS: We used the Fourier-transform infrared (FTIR) and Raman micro-spectroscopic techniques to provide complementary and objective tools for the histological assessment of heart tissues from an animal model of HFpEF. A new sampling technique was adopted (tissue print on a CaF2 disk) to characterize the extracellular matrix. RESULTS: Several spectroscopic markers (lipids, carbohydrates, and glutamate bands) were recognized in the cardiac ventricles due to the comorbidities associated with the pathology, such as obesity and diabetes. Besides, abnormal collagen cross-linking and a decrease in tryptophan content were observed and related to the stiffening of ventricles and to the inflammatory state which is a favourable condition for HFpEF. CONCLUSIONS: By the analyses of tissues and tissue prints, FTIR and Raman techniques were shown to be highly sensitive and selective in detecting changes in the chemistry of the heart in experimental HFpEF and its related comorbidities. Vibrational spectroscopy is a new approach that can identify novel biomarkers for early detection of HFpEF.


Assuntos
Insuficiência Cardíaca , Animais , Volume Sistólico , Miocárdio , Coração , Análise Espectral
12.
J Transl Med ; 21(1): 566, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620858

RESUMO

BACKGROUND: Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting. METHODS AND RESULTS: Human iPSC-derived engineered heart tissue was exposed to C18:1AC. A biphasic effect on contractile force was observed: short exposure enhanced contractile force, but elicited spontaneous contractions and impaired Ca2+ handling. Continuous exposure provoked an impairment of contractile force. In human atrial mitochondria from AF individuals, C18:1AC inhibited respiration. In a population-based cohort as well as a cohort of patients, high C18:1AC serum concentrations were associated with the incidence and prevalence of AF. CONCLUSION: Our data provide evidence for an arrhythmogenic potential of the metabolite C18:1AC. The metabolite interferes with mitochondrial metabolism, thereby contributing to contractile dysfunction and shows predictive potential as novel circulating biomarker for risk of AF.


Assuntos
Fibrilação Atrial , Humanos , Átrios do Coração , Mitocôndrias , Contração Muscular , Respiração
13.
Handb Exp Pharmacol ; 281: 235-255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37563250

RESUMO

The rhythmically beating heart is the foundation of life-sustaining blood flow. There are four chambers and many different types of cell in the heart, but the twisted myofibrillar structures formed by cardiomyocytes are particularly important for cardiac contraction and electrical impulse transmission properties. The ability to generate cardiomyocytes using human-induced pluripotent stem cells has essentially solved the cell supply shortage for in vitro simulation of cardiac tissue function; however, modeling heart at the tissue level needs mature myocardial structure, electrophysiology, and contractile characteristics. Here, the current research on human functionalized cardiac microtissue in modeling cardiac diseases is reviewed and the design criteria and practical applications of different human engineered heart tissues, including cardiac organoids, cardiac thin films, and cardiac microbundles are analyzed. Table summarizing the ability of several in vitro myocardial models to assess heart structure and function for cardiac disease modeling.


Assuntos
Cardiopatias , Miócitos Cardíacos , Humanos , Diferenciação Celular , Miócitos Cardíacos/metabolismo , Miocárdio , Engenharia Tecidual , Cardiopatias/metabolismo
14.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982261

RESUMO

The adult human heart cannot regain complete cardiac function following tissue injury, making cardiac regeneration a current clinical unmet need. There are a number of clinical procedures aimed at reducing ischemic damage following injury; however, it has not yet been possible to stimulate adult cardiomyocytes to recover and proliferate. The emergence of pluripotent stem cell technologies and 3D culture systems has revolutionized the field. Specifically, 3D culture systems have enhanced precision medicine through obtaining a more accurate human microenvironmental condition to model disease and/or drug interactions in vitro. In this study, we cover current advances and limitations in stem cell-based cardiac regenerative medicine. Specifically, we discuss the clinical implementation and limitations of stem cell-based technologies and ongoing clinical trials. We then address the advent of 3D culture systems to produce cardiac organoids that may better represent the human heart microenvironment for disease modeling and genetic screening. Finally, we delve into the insights gained from cardiac organoids in relation to cardiac regeneration and further discuss the implications for clinical translation.


Assuntos
Organoides , Células-Tronco Pluripotentes , Adulto , Humanos , Miócitos Cardíacos , Medicina Regenerativa/métodos
15.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902340

RESUMO

Missense mutations in myosin heavy chain 7 (MYH7) are a common cause of hypertrophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7-based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adult-onset systolic dysfunction. MYH7E848G/+ increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7E848G/+ HCM patients. Interestingly, MYH7E848G/+ cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7E848G/+ cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis is associated with the MYH7E848G/+ HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.


Assuntos
Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Miócitos Cardíacos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Miosinas Cardíacas/genética , Mutação , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiomiopatia Hipertrófica/genética , Contração Miocárdica/genética , Apoptose , Cadeias Pesadas de Miosina/metabolismo
16.
Saudi Pharm J ; 31(8): 101683, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576861

RESUMO

In many occupational settings, workers are frequently exposed to toluene and noise. However, the individual and combined effects of these exposures on the cardiovascular system have not been fully elucidated. Therefore, this study aimed to investigate the impact of simultaneous exposure to toluene and noise on the rat heart, while also evaluating the potential preventive effect of olive leaf extract (OLE). Forty-eight male Wistar rats were randomly assigned to eight groups (n = 6/group): control group (C), control group that received OLE (C + OLE), group exposed to noise (N), group exposed to noise and receiving OLE (N + OLE), group exposed to toluene (T), group exposed to toluene and receiving OLE (T + OLE), group co-exposed to noise and toluene (NT), and group co-exposed to noise and toluene and receiving OLE (NT + OLE). The rats in this study were subjected to simultaneous exposure to toluene and noise for a duration of six weeks, within a custom-built plexiglass chamber. Toluene was administered at a concentration of 300 ppm, while the noise level was set to 85 dB(A). The exposure chamber was equipped with a generation system, an exposure system, and a monitoring system, ensuring precise and accurate exposure conditions. After the six-week period, heart and blood samples were collected from the rats for subsequent analysis. Plasma levels of cholesterol (CHOL), triglycerides (TG), lactate dehydrogenase (LDH), and creatine kinase (CK) were measured, and histopathological investigation was conducted using HE staining. Additionally, superoxide dismutase (SOD) and catalase (CAT) activities, as well as malondialdehyde (MDA) levels in heart tissue were measured. Our results showed that simultaneous exposure to noise and toluene altered CHOL, TG, LDH, and CK levels, and also caused an increase in lipid peroxidation levels and superoxide dismutase activity, along with a decrease in catalase activity in the heart. A significant alteration in the myocardium was also observed. However, treatment with OLE was found to modulate these oxidative and histological changes, ultimately correcting the deleterious effects induced by the combined exposure to noise and toluene. Therefore, our study suggests that OLE could be a potential preventive measure for individuals exposed to toluene and noise in industrial settings.

17.
J Mol Cell Cardiol ; 163: 97-105, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34634355

RESUMO

BACKGROUND: One third of heart failure patients exhibit dyssynchronized electromechanical activity of the heart (evidenced by a broad QRS-complex). Cardiac resynchronization therapy (CRT) in the form of biventricular pacing improves cardiac output and clinical outcome of responding patients. Technically demanding and laborious large animal models have been developed to better predict responders of CRT and to investigate molecular mechanisms of dyssynchrony and CRT. The aim of this study was to establish a first humanized in vitro model of dyssynchrony and CRT. METHODS: Cardiomyocytes were differentiated from human induced pluripotent stem cells and cast into a fibrin matrix to produce engineered heart tissue (EHT). EHTs were either field stimulated in their entirety (symmetrically) or excited locally from one end (asymmetrically) or they were allowed to beat spontaneously. RESULTS: Asymmetrical pacing led to a depolarization wave from one end to the other end, which was visualized in human EHT transduced with a fast genetic Ca2+-sensor (GCaMP6f) arguing for dyssynchronous excitation. Symmetrical pacing in contrast led to an instantaneous (synchronized) Ca2+-signal throughout the EHT. To investigate acute and long-term functional effects, spontaneously beating human EHTs (0.5-0.8 Hz) were divided into a non-paced control group, a symmetrically and an asymmetrically paced group, each stimulated at 1 Hz. Symmetrical pacing was clearly superior to asymmetrical pacing or no pacing regarding contractile force both acutely and even more pronounced after weeks of continuous stimulation. Contractile dysfunction that can be evoked by an increased afterload was aggravated in the asymmetrically paced group. Consistent with reports from paced dogs, p38MAPK and CaMKII-abundance was higher under asymmetrical than under symmetrical pacing while pAKT was considerably lower. CONCLUSIONS: This model allows for long-term pacing experiments mimicking electrical dyssynchrony vs. synchrony in vitro. Combined with force measurement and afterload stimulus manipulation, it provides a robust new tool to gain insight into the biology of dyssynchrony and CRT.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Animais , Estimulação Cardíaca Artificial , Cães , Humanos , Miócitos Cardíacos , Resultado do Tratamento
18.
J Mol Cell Cardiol ; 166: 1-10, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35081367

RESUMO

Myocardial injury leads to an irreversible loss of cardiomyocytes (CM). The implantation of human engineered heart tissue (EHT) has become a promising regenerative approach. Previous studies exhibited beneficial, dose-dependent effects of human induced pluripotent stem cell (hiPSC)-derived EHT patch transplantation in a guinea pig model in the subacute phase of myocardial injury. Yet, advanced heart failure often results from a chronic remodeling process. Therefore, from a clinical standpoint it is worthwhile to explore the ability to repair the chronically injured heart. In this study human EHT patches were generated from hiPSC-derived CMs (15 × 106 cells) and implanted epicardially four weeks after injury in a guinea pig cryo-injury model. Cardiac function was evaluated by echocardiography after a follow-up period of four weeks. Hearts revealed large transmural myocardial injuries amounting to 27% of the left ventricle. EHT recipient hearts demonstrated compact muscle islands of human origin in the scar region, as indicated by a positive staining for human Ku80 and dystrophin, remuscularizing 5% of the scar area. Echocardiographic analysis demonstrated no significant functional difference between animals that received EHT patches and animals in the cell-free control group (fractional area change 36% vs. 34%). Thus, EHT patches engrafted in the chronically injured heart but in contrast to the subacute model, grafts were smaller and EHT patch transplantation did not improve left ventricular function, highlighting the difficulties for a regenerative approach.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Cicatriz , Cobaias , Ventrículos do Coração , Humanos , Miócitos Cardíacos/transplante , Engenharia Tecidual/métodos
19.
Am J Physiol Heart Circ Physiol ; 322(3): H373-H385, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030072

RESUMO

Omecamtiv mecarbil (OM), a myosin activator, was reported to induce complex concentration- and species-dependent effects on contractile function, and clinical studies indicated a low therapeutic index with diastolic dysfunction at concentrations above 1 µM. To further characterize effects of OM in a human context and under different preload conditions, we constructed a setup that allows isometric contractility analysis of human induced pluripotent stem cell (hiPSC)-derived engineered heart tissues (EHTs). The results were compared with effects of OM on the very same EHTs measured under auxotonic conditions. OM induced a sustained, concentration-dependent increase in time to peak under all conditions (maximally two- to threefold). Peak force, in contrast, was increased by OM only in human, but not rat EHTs and only under isometric conditions, varied between hiPSC lines and showed a biphasic concentration dependency with maximal effects at 1 µM. Relaxation time tended to fall under auxotonic and strongly increased under isometric conditions, again with biphasic concentration dependency. Diastolic tension concentration dependently increased under all conditions. The latter was reduced by an inhibitor of the mitochondrial sodium calcium exchanger (CGP-37157). OM induced increases in mitochondrial oxidation in isolated cardiomyocytes, indicating that OM, an inotrope that does not increase intracellular and mitochondrial Ca2+, can induce mismatch between an increase in ATP and ROS production and unstimulated mitochondrial redox capacity. Taken together, we developed a novel setup well suitable for isometric measurements of EHTs. The effects of OM on contractility and diastolic tension are complex with concentration-, time-, species- and loading-dependent differences. Effects on mitochondrial function require further studies.NEW & NOTEWORTHY We developed a novel setup allowing precise control of preload of EHT and characterized effects of the myosin activator OM. OM not only exerted contraction-slowing and positive inotropic effects but also increased diastolic tension. Effect size and direction varied between species, auxotonic and isometric conditions, concentration, and time. We also observed OM-induced increase of mitochondrial ROS, which has not been observed before and may explain part of the effects on contractility.


Assuntos
Cardiotônicos/farmacologia , Técnicas de Reprogramação Celular/métodos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Ureia/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Ureia/farmacologia
20.
Biochem Biophys Res Commun ; 612: 15-21, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500437

RESUMO

Drosophila melanogaster, a classical genetic model organism, is widely used in the field of research on cardiac development and pathophysiological changes. Drosophila Lmpt, a LIM domain protein, is highly homologous to the vertebrate Fhl2. Fhl2 mutations cause heart failure, but the molecular mechanism is still unclear. Firstly, we prepared Lmpt polyclonal antibody and detected the expression of endogenous Lmpt in Drosophila muscle tissue and myocardial tissue, suggested Lmpt may play a role in Drosophila heart tissue. Secondly, We constructed Lmpt knockout drosophila by CRISPR/Cas9 system, the Lmpt knockout homozygous were lethal in embryonic stage, and showed absence and disorder of myocardial cells, indicated that Drosophila Lmpt regulates heart development. Thirdly, we found that the expression of Lmpt was down-regulated in dmef2 knockdown Drosophila. Lastly, Lmpt interacted with Mlp84B. We speculated that Drosophila Lmpt might participate in cardiac development through the dmef2-Lmpt/Mlp84B molecular pathway. This research provides a foundation and points out a new direction for the functional study of Lmpt in heart tissue.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Coração , Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA