Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Environ Res ; 252(Pt 2): 118940, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626871

RESUMO

Constructed wetlands for wastewater treatment pose challenges related to long-term operational efficiency and greenhouse gas emissions on a global scale. This study investigated the impact of adding peat, humic acid, and biochar into the substrates of constructed wetlands and focused on Cr, and Ni removal, greenhouse gas emissions, and microbial communities in constructed wetlands. Biochar addition treatment achieved the highest removal efficiencies for total Cr (99.96%), Cr (VI) (100%), and total Ni (91.04%). Humic acid and biochar addition both significantly increased the heavy metal content in wetland plant Leersia hexandra and substrates of constructed wetlands. Further analysis of microbial community proportions by high-throughput sequencing revealed that biochar and humic acid treatments enhanced Cr and Ni removal efficiency by increasing the abundance of Bacteroidetes, Geobacter and Ascomycota. Humic acid addition treatment reduced CO2 emissions by decreasing the abundance of Bacteroidetes and increasing that of Basidiomycota. Peat treatment decreased CH4 emissions by reducing the abundance of the Bacteroidetes. Biochar treatment increased the abundance of the Firmicutes, Bacteroidetes, Proteobacteria as well as Basidiomycota, resulting in reduced N2O emissions. Biochar and humic acid treatments efficiently removed heavy metals from wastewater and mitigated greenhouse gas emissions in constructed wetlands by modifying the microbial communities.


Assuntos
Cromo , Gases de Efeito Estufa , Níquel , Áreas Alagadas , Níquel/análise , Gases de Efeito Estufa/análise , Cromo/análise , Carvão Vegetal/química , Carbono/análise , Substâncias Húmicas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
2.
J Environ Manage ; 366: 121757, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991336

RESUMO

To address the negative environmental and economic impact of the large amounts of solid waste generated during travertine mining and to reduce the dependence on natural aggregates and cement for pervious concrete pavement applications, travertine waste, as aggregate and powder, was used for the travertine powder pervious concrete (TPPC) to improve the utilization of solid waste and decrease CO2 emissions. The experimental results showed that using 25% travertine aggregate and 5% powder results in a compressive strength reduction of only 9.8% to 25.92 MPa but a significant improvement in water permeability of 57.1% from 3.89 to 6.11 mm/s. To improve the performance of TPPC, further research was done on the effect of sand addition rate (SAR) on TPPC's density, compressive strength, porosity, water permeability, freeze-thaw resistance and heavy metal removal capacity to obtain an optimal incorporation ratio. As SAR rises, the compressive strength of TPPC with sand (STPC) initially increases and then decreases, while permeability behaves inversely. At 3% SAR, the compressive strength reached a maximum of 26.51 MPa, primarily due to the sand added to fill in some of the pores and stabilize the gradation. After 25 cycles, the strength loss rate of STPC varies from 11.39 to 17.93% and the freeze-thaw resistance is most excellent when SAR is 3%. The removal rate of heavy metals using the immersion method was found to be significantly higher (83.4-100%) compared to the rapid method (11.7-28.1%). Therefore, the 3% SAR was recommended for the mixture design of STPC. A laboratory-scale version of the pavement was constructed to assess the efficacy of STPC pavement (STPCP) in reducing runoff and removing heavy metals. The results showed that STPCP could remove more than 94% of runoff with varying intensities after 1 h. The STPCP exhibited removal rates ranging from 42.0 to 99.4% for Cd2+ and 79.5-95.4% for Cu2+. STPCP also attained a removal rate above 98% for Pb2+ after 30 min, demonstrating its environmental friendliness.


Assuntos
Materiais de Construção , Metais Pesados , Areia , Resíduos Sólidos
3.
J Environ Manage ; 352: 120081, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237330

RESUMO

Protecting the environment from harmful pollutants has become increasingly difficult in recent decades. The presence of heavy metal (HM) pollution poses a serious environmental hazard that requires intricate attention on a worldwide scale. Even at low concentrations, HMs have the potential to induce deleterious health effects in both humans and other living organisms. Therefore, various strategies have been proposed to address this issue, with extremophiles being a promising solution. Bacteria that exhibit resistance to metals are preferred for applications involving metal removal due to their capacity for rapid multiplication and growth. Extremophiles are a special group of microorganisms that are capable of surviving under extreme conditions such as extreme temperatures, pH levels, and high salt concentrations where other organisms cannot. Due to their unique enzymes and adaptive capabilities, extremophiles are well suited as catalysts for environmental biotechnology applications, including the bioremediation of HMs through various strategies. The mechanisms of resistance to HMs by extremophilic bacteria encompass: (i) metal exclusion by permeability barrier; (ii) extracellular metal sequestration by protein/chelator binding; (iii) intracellular sequestration of the metal by protein/chelator binding; (iv) enzymatic detoxification of a metal to a less toxic form; (v) active transport of HMs; (vi) passive tolerance; (vii) reduced metal sensitivity of cellular targets to metal ions; and (viii) morphological change of cells. This review provides comprehensive information on extremophilic bacteria and their potential roles for bioremediation, particularly in environments contaminated with HMs, which pose a threat due to their stability and persistence. Genetic engineering of extremophilic bacteria in stressed environments could help in the bioremediation of contaminated sites. Due to their unique characteristics, these organisms and their enzymes are expected to bridge the gap between biological and chemical industrial processes. However, the structure and biochemical properties of extremophilic bacteria, along with any possible long-term effects of their applications, need to be investigated further.


Assuntos
Extremófilos , Metais Pesados , Humanos , Biodegradação Ambiental , Extremófilos/metabolismo , Metais Pesados/toxicidade , Bactérias/genética , Ambientes Extremos , Quelantes
4.
J Environ Manage ; 351: 119912, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176381

RESUMO

An Acinetobacter calcoaceticus strain HM12 capable of heterotrophic nitrification-aerobic denitrification (HN-AD) under nutrient-poor conditions was isolated, with an ammonia nitrogen (NH4+-N) removal efficiency of 98.53%. It can also remove heavy metals by microbial induced calcium precipitation (MICP) with a Ca2+ removal efficiency of 75.91%. Optimal conditions for HN-AD and mineralization of the strain were determined by kinetic analysis (pH = 7, C/N = 2.0, Ca2+ = 70.0 mg L-1, NH4+-N = 5.0 mg L-1). Growth curves and nitrogen balance elucidated nitrogen degradation pathways capable of converting NH4+-N to gaseous nitrogen. The analysis of the bioprecipitation showed that Zn2+ and Cd2+ were removed by the MICP process through co-precipitation and adsorption (maximum removal efficiencies of 93.39% and 80.70%, respectively), mainly ZnCO3, CdCO3, ZnHPO4, Zn3(PO4)2 and Cd3(PO4)2. Strain HM12 produces humic and fulvic acids to counteract the toxicity of pollutants, as well as aromatic proteins to increase extracellular polymers (EPS) and promote the biomineralization process. This study provides a experimental evidence for the simultaneous removal of multiple pollutants from nutrient-poor waters.


Assuntos
Acinetobacter calcoaceticus , Poluentes Ambientais , Metais Pesados , Amônia , Desnitrificação , Acinetobacter calcoaceticus/metabolismo , Cálcio/metabolismo , Nitritos/metabolismo , Cinética , Cádmio , Aerobiose , Nitrificação , Nitrogênio/análise , Processos Heterotróficos , Nutrientes
5.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893368

RESUMO

Agricultural residue-activated carbon and biochar, inexpensive and environmentally friendly adsorbent materials, have recently received significant research attention. This study investigated the potential use of oak cupules in activated carbon form to remove widespread heavy metals (Pb2+, Cu2+, and Ni2+) from wastewater. The oak-activated carbon was prepared from oak cupules and activated with phosphoric acid. Oak-activated carbon was characterized using FTIR, BET analysis, energy-dispersive X-ray spectrometry (EDS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The Freundlich, Langmuir, and Temkin isotherm models were used to assess the equilibrium data. The impact of various parameters, including pH effect, temperature, adsorbent dose, and contact time, was estimated. The Freundlich model was the most agreeable with Pb2+ adsorption by oak-based activated carbon, and Langmuir was more compatible with Cu2+ and Ni2+. Under optimum conditions, the average maximum removal was 63% Pb2+, 60% Cu2+, and 54% Ni2+ when every ion was alone in the aqueous solution. The removal was enhanced to 98% Pb2+, 72% Cu2+, and 60% Ni2+ when found as a mixture. The thermodynamic model revealed that the adsorption of ions by oak-based activated carbon is endothermic. The pseudo-second-order kinetic best describes the adsorption mechanism in this study; it verifies chemical sorption as the rate-limiting step in adsorption mechanisms. The oak-activated carbon was effective in removing Pb2+, Cu2+, and Ni2+ from wastewater and aqueous solutions.

6.
Arch Microbiol ; 205(8): 274, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401995

RESUMO

Highly hydrophobic compounds like petroleum and their byproducts, once released into the environment, can persist indefinitely by virtue of their ability to resist microbial degradation, ultimately paving the path to severe environmental pollution. Likewise, the accumulation of toxic heavy metals like lead, cadmium, chromium, etc., in the surroundings poses an alarming threat to various living organisms. To remediate the matter in question, the applicability of a biosurfactant produced from the mangrove bacterium Bacillus pumilus NITDID1 (Accession No. KY678446.1) is reported here. The structural characterization of the produced biosurfactant revealed it to be a lipopeptide and has been identified as pumilacidin through FTIR, NMR, and MALDI-TOF MS. The critical micelle concentration of pumilacidin was 120 mg/L, and it showed a wide range of stability in surface tension reduction experiments under various environmental conditions and exhibited a high emulsification index of as much as 90%. In a simulated setup of engine oil-contaminated sand, considerable oil recovery (39.78%) by this biosurfactant was observed, and upon being added to a microbial consortium, there was an appreciable enhancement in the degradation of the used engine oil. As far as the heavy metal removal potential of biosurfactant is concerned, as much as 100% and 82% removal was observed for lead and cadmium, respectively. Thus, in a nutshell, the pumilacidin produced from Bacillus pumilus NITDID1 holds promise for multifaceted applications in the field of environmental remediation.


Assuntos
Bacillus pumilus , Poluentes Ambientais , Petróleo , Biodegradação Ambiental , Lipopeptídeos/química , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Cádmio , Tensoativos/química , Petróleo/metabolismo
7.
Mol Biol Rep ; 50(5): 3985-3997, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840848

RESUMO

BACKGROUND: With increased urbanization and industrialization, modern life has led to an anthropogenic impact on the biosphere. Heavy metals pollution and pollutants from black liquor (BL) have caused severe effects on environment and living organisms. Bacterial biofilm has potential to remediate heavy metals and remove BL from the environment. Hence, this study was planned to investigate the potential of microbial biofilms for the bioremediation of heavy metals and BL polluted environments. METHODS AND RESULTS: Eleven biofilm forming bacterial strains (SB1, SB2, SC1, AF1, 5A, BC-1, BC-2, BC-3, BC-4, BC-5 and BC-6) were isolated and identified upto species level via 16S rRNA gene sequencing. Biofilm strains belonging to Bacillus and Lysinibacillus sphaericus were used to remediate heavy metals (Pb, Ni, Mn, Zn, Cu, and Co). Atomic absorption spectroscopy showed significantly high (P ≤ 0.05) bioremediation potential by L. sphaericus biofilm (1462.0 ± 0.67 µgmL-1) against zinc (Zn). Similarly, Pseudomonas putida biofilm significantly (P ≤ 0.05) decolourized (65.1%) BL. Fourier transform infrared (FTIR) analysis of treated heavy metals showed the shifting of major peaks (1637 & 1629-1647, 1633 & 1635-1643, and 1638-1633 cm-1) corresponding to specific amide groups due to C = O stretching. CONCLUSION: The study suggested that biofilm of the microbial flora from tanneries and pulp paper effluents possesses a strong potential for heavy metals bioremediation and BL decolourization. To our knowledge, this is the first report showing promising biofilm remediation potential of bacterial flora of tanneries and pulp-paper effluent from Kasur and Sheikhupura, Punjab, Pakistan, against heavy metals and BL.


Assuntos
Bacillus , Metais Pesados , Pseudomonas putida , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Metais Pesados/análise , Zinco/análise , Pseudomonas putida/genética , Bacillus/genética , Biofilmes
8.
Environ Res ; 216(Pt 1): 114306, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191616

RESUMO

Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Adsorção , Íons , Purificação da Água/métodos
9.
Environ Res ; 235: 116595, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451581

RESUMO

In this research, the potential application of Pistacia soft shell (PSS) was investigated as a novel bio-based flocculant for pulp and paper wastewater (PPWW) treatment. In line with this, after characterization of the PSS, the removal efficiencies of chemical oxygen demand (COD), turbidity and heavy metals (Cu2+ and Pb2+) from PPWW were investigated with different dosage of PSS. The results were compared with alum as a reference flocculant. In addition, the effect of pH adjustment on the flocculation-adsorption performance of PSS was studied under acidic and alkaline condition. Zeta potential, BET, FTIR and SEM as well as kinetics and isotherm analyses were conducted for mechanistic understanding. According to the results, PSS treatment could remove COD, turbidity, Cu2+ and Pb2+ up to 67%, 87%, 70% and 74%, respectively which were better than alum: 56%, 85%, 31% and 35%. It was observed that, pH adjustment significantly improved the performance of PSS treatment. Maximum removal efficiencies of 92%, 95%, 97% and 98% were achieved for COD, turbidity, Cu2+ and Pb2+, respectively, under optimal condition of using 2 g/L PSS at pH 9. The mechanism analysis revealed that the high removal efficiency of PSS is related to the dual flocculation-adsorption of bridging and sweeping mechanisms. The results of this study suggested PSS as a promising, sustainable and eco-friendly bio-based flocculant and adsorbent for industrial wastewater treatment.


Assuntos
Metais Pesados , Pistacia , Poluentes Químicos da Água , Purificação da Água , Floculação , Adsorção , Chumbo/análise , Metais Pesados/análise , Águas Residuárias , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
10.
Environ Res ; 224: 115476, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805352

RESUMO

Composite pollutants are prevalent in wastewater, whereas, the simultaneous accomplishment of efficient nitrogen removal and resources recovery remains a challenge. In this study, a bioreactor was constructed to contain Pseudomonas sp. Y1 using polyester fiber wrapped with shell powder and iron carbon spheres, achieving ammonia nitrogen (NH4+-N) removal, phosphate (PO43--P) recovery, and nickel (Ni2+) immobilization. The optimal performance of bioreactor was average removal efficiencies of NH4+-N, PO43--P, calcium (Ca2+), and Ni2+ as 82.42, 96.67, 76.13, and 98.29% at a hydraulic retention time (HRT) of 6 h, pH of 7.0, and influent Ca2+ and Ni2+ concentrations of 100.0 and 3.0 mg L-1, respectively. The bioreactor could remove PO43--P, Ca2+, and Ni2+ by biomineralization, co-precipitation, adsorption, and lattice substitution. Moreover, microbial community analysis suggested that Pseudomonas was the predominant genus and had possessed tolerance to Ni2+ toxicity in wastewater. This study presented an effective method to synchronously remove NH4+-N, recover PO43--P, and fix heavy metals through microbially induced carbonate precipitation (MICP) and heterotrophic nitrification and aerobic denitrification (HNAD) technology.


Assuntos
Amônia , Águas Residuárias , Fosfatos , Desnitrificação , Níquel , Pós , Ferro , Carbono , Nitrogênio/metabolismo , Reatores Biológicos , Aerobiose
11.
Environ Monit Assess ; 195(9): 1019, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548767

RESUMO

Due to anthropogenic activities, heavy metals such as cadmium (Cd) and arsenic (As) are one of the most toxic xenobiotics contaminating water, thus affecting human health and the environment. The objective of the present investigation was to study the effect of ureolytic bacteria Bacillus paramycoides-MSR1 for the bioremediation of Cd and As from contaminated water. The B. paramycoides showed high resistance to heavy metals, Cd and As, with minimum inhibitory concentration (MIC) of 12.84 µM and 48.54 µM, respectively. The urease activity and calcium carbonate (CaCO3) precipitation were evaluated in artificial wastewater with different concentrations of Cd (0, 10, 20, 30, 40, 50, and 60 µM) and As (0, 20, 40, 60, 80, and 100 µM). The maximum urease activity in Cd-contaminated artificial wastewater was observed after 96 hours, which showed a 76.1% decline in urease activity as the metal concentration increased from 0 to 60 µM. Similarly, 14.1% decline in urease activity was observed as the concentration of As was increased from 0 to 100 µM. The calcium carbonate precipitation at the minimum inhibitory concentration of Cd and As-contaminated artificial wastewater was 189 and 183 mg/100 ml, respectively. The percentage removal of metal from artificially contaminated wastewater with varied concentrations was analyzed using atomic absorption spectroscopy (AAS). After 168 hours of incubation, 93.13% removal of Cd and 94.25% removal of As were observed. Microstructural analysis proved the presence of calcium carbonate in the form of calcite, confirming removal of cadmium and arsenic by microbially induced calcium carbonate precipitation (MICCP) to be promising technique for water decontamination.


Assuntos
Arsênio , Metais Pesados , Humanos , Cádmio/química , Biomineralização , Urease , Águas Residuárias , Monitoramento Ambiental , Carbonato de Cálcio/química
12.
Environ Res ; 214(Pt 4): 114070, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988827

RESUMO

This work tests the technical applicability of sewage sludge and isolated dead cells of Aeromasss hydrophyla and Branhamella spp for the elimination of inorganic pollutants such as Zn(II), Pb(II), Cd(II), and/or Cu(II) using synthetic wastewater with their initial concentrations of 100 mg/L, respectively. The sludge samples were collected from local sewage treatment plants. The effects of dose and pH on heavy metals removal were evaluated in batch studies and their removal performances were compared to those of previous studies. Both the Freundlich and the Langmuir models were plotted to study their biosorption using activated sludge and the bacteria. Isotherm data, resulting from the batch studies, were compared to the modeling results of Geochem. It was evident that the activated sludge could achieve 99% of Zn(II), Cd(II), Cu(II) and Pb(II) removal with 100 mg/L of concentration at pH 6.0 and 3 g/L of dose. Under the same conditions, 97% of Cd(II), Cu(II) and/or Pb(II) was removed by Aeromasss hydrophyla and Branhamella spp, as indicated by their adsorption capacities (activated sludge: 99.07 mg Pb2+/g; dewatered sludge: 57.15 mg Pb2+/g; digested sludge: 83.58 mg Pb2+/g; 24.47 mg Cd2+/g; Aeromasss hydrophylla: 71.91 mg Pb2+/g; Branhamella spp: 37.52 mg Cu2+/g). Of the four heavy metals studied, Pb(II) had the highest metal adsorption capacity for all adsorbents studied (Pb2+>Cu2+> Cd2+>Zn2+). The modeling results of the Geochem fitted well with the isotherm data of the batch studies at varying concentrations from 20 to 100 mg/L. The thermodynamic constant at pH 4 were comparable to those obtained from previous works. This indicates a reliable prediction over varying metal concentrations and pHs of the batch studies. In spite of the promising results, the treated effluents still could not meet the required effluent limits set by local legislation. Therefore, it is necessary to subsequently treat the samples using biological processes such as activated sludge.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Esgotos , Água
13.
Environ Res ; 215(Pt 2): 114293, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36155152

RESUMO

The main objective of this study was to banana waste-derived activated carbon (BWAC) make a high pore surface area was prepared and composited with Fe3O4 via a facile hydrothermal method. Various physiochemical characteristics of the prepared samples were evaluated using XRD, FTIR, FESEM, Raman Spectroscopy and XPS analysis. In addition, cyclic voltammetry and electrochemical impedance spectroscopy analyses were performed to determine the electrochemical properties of the prepared samples. The Fe3O4/BWAC sample showed a higher capacitance (285 F g-1) than BWAC at the same scan rate of 10 mV s-1. The capacitive deionization (CDI) cell configuration was varied, and its electro-sorption and defluoridization efficiencies were analyzed during the lead (Pb2+) removal 90%. An asymmetric combination of electrodes in the CDI cell exhibited better heavy metal removal performance, possibly due to the synergistic effect of the high surface area and the balance between the active adsorption site and the overlapping effect of the EDL. As a result, Fe3O4/BWAC could be a potential resource for supercapacitors and CDI electrodes, and the novel Fe3O4/BWAC nanocomposites outstanding performance suggests that they could be helpful for future energy storage and environmental applications.


Assuntos
Metais Pesados , Musa , Nanocompostos , Carvão Vegetal/química , Chumbo , Nanocompostos/química , Água
14.
J Environ Manage ; 319: 115619, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810583

RESUMO

Heavy metals (HMs) pose serious threats to both human and environmental health and therefore, effective and low-cost techniques to remove HMs are urgently required. Here we report a facile Fe-tannin coating method for zero-valent iron (ZVI) including nanoparticles (nZVI) and foam (Fefoam), and demonstrate that the generated Fe-tannin coating would remove the inherent passive iron oxide shell of ZVI and provide channels for the galvanic replacement reaction between ZVI and HM ions. Electrochemical characterizations demonstrate that the Fe core of the modified ZVI materials could be easily oxidized and transfer electrons to HM ions owing to the facile mass transport and charge transfer. In 40 min, nZVI@Fe-TA exhibits excellent performances for Cd(II), Ni(II), Pb(II), Hg(II), Cu(II) and Cr(VI) removal, with the apparent removal rate constants of 0.083, 0.085, 0.083, 0.073, 0.092 and 0.078 min-1, respectively. It is found that the surface area normalized rate constants of nZVI@Fe-TA are 4-7 times higher than that of nZVI@Fe2O3 counterpart, suggesting that the improved HM removal reactivity of nZVI@Fe-TA is derived from the surface modification. Moreover, nZVI@Fe-TA has advantages in resisting interference and in the simultaneous removal of different HM ions. Under a 30 min hydraulic retention time, Fefoam@Fe-TA could remove 98% HMs in the successive process. For real electroplating wastewater, Fefoam@Fe-TA exhibits excellent performance for Cr(VI) and Ni(II) removal, producing effluent of stable quality that meets local emission regulation. This study provides a facile strategy to remove the inherent passive iron oxide shell and enhance the HM removal reactivity for ZVI materials.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cromo/análise , Humanos , Íons , Ferro/química , Metais Pesados/química , Taninos , Poluentes Químicos da Água/química
15.
Molecules ; 27(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014296

RESUMO

Industrial water has a dual problem because of its strong acidic characteristics and the presence of heavy metals. Removing heavy metals from water in these severe conditions has special requirements. For this problem, an economic method was used for removing iron (Fe), copper (Cu), chromium (Cr), nickel (Ni) and manganese (Mn) with extremely acidic characteristics from water. This method depends on the preparation of nanohybrids through host-guest interactions based on nanolayered structures, organic species (stearic acid), polyvinyl alcohol (PVA) and carbon nanotubes (CNTs). The formation of nanohybrids was confirmed using different techniques through the expansion of the interlayered spacing of the nanolayered structure from 0.76 nm to 1.60 nm, 1.40 nm and 1.06 nm. This nano-spacing is suitable for trapping and confining the different kinds of heavy metal. The experimental results indicated that the prepared nanohybrid was more effective than GreensandPlus, which is used on the market for purifying water. The high activity of the nanohybrid is obvious in the removal of both copper and nickel because the GreensandPlus was completely inactive for these heavy metals under severe conditions. Finally, these experimental results introduce new promising materials for purifying industrial water that can work under severe conditions.

16.
Angew Chem Int Ed Engl ; 61(1): e202112511, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34709699

RESUMO

We demonstrate a new material by intercalating Mo3 S13 2- into Mg/Al layered double hydroxide (abbr. Mo3 S13 -LDH), exhibiting excellent capture capability for toxic Hg2+ and noble metal silver (Ag). The as-prepared Mo3 S13 -LDH displays ultra-high selectivity of Ag+ , Hg2+ and Cu2+ in the presence of various competitive ions, with the order of Ag+ >Hg2+ >Cu2+ >Pb2+ ≥Co2+ , Ni2+ , Zn2+ , Cd2+ . For Ag+ and Hg2+ , extremely fast adsorption rates (≈90 % within 10 min, >99 % in 1 h) are observed. Much high selectivity is present for Ag+ and Cu2+ , especially for trace amounts of Ag+ (≈1 ppm), achieving a large separation factor (SFAg/Cu ) of ≈8000 at the large Cu/Ag ratio of 520. The overwhelming adsorption capacities for Ag+ (qm Ag =1073 mg g-1 ) and Hg2+ (qm Hg =594 mg g-1 ) place the Mo3 S13 -LDH at the top of performing sorbent materials. Most importantly, Mo3 S13 -LDH captures Ag+ via two paths: a) formation of Ag2 S due to Ag-S complexation and precipitation, and b) reduction of Ag+ to metallic silver (Ag0 ). The Mo3 S13 -LDH is a promising material to extract low-grade silver from copper-rich minerals and trap highly toxic Hg2+ from polluted water.

17.
Chem Rec ; 21(7): 1570-1610, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33539046

RESUMO

Textile wastewater heavy metal pollution has become a severe environmental problem worldwide. Metal ion inclusion in a dye molecule exhibits a bathochromic shift producing deeper but duller shades, which provides excellent colouration. The ejection of a massive volume of wastewater containing heavy metal ions such as Cr (VI), Pb (II), Cd (II) and Zn (II) and metal-containing dyes are an unavoidable consequence because the textile industry consumes large quantities of water and all these chemicals cannot be combined entirely with fibres during the dyeing process. These high concentrations of chemicals in effluents interfere with the natural water resources, cause severe toxicological implications on the environment with a dramatic impact on human health. This article reviewed the various metal-containing dye types and their heavy metal ions pollution from entryway to the wastewater, which then briefly explored the effects on human health and the environment. Graphene-based absorbers, specially graphene oxide (GO) benefits from an ordered structured, high specific surface area, and flexible surface functionalization options, which are indispensable to realize a high performance of heavy metal ion removal. These exceptional adsorption properties of graphene-based materials support a position of ubiquity in our everyday lives. The collective representation of the textile wastewater's effective remediation methods is discussed and focused on the GO-based adsorption methods. Understanding the critical impact regarding the GO-based materials established adsorption portfolio for heavy metal ions removal are also discussed. Various heavy-metal ions and their pollutant effect, ways to remove such heavy metal ions and role of graphene-based adsorbent including their demand, perspective, limitation, and relative scopes are discussed elaborately in the review.

18.
Ecotoxicol Environ Saf ; 207: 111309, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931970

RESUMO

Cadmium (Cd2+), as the primary contaminant in Chinese soils, is dangerous to human health and ecological security. Invasive plant Spartina alterniflora in Chinese coastal wetlands presents a promising feedstock for biochar, which is an efficient adsorbent for heavy metal removal. S. alterniflora harvested in summer, autumn and winter were pyrolyzed to produce biochars. We analyzed the effects of harvest time and desalination of feedstock on biochar properties and Cd2+ adsorption capacity in aqueous solution. Biochars were characterized by pH probe, elemental analyzer, SEM, BJH, BET, and FTIR, and the Cd2+ concentrations were measured using AAS. Except pH (9.85-10.95) and nitrogen contents (0.71-1.59%), other biochar properties had no linear correlations with harvest time. Biochars produced from feedstock harvested in autumn had the highest carbon contents (73.25%) and lowest functional groups diversity (CC and -CHx). The pH and carbon contents (64.44-73.25%) were increased by desalination treatment. The surface area (0.48-2.27 m2/g), total pore volume (0.0015-0.0055 mL/g), mesopore volume (0.0015-0.0052 mL/g), and Cd2+ adsorption capacities (16.29-32.34 mg/g) were affected by desalination treatment, and the effects varied with harvest time. Biochars produced from desalted feedstock harvested in summer and untreated feedstock harvested in winter showed higher surface area, porosity, and Cd2+ adsorption capacity. Moderate salt contents (1.5-3.0% in chloride content) in feedstock promote the formation of biochars with higher surface area and porosity.


Assuntos
Cádmio/química , Carvão Vegetal/química , Poaceae/química , Poluentes Químicos da Água/química , Purificação da Água , Adsorção , Cádmio/análise , Carbono , Metais Pesados , Pirólise , Solo/química , Soluções , Tempo , Água , Áreas Alagadas
19.
Int J Phytoremediation ; 23(1): 10-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32633546

RESUMO

Floating ferns of the genus Salvinia have great potential for phytoremediation of heavy metals. To date, the effect of essential metals on the accumulation and transport of toxic metals by aquatic ferns has not been suitably established. The aim of this study was to compare the ability of floating leaves of Salvinia minima and Salvinia rotundifolia species to accumulate Cr from Cr(VI solutions containing very low (0.02 mg L-1) and low (5 mg L-1) Zn concentrations. After 7-day metal-exposure period, results showed that Zn increased Cr accumulation in S. minima leaves whereas in S. rotundifolia decreased significantly. Contrarily Zn accumulation did not show great differences between species. This fact may indicate that Zn interfere Cr(VI) uptake by S. rotundifolia. Bioconcentration factor (BCF) and translocation factor (TF) were affected differently by Zn in both Salvinia species. Membrane stability index (MSI) of both Salvinia species was decreased significantly by 5 mg L-1 Zn concentration. Zn ions also increased hydrogen peroxide accumulation in fronds of Salvinia species. Total thiols (TT), non-protein thiols (NPT) and protein-bound thiols (PBT) were differentially affected by Cr(VI) and Zn ions. This study provides evidences on the involvement of different mechanisms against Cr(VI)/Zn toxicity in S. minima and S rotundifolia species.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Biodegradação Ambiental , Cromo , Compostos de Sulfidrila , Poluentes Químicos da Água/toxicidade , Zinco
20.
Sci Technol Adv Mater ; 22(1): 55-71, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33536841

RESUMO

The pollution of environmental systems with heavy metals is becoming a serious problem worldwide. These contaminants are one of the main issues in sludge (which is considered waste) and can even have harmful effects if the sludge is not treated properly. Thus, the development of a novel functional magnetic nanoadsorbent based on a derived lysine is reported here, which can be efficiently applied for metal removal from sludge. Magnetic nanoparticles were coated with silica layer and further modified by covalent bonding of derived lysine. The morphology of the nanomaterial, its nano-size and the silica layer thickness were analyzed by transmission electron microscopy. The successful silanization of the lysine derivative to the silica-coated magnetic nanostructures was investigated by several physicochemical characterization techniques, while the magnetic properties were measured with a vibrating sample magnetometer. The synthesized nanostructures were used as adsorbents for simultaneous removal of most critical heavy metals (Cr, Zn, Cu) from real complex sludge suspensions. The main practical adsorption parameters, pH of the native stabilized sludge, adsorbent amount, time, and adsorbent regeneration were investigated. The results show promising adsorption properties among currently available adsorbents (the total equilibrium adsorption capacity was 24.5 mg/g) from the sludge with satisfactory nanoadsorbent reusability and its rapid removal. The stability of the nanoadsorbent in the sludge, an important but often neglected practical parameter for efficient removal, was verified. This work opens up new possibilities for the development of high-quality magnetic nanoadsorbents for metal pollutants applied in various complicated environmental fields and enables waste recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA