RESUMO
Diacylglycerol kinase (DGK) α, which is a key enzyme in the progression of cancer and, in contrast, in T-cell activity attenuation, preferentially produces saturated fatty acid (SFA)- and/or monounsaturated fatty acid (MUFA)-containing phosphatidic acids (PAs), such as 16:0/16:0-, 16:0/18:0-, and 16:1/16:1-PA, in melanoma cells. In the present study, we searched for the target proteins of 16:0/16:0-PA in melanoma cells and identified heat shock protein (HSP) 27, which acts as a molecular chaperone and contributes to cancer progression. HSP27 more strongly interacted with PA than other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, cardiolipin, phosphatidylinositol, phosphatidylinositol 4-monophosphate, and phosphatidylinositol 4,5-bisphosphate. Moreover, HSP27 is more preferentially bound to SFA- and/or MUFA-containing PAs, including 16:0/16:0- and 16:0/18:1-PAs, than PUFA-containing PAs, including 18:0/20:4- and 18:0/22:6-PA. Furthermore, HSP27 and constitutively active DGKα expressed in COS-7 cells colocalized in a DGK activity-dependent manner. Notably, 16:0/16:0-PA, but not phosphatidylcholine or 16:0/16:0-phosphatidylserine, induced oligomer dissociation of HSP27, which enhances its chaperone activity. Intriguingly, HSP27 protein was barely detectable in Jurkat T cells, while the protein band was intensely detected in AKI melanoma cells. Taken together, these results strongly suggest that SFA- and/or MUFA-containing PAs produced by DGKα selectively target HSP27 and regulate its cancer-progressive function in melanoma cells but not in T cells.
Assuntos
Ácidos Graxos , Melanoma , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Proteínas de Choque Térmico HSP27/genética , Ácidos Fosfatídicos/metabolismo , Fosfatidilserinas , Fosfatidilinositóis , Fosfatidilcolinas , Melanoma/metabolismoRESUMO
We studied the effect of the HSP27 inhibitor, 5-(5-ethyl-2-hydroxy-4-methoxyphenyl)-4-(4-methoxyphenyl)-isoxazole, at a final concentration of 0.1 µM and/or the apoptosis inducer dexamethasone at a final concentration of 10 µM on the content of hydroxyl radical, reduced and oxidized glutathione, HSP27, activity of glutathione reductase, glutathione peroxidase, caspase-3, and the number of Annexin+ Jurkat tumor cells. The involvement of HSP27 in apoptosis of Jurkat tumor cells was demonstrated. Simultaneous exposure to the HSP27 inhibitor and dexamethasone resulted in an increase in the level of HSP27 against the background of developing oxidative stress (increase in the concentration of hydroxyl radicals and changes in the state of the glutathione system).
Assuntos
Apoptose , Caspase 3 , Dexametasona , Glutationa , Proteínas de Choque Térmico HSP27 , Estresse Oxidativo , Humanos , Dexametasona/farmacologia , Células Jurkat , Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Glutationa/metabolismo , Caspase 3/metabolismo , Caspase 3/genética , Estresse Oxidativo/efeitos dos fármacos , Glutationa Redutase/metabolismo , Glutationa Peroxidase/metabolismo , Radical Hidroxila/metabolismoRESUMO
Heat Shock Protein 27 (HSP27), an anti-HBV factor, exists in the intracellular and extracellular spaces. As an inflammatory modulator, serum HSP27 (sHSP27) is associated with elevated pro-inflammatory cytokines and a higher likelihood of hepatocellular carcinoma in chronic hepatitis. SHSP27 results in natural antibody production (anti-HSP27-Ab) that is more stable and easily detectable compared to sHSP27. We aimed to investigate any potential association between anti-HSP27-Ab level and chronic hepatitis B (CHB) progression and inflammation indicated by liver cell injury and HBV replication. This cross-sectional study was conducted on 91 patients with CHB and 92 individuals without CHB. Following demographic data collection, anti-HSP27-Ab, serum lipids including total cholesterol, triglyceride, LDL-C, HDL-C, and aminotransferase levels were measured using enzymatic assays in participants' serum samples. HBV DNA was also measured by quantitative PCR in CHB patients. Bivariate and multivariate analyses showed a significantly higher mean level of anti-HSP27-Ab in CHB than in healthy individuals (0.304 vs. 0.256AU/ml, P value = 0.015). These levels held significant differences in the CHB subgroups of male patients, at the age of 50 years and above, with non-smoking status, elevated aminotransferase levels, and hypotriglyceridemia (P value < 0.05). However, no difference was found between the antibody levels and HBV DNA copies (P value > 0.05). This study provides evidence that anti-HSP27 antibody levels can reflect the degree of liver necrosis indicated by aminotransferase levels. Regarding the higher incidence rate of HBV-associated complications in 50 to 60-year-old men, monitoring the antibody can be beneficial in managing this group of CHB patients, which deserves further investigation.
RESUMO
Expression of heat shock protein (HSP) correlates with the oncogenic status of malignant cells and plays an important role in tumorigenesis. HSP27 is constitutively expressed at specific stages of cancer development, and several clinical trials have reported correlations between HSP27 expression and tumor progression, metastasis, and chemoresistance in various types of cancer cells. These findings indicate that HSP27 is a major drug target, particularly in chemo-resistant cancers. As part of our ongoing efforts to improve the previously identified J2, a HSP27 cross-linker, we, in this study, report the identification of NK16 as a novel inducer of abnormal HSP27 dimers that did not affect the expression of HSP90 in an NCI-H460 lung cancer cell model. When NCI-H460 cells were treated with NK16 in combination with the anticancer drug cisplatin or paclitaxel, cleavage of PARP and caspase-3 was increased compared to administration of cisplatin or paclitaxel alone. Similar results were obtained in an NCI-H460-xenografted mouse model, in which tumor growth was suppressed more by co-administration of NK16 and paclitaxel than by paclitaxel alone. We propose NK16 as a meaningful strategy to improve the anticancer efficacy of cisplatin and paclitaxel.
Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Camundongos , Antineoplásicos/farmacologia , Cisplatino , Modelos Animais de Doenças , Proteínas de Choque Térmico , Proteínas de Choque Térmico HSP27 , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/farmacologiaRESUMO
BACKGROUND: The intestinal epithelium acts as a barrier against harmful luminal materials, thus preventing intestinal diseases and maintaining intestinal health. Heat shock protein 27 (HSP27) promotes intestinal epithelial integrity under both physiological and stressed conditions. The effects of partially hydrolyzed guar gum (PHGG) on HSP27 expression in intestinal Caco-2 cells and mouse intestines were investigated. RESULTS: The present study showed that PHGG upregulated HSP27 expression in Caco-2 cells without upregulating Hspb1, the gene encoding HSP27. Feeding PHGG increased HSP25 expression in epithelial cells of the small intestine of mice. Inhibition of protein translation using cycloheximide suppressed PHGG-mediated HSP27 expression, indicating that PHGG upregulated HSP27 via translational modulation. Signaling inhibition of the mechanistic target of rapamycin (mTOR) and phosphatidyl 3-inositol kinase reduced PHGG-mediated HSP27 expression, whereas mitogen-activated protein kinase kinase inhibition by U0126 increased HSP27 expression, irrespective of PHGG administration. PHGG increases mTOR phosphorylation and reduces extracellular signal-regulated protein kinase (ERK) phosphorylation. CONCLUSION: PHGG-mediated translation of HSP27 in intestinal Caco-2 cells and mouse intestine via the mTOR and ERK signaling pathways may promote intestinal epithelial integrity. These findings help us better understand how dietary fibers regulate the physiological function of the intestines. © 2023 Society of Chemical Industry.
Assuntos
Proteínas de Choque Térmico HSP27 , Intestinos , Humanos , Camundongos , Animais , Células CACO-2 , Proteínas de Choque Térmico HSP27/genética , Galactanos/farmacologia , Mananas/farmacologia , Gomas Vegetais/farmacologia , Serina-Treonina Quinases TOR/genéticaRESUMO
OBJECTIVE: To study the expression of heat shock protein 27(HSP27), BAX and BCL-2 apoptosis in silicosis rat model, and to explore the correlation between HSP27 and BAX and BCL-2 apoptosis. METHODS: Silicosis model was established by the oropharyngeal and endotracheal intubation. Forty SPF healthy adult Wistar male rats were randomly divided into 4 groups, with 10 rats in each group. Silicosis group for 6 weeks(feeding for 6 weeks), silicosis group for 8 weeks(feeding for 8 weeks): oropharyngeal and tracheal perfusion of 50 mg/mL SiO_2 suspension 1.0 mL/mouse; Model control group for 6 weeks and model control group for 8 weeks: 1.0 mL saline was infused into the oropharynx and trachea. Immunohistochemical staining was used to detect the expression of HSP27, BAX and BCL-2 in the right lower lung of silicosis model group at 6 and 8 weeks and model control group at 6 and 8 weeks. Western blot was used to detect the protein expression of HSP27, BAX and BCL-2 in the left lower lobe lung tissue of silicosis model group at 6 and 8 weeks and model control group at 6 and 8 weeks, respectively. Immunofluorescence staining was used to detect the colocalization of HSP27 with pro-apoptotic factor BAX and HSP27 with anti-apoptotic factor BCL-2. RESULTS: Compared with the model control group at 6 weeks and 8 weeks, the expression of HSP27 and pro-apoptotic factor BAX in fibrotic region increased, and the expression of anti-apoptotic factor BCL-2 decreased in silicosis model group at 6 weeks and 8 weeks(P<0.05). Immunofluorescence staining showed that there was colocalization of HSP27 and pro-apoptotic factor BAX in the fibrotic region. Correlation analysis showed that the correlation coefficient between HSP27 and pro-apoptotic factor BAX was r=0.94, indicating a positive correlation between them, while the correlation coefficient between HSP27 and anti-apoptotic factor BCL-2 was r=-0.81, indicating a negative correlation between them. CONCLUSION: High expression of HSP27 and pro-apoptotic factor BAX and low expression of anti-apoptotic factor BCL-2 exist in silicosis rats, and their expression is correlated.
Assuntos
Proteínas de Choque Térmico HSP27 , Silicose , Ratos , Masculino , Animais , Camundongos , Ratos Wistar , Proteínas de Choque Térmico HSP27/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , FibroseRESUMO
Stem cell-based therapy has been evaluated in many different clinical trials for various diseases. This capability was applied in various neurodegenerative diseases, such as multiple sclerosis, which is characterized by demyelination, axonal injury, and neuronal loss. Dental pulp stem cells (DPSCs) are mesenchymal stem cells from the oral cavity that have been studied with potential application for the regeneration of different tissues. Heat shock protein 27 (HSP27) regulates neurogenesis in the process of neural differentiation of placenta multipotent stem cells. Here, we hypothesize that HSP27 expression is also critical for the neural differentiation of DPSCs. An evaluation of the possible role of HSP27 in the differentiation of DPSCs was performed using gene knockdown and neural immunofluorescent staining. We found that HSP27 played a role in the differentiation of DPSCs and that knockdown of HSP27 in DPSCs rendered cells to oligodendrocyte progenitors; i.e., small hairpin specific for HSP27 DPSCs exhibited NG2-positive immunoreactivity and gave rise to oligodendrocytes or type-2 astrocytes. This neural differentiation of DPSCs may have clinical significance in the treatment of patients with neurodegenerative diseases. In conclusion, our data provide an example of the oligodendrocyte differentiation of a DPSC model, which may be applied in human regenerative medicine.
Assuntos
Polpa Dentária , Proteínas de Choque Térmico HSP27 , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Oligodendroglia , Células-TroncoRESUMO
Heat shock proteins (HSPs) are stress-induced proteins that are important constituents of the cell's defense system. The activity of HSPs enhances when the cell undergoes undesirable environmental conditions like stress. The protective roles of HSPs are due to their molecular chaperone and anti-apoptotic functions. HSPs have a central role in the eye, and their malfunction has been associated with the manifestation of ocular diseases. Heat shock protein 27 (HSP27, HSPB1) is present in various ocular tissues, and it has been found to protect the eye from disease states such as retinoblastoma, uveal melanoma, glaucoma, and cataract. But some recent studies have shown the destructive role of HSP27 on retinal ganglionic cells. Thus, this article summarizes the role of heat shock protein 27 in eye and ocular diseases and will focus on the expression, regulation, and function of HSP27 in ocular complications.
Assuntos
Melanoma , Neoplasias Uveais , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares , Células Ganglionares da Retina/metabolismoRESUMO
INTRODUCTION: We aimed to define specific reference intervals (RIs) for 11 biomarkers including inflammatory and oxidative stress biomarkers, liver, and renal function tests in a healthy Iranian adult population for the first time. METHODS: CLSI Ep28-A3 guidelines were then used to calculate accurate age- and sex- as well as body mass index (BMI)-specific RIs. RESULTS: RIs for studied biomarkers showed no significant age and sex-specific differences, except for uric acid, which had higher concentrations in men when compared to women. Additionally, after partitioning the participants based on the BMI with a cutoff point of 25 kg/m2 , only the levels of hs-CRP were positively associated with higher BMI (RI for BMI>25: 0.51-7.85 mg/L and for BMI<25: 0.40-4.46 mg/L). RI for PAB and anti-hsp-27 were reported 4.69-155.36 HK and 0.01-0.70 OD in men and women aged 35-65 years old. CONCLUSION: Partitioning by sex and BMI was only required for uric acid and hs-CRP, respectively, while other biomarkers required no partitioning. These results can be expected to valuably contribute to improve laboratory test result interpretation in adults for improved monitoring of various diseases in the Iranian population.
Assuntos
Antioxidantes , Proteína C-Reativa , Adulto , Idoso , Antioxidantes/metabolismo , Biomarcadores , Proteína C-Reativa/metabolismo , Feminino , Proteínas de Choque Térmico HSP27 , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Ácido ÚricoRESUMO
Amyloid ß protein deposition in cerebral vessels, a characteristic of Alzheimer's disease, is a risk factor for intracerebral hemorrhage. Amyloid ß protein directly modulates human platelet function; however, the exact mechanism of action is unclear. Therefore, we investigated the effects of amyloid ß protein on human platelet activation using an aggregometer with laser scattering. Amyloid ß protein decreased platelet aggregation induced by thrombin receptor-activating protein, but not by collagen and ADP. Amyloid ß protein also suppressed platelet aggregation induced by SCP0237 and A3227. Platelet-derived growth factor-AB secretion and phosphorylated-heat shock protein 27 release by thrombin receptor-activating protein were inhibited by amyloid ß protein. Additionally, thrombin receptor-activating protein-induced phosphorylation of JNK and p38 MAP kinase was reduced by amyloid ß protein. Collectively, our results strongly suggest that amyloid ß protein negatively regulates protease-activated receptor-elicited human platelet activation. These findings may indicate a cause of intracerebral hemorrhage due to amyloid ß protein.
Assuntos
Peptídeos beta-AmiloidesRESUMO
A small heat shock protein, HSP27, encoded by HSPB1 gene strongly favors survival, proliferation and metastasis of cancer cells and its expression is dependent on post-translational modifications like phosphorylation. This study performed an extensive in silico screening of 20 deleterious non-synonymous SNPs in the coding region of HSPB1 gene, among which four were identified to be cancer associated. The SNP variant I181S introduced a new phosphorylation site in position 181, which might elevate the protein's activation potential. Emergence of other post-translational modifications was also observed in SNP variants: L144P and E130K.Significant conformational changes were observed in I181S, L144P and E130K SNP variants with respect to wild-type HSP27. These SNPs appear in one among 105 individuals, making them more susceptible towards cancer. This study would therefore, instigate development of novel biomarkers for cancer risk detection and would provide a detailed understanding towards varied cancer susceptibility of human population.
Assuntos
Neoplasias , Polimorfismo de Nucleotídeo Único , Carcinogênese/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Neoplasias/genética , OncogenesRESUMO
OBJECTIVES: The pathogenesis of androgenetic alopecia (AGA) is related to the level of androgen and its metabolic pathways. The binding of androgen and androgen receptor (AR) depends on the assistance of heat shock protein 27 (HSP27). HSP27 combined with microRNAs (miR)-1 can regulate AR levels. However, it is not clear whether HSP27 and miR-1 jointly participate in the pathogenesis of AGA. This study aims to investigate the role of AR up-regulation in the pathogenesis of AGA and underlying mechanisms. METHODS: A total of 46 male AGA patients (AGA group), who admitted to the First Affiliated Hospital of Guangzhou Medical University from September 2019 to February 2020, and 52 healthy controls admitted to the same period were enrolled in this study. Serum levels of dihydrotestosterone (DHT) and HSP27 in patients and healthy controls were measured by ELISA. Western blotting was used to detect the protein expression of HSP27 and AR in scalp tissues of patients and the healthy controls. The levels of HSP27, AR, and miR-1 were analyzed using real-time PCR. Human dermal papilla cells were transfected with HSP27 siRNA to inhibit the expression of HSP27. MiR-1 and miR-1 inhibitors were transfected simultaneously or separately into cells and then the changes in AR protein expression were detected. RESULTS: The levels of DHT and HSP27 in the AGA group were (361.4±187.7) pg/mL and (89.4±21.8) ng/mL, respectively, which were higher than those in the control group [(281.8±176.6) pg/mL and (41.2±13.7) ng/mL, both P<0.05]. However, there was no significant difference in serum HSP27 and AR levels among AGA patients with different degrees of hair loss (P>0.05). Correlation analysis showed that there was a positive correlation between HSP27 level and DHT level in the AGA patients (P<0.05). The level of HSP27 mRNA in scalp tissue was negatively correlated with that of miR-1 mRNA (P<0.05). Compared with the control group, the levels of HSP27 protein, AR protein, HSP27 mRNA, and AR mRNA in scalp tissues of AGA group were significantly increased (P<0.05). The up-regulation of HSP27 in scalp tissues of AGA patients was closely related to the increased levels of AR. However, the level of miR-1 in scalp tissues of AGA patients was significantly down-regulated, contrary to the expression of AR (P<0.05). Further in cell studies showed that inhibition of HSP27 or miR-1 expression in human dermal papilla cells could inhibit the expression of AR, and inhibition of both HSP27 and miR-1 expression was found to have an accumulative effect on AR, with statistically significant differences (all P<0.05). CONCLUSIONS: HSP27 could combine with miR-1 to up-regulate AR levels, which is closely related to the development of AGA.
Assuntos
Alopecia , Proteínas de Choque Térmico HSP27 , MicroRNAs , Receptores Androgênicos , Alopecia/genética , Alopecia/metabolismo , Alopecia/patologia , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Masculino , MicroRNAs/genética , RNA Mensageiro , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação para CimaRESUMO
Blood levels of heat shock protein (HSP27) and natural IgG auto-antibodies to HSP27 (AAbs) are higher in healthy controls compared to cardiovascular disease patients. Vaccination of mice with recombinant HSP25 (rHSP25, murine ortholog of human rHSP27) increased AAb levels, attenuated atherogenesis and reduced plaque inflammation and cholesterol content. We sought to determine if the HSP27 immune complex (IC) altered MΦ inflammation signaling (Toll Like Receptor 4; TLR4), and scavenger receptors involved in cholesterol uptake (SR-AI, CD-36). Combining a validated polyclonal IgG anti-HSP27 antibody (PAb) with rHSP27 enhanced binding to THP-1 MΦ cell membranes and activation of NF-κB signaling via TLR4, competing away LPS and effecting an anti-inflammatory cytokine profile. Similarly, adding the PAb with rHSP27 enhanced binding to SR-AI and CD-36, as well as lowered oxLDL binding in HEK293 cells separately transfected with SR-AI and CD-36, or THP-1 MΦ. Finally, the PAb enhanced the uptake and internalization of rHSP27 in THP-1 MΦ. Thus, the HSP27 IC potentiates HSP27 cell membrane signaling with receptors involved in modulating inflammation and cholesterol uptake, as well as HSP27 internalization. Going forward, we are focusing on the development of HSP27 Immune Complex Altered Signaling and Transport (ICAST) as a means of modulating inflammation.
Assuntos
Anti-Inflamatórios/farmacologia , Complexo Antígeno-Anticorpo/farmacologia , Aterosclerose/prevenção & controle , Autoanticorpos/imunologia , Proteínas de Choque Térmico HSP27/imunologia , Sistema Imunitário/imunologia , Inflamação/prevenção & controle , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , FosforilaçãoRESUMO
Guillain-Barré syndrome (GBS) is an autoimmune peripheral neuropathy and a common cause of neuromuscular paralysis. Preceding infection induces the production of anti-ganglioside (GD) antibodies attacking its own peripheral nerves. In severe proximal peripheral nerve injuries that require long-distance axon regeneration, motor functional recovery is virtually nonexistent. Damaged axons fail to regrow and reinnervate target muscles. In mice, regenerating axons must reach the target muscle within 35â¯days (critical period) to reform functional neuromuscular junctions and regain motor function. Successful functional recovery depends on the rate of axon regeneration and debris removal (Wallerian degeneration) after nerve injury. The innate-immune response of the peripheral nervous system to nerve injury such as timing and magnitude of cytokine production is crucial for Wallerian degeneration. In the current study, forced expression of human heat shock protein (hHsp) 27 completely reversed anti-GD-induced inhibitory effects on nerve repair assessed by animal behavioral assays, electrophysiology and histology studies, and the beneficial effect was validated in a second mouse line of hHsp27. The protective effect of hHsp27 on prolonged muscle denervation was examined by performing repeated sciatic nerve crushes to delay regenerating axons from reaching distal muscle from 37â¯days up to 55â¯days. Strikingly, hHsp27 was able to extend the critical period of motor functional recovery for up to 55â¯days and preserve the integrity of axons and mitochondria in distal nerves. Cytokine array analysis demonstrated that a number of key cytokines which are heavily involved in the early phase of innate-immune response of Wallerian degeneration, were found to be upregulated in the sciatic nerve lysates of hHsp27 Tg mice at 1â¯day postinjury. However, persistent hyperinflammatory mediator changes were found after chronic denervation in sciatic nerves of littermate mice, but remained unchanged in hHsp27 Tg mice. Taken together, the current study provides insight into the development of therapeutic strategies to enhance muscle receptiveness (reinnervation) by accelerating axon regeneration and Wallerian degeneration.
Assuntos
Proteínas de Choque Térmico , Regeneração Nervosa , Neurite Autoimune Experimental , Traumatismos dos Nervos Periféricos , Animais , Axônios , Camundongos , Nervo IsquiáticoRESUMO
Heat shock protein 27 (HSP27) is one of the small molecular chaperones and is involved in many cell mechanisms. Besides the known protective and helpful functions of intracellular HSP27, very little is known about the mode of action of extracellular HSP27. In a previous study, we showed that intravitreal injection of HSP27 led to neuronal damage in the retina and optic nerve after 21 days. However, it was not clear which degenerative signaling pathways were induced by the injection. For this reason, the pathological mechanisms of intravitreal HSP27 injection after 14 days were investigated. Histological and RT-qPCR analyses revealed an increase in endogenous HSP27 in the retina and an activation of components of the intrinsic and extrinsic apoptosis pathway. In addition, an increase in nucleus factor-kappa-light-chain-enhancer of activated B cells (NFκB), as well as of microglia/macrophages and T-cells could be observed. In the optic nerve, however, only an increased apoptosis rate was detectable. Therefore, the activation of caspases and the induction of an incipient immune response seem to be the main triggers for retinal degeneration in this intravitreal HSP27 model.
Assuntos
Caspases/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Retina/metabolismo , Linfócitos T/metabolismo , Vias Visuais/metabolismo , Animais , Apoptose/genética , Caspases/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP27/administração & dosagem , Proteínas de Choque Térmico HSP27/genética , Injeções Intravítreas , Masculino , Nervo Óptico/metabolismo , Ratos WistarRESUMO
Reconstruction of nerve defects is a clinical challenge. Autologous nerve grafts as the gold standard treatment may result in an incomplete restoration of extremity function. Biosynthetic nerve conduits are studied widely, but still have limitations. Here, we reconstructed a 10 mm sciatic nerve defect in healthy rats and analyzed nerve regeneration in poly (ε-caprolactone) (PCL) conduits longitudinally divided by gold (Au) and gold-cobalt oxide (AuCoO) nanoparticles embedded in poly-propylene poly-ethylene glycol (PPEG) membranes (AuPPEG or AuCoOPPEG) and compared it with unmodified PPEG-membrane and hollow PCL conduits. After 21 days, we detected significantly better axonal outgrowth, together with higher numbers of activated Schwann cells (ATF3-labelled) and higher HSP27 expression, in reconstructed sciatic nerve and in corresponding dorsal root ganglia (DRG) in the AuPPEG and AuCoOPPEG groups; whereas the number of apoptotic Schwann cells (cleaved caspase 3-labelled) was significantly lower. Furthermore, numbers of activated and apoptotic Schwann cells in the regenerative matrix correlated with axonal outgrowth, whereas HSP27 expression in the regenerative matrix and in DRGs did not show any correlation with axonal outgrowth. We conclude that gold and cobalt-oxide nanoparticle modified membranes in conduits improve axonal outgrowth and increase the regenerative performance of conduits after nerve reconstruction.
Assuntos
Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Animais , Cobalto/farmacologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ouro/farmacologia , Nanopartículas Metálicas/química , Regeneração Nervosa/fisiologia , Óxidos/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polipropilenos/química , Polipropilenos/farmacologia , Próteses e Implantes , Ratos , Ratos Wistar , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Nervo Isquiático/metabolismoRESUMO
Small heat shock proteins (HSPs), such as HSP27, are ubiquitously expressed molecular chaperones and are essential for cellular homeostasis. The major functions of HSP27 include chaperoning misfolded or unfolded polypeptides and protecting cells from toxic stress. Dysregulation of stress proteins is associated with many human diseases including neurodegenerative diseases, such as Parkinson's disease (PD). PD is characterized by the presence of aggregates of α-synuclein in the central and peripheral nervous system, which induces the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and in the autonomic nervous system. Autonomic dysfunction is an important non-motor phenotype of PD, which includes cardiovascular dysregulation, among others. Nowadays, the therapies for PD focus on dopamine (DA) replacement. However, certain non-motor symptoms with a great impact on quality of life do not respond to dopaminergic drugs; therefore, the development and testing of new treatments for non-motor symptoms of PD remain a priority. Since small HSP27 was shown to prevent α-synuclein aggregation and cytotoxicity, this protein might constitute a suitable target to prevent or delay the motor and non-motor symptoms of PD. In the first part of our review, we focus on the cardiovascular dysregulation observed in PD patients. In the second part, we present data on the possible role of HSP27 in preventing the accumulation of amyloid fibrils and aggregated forms of α-synuclein. We also include our own studies, highlighting the possible protective cardiac effects induced by L-DOPA treatment through the enhancement of HSP27 levels and activity.
Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Doença de Parkinson/tratamento farmacológico , Agregados Proteicos , Animais , Proteínas de Choque Térmico HSP27/química , Humanos , Doença de Parkinson/fisiopatologia , Ligação Proteica , alfa-Sinucleína/metabolismoRESUMO
Gastric cancer is one of the most common types of cancer worldwide. Nevertheless, effective therapeutic strategies have not yet been discovered. Several studies have shown that tanshinone IIA (TIIA), which is extracted from the traditional herbal medicine plant Danshen (Salvia miltiorrhiza), has potential activity against many kinds of cancer. Our previous research demonstrated that TIIA can induce cell death in gastric cancer. However, the exact signaling pathway response is still unclear. Post-translational modification (PTM) plays a significant role in a wide range of physiological processes in cancer, via regulation of both signal transduction cascades and many cellular pathways. Here, we integrated multilayer omics-transcriptomics and dynamic phosphoproteomics-to elucidate the regulatory networks triggered by TIIA in gastric cancer. We identified the phosphorylation of heat shock protein 27 (HSP27) at serine 82 in response to TIIA, which caused reactive oxygen species (ROS) production and unfolded protein response (UPR). Moreover, the accumulation of cellular stress increased the expression of heat shock factor 1 (HSF1). In addition, the downstream targets of HSF1, which were involved in heat shock stress and apoptosis, were also activated in TIIA-treated cells. In conclusion, this study performs a multiomic approach to clarify a comprehensive TIIA-responsive network leading to cell death in gastric cancer.
Assuntos
Apoptose , Proteínas de Choque Térmico HSP27 , Abietanos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP27/genética , FosforilaçãoRESUMO
Patients with metastatic melanoma have a poorer prognosis. Prion protein (PrP) in melanoma is known to play an important role in cancer cell migration and invasion by interacting with filamin A (FLNa), a cytolinker protein. To investigate if PrP may contribute to cancer cell mobility independent of its binding to FLNa, we knocked out PRNP in M2 melanoma cell, which lacked FLNa expression. We found that deletion of PRNP in M2 significantly reduced its motility. When PRNP was deleted, the level of Akt was decreased. As a consequence, phosphorylation of small heat shock protein (hsp27) was also reduced, which resulted in polymerization of F-actin rendering the cells less migratory. Accordingly, when PrP was re-expressed in PRNP null M2 cells, the mobility of the recurred cells was rescued, so were the expression levels of Akt and phosphorylated hsp27, resulting in a decrease in the polymerization of F-actin. These results revealed that PrP can play a FLNa independent role in cytoskeletal organization and tumor cell migration by modulating Akt-hsp27-F-actin axis.
Assuntos
Proteínas de Choque Térmico/metabolismo , Melanoma/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Priônicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Filaminas/deficiência , Filaminas/genética , Filaminas/metabolismo , Técnicas de Inativação de Genes , Inativação Gênica , Humanos , Melanoma/genética , Melanoma/patologia , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Proteínas Priônicas/deficiência , Proteínas Priônicas/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Enterovirus 71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease (HFMD) and fatal neurological diseases, and no effective treatment is available. Characterization of key host factors is important for understanding its pathogenesis and developing antiviral drugs. Here we report that Hsp27 is one of the most upregulated proteins in response to EV-A71 infection, as revealed by two-dimensional gel electrophoresis-based proteomics studies. Depletion of Hsp27 by small interfering RNA or CRISPR/Cas9-mediated knockout significantly inhibited viral replication, protein expression, and reproduction, while restoration of Hsp27 restored such virus activities. Furthermore, we show that Hsp27 plays a crucial role in regulating viral internal ribosome entry site (IRES) activities by two different mechanisms. Hsp27 markedly promoted 2Apro-mediated eukaryotic initiation factor 4G cleavage, an important process for selecting and initiating IRES-mediated translation. hnRNP A1 is a key IRES trans-acting factor (ITAF) for enhancing IRES-mediated translation. Surprisingly, knockout of Hsp27 differentially blocked hnRNP A1 but not FBP1 translocation from the nucleus to the cytoplasm and therefore abolished the hnRNP A1 interaction with IRES. Most importantly, the Hsp27 inhibitor 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), a compound isolated from a traditional Chinese herb, significantly protected against cytopathic effects and inhibited EV-A71 infection. Collectively, our results demonstrate new functions of Hsp27 in facilitating virus infection and provide novel options for combating EV-A71 infection by targeting Hsp27.IMPORTANCE Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target.