Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Plant J ; 117(4): 999-1017, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009661

RESUMO

Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.


Assuntos
Brassica napus , Multiômica , Humanos , Brassica napus/genética , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Triglicerídeos/metabolismo , Sementes/metabolismo
2.
Plant J ; 113(4): 734-748, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573648

RESUMO

Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20 016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs that resulted were specific to the sunflower, while few ETEs presented orthologues in the genome of all analyzed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.


Assuntos
Elementos de DNA Transponíveis , Helianthus , Elementos de DNA Transponíveis/genética , Helianthus/genética , Genoma de Planta/genética , Evolução Molecular , Genômica
3.
BMC Genomics ; 25(1): 199, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378469

RESUMO

BACKGROUND: Abiotic stresses in plants include all the environmental conditions that significantly reduce yields, like drought and heat. One of the most significant effects they exert at the cellular level is the accumulation of reactive oxygen species, which cause extensive damage. Plants possess two mechanisms to counter these molecules, i.e. detoxifying enzymes and non-enzymatic antioxidants, which include many classes of specialized metabolites. Sunflower, the fourth global oilseed, is considered moderately drought resistant. Abiotic stress tolerance in this crop has been studied using many approaches, but the control of specialized metabolites in this context remains poorly understood. Here, we performed the first genome-wide association study using abiotic stress-related specialized metabolites as molecular phenotypes in sunflower. After analyzing leaf specialized metabolites of 450 hybrids using liquid chromatography-mass spectrometry, we selected a subset of these compounds based on their association with previously known abiotic stress-related quantitative trait loci. Eventually, we characterized these molecules and their associated genes. RESULTS: We putatively annotated 30 compounds which co-localized with abiotic stress-related quantitative trait loci and which were associated to seven most likely candidate genes. A large proportion of these compounds were potential antioxidants, which was in agreement with the role of specialized metabolites in abiotic stresses. The seven associated most likely candidate genes, instead, mainly belonged to cytochromes P450 and glycosyltransferases, two large superfamilies which catalyze greatly diverse reactions and create a wide variety of chemical modifications. This was consistent with the high plasticity of specialized metabolism in plants. CONCLUSIONS: This is the first characterization of the genetic control of abiotic stress-related specialized metabolites in sunflower. By providing hints concerning the importance of antioxidant molecules in this biological context, and by highlighting some of the potential molecular mechanisms underlying their biosynthesis, it could pave the way for novel applications in breeding. Although further analyses will be required to better understand this topic, studying how antioxidants contribute to the tolerance to abiotic stresses in sunflower appears as a promising area of research.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Estresse Fisiológico/genética , Plantas/genética , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Mol Biol ; 114(2): 34, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568355

RESUMO

Carotenoid cleavage oxygenases (CCOs) enzymes play an important role in plant growth and development by producing a wide array of apocarotenoids and their derivatives. These compounds are vital for colouring flowers and fruits and synthesizing plant hormones such as abscisic acid and strigolactones. Despite their importance, the gene family responsible for CCO enzymes in sunflowers has not been identified. In this study, we identify the CCO genes of the sunflower plant to fill this knowledge gap. Phylogenetic and synteny analysis indicated that the Helianthus annnus CCO (HaCCO) genes were conserved in different plant species and they could be divided into three subgroups based on their conserved domains. Analysis using MEME tool and multiple sequence alignment identified conserved motifs in the HaCCO gene sequence. Cis-regulatory elements (CREs) analysis of the HaCCO genes indicated the presence of various responsive elements related to plant hormones, development, and responses to both biotic and abiotic stresses. This implies that these genes may respond to plant hormones, developmental cues, and drought stress, offering potential applications in the development of more resistant crops. Genes belonging to the 9-cis-epoxy carotenoid dioxygenases (NCED) subgroups predominantly exhibited chloroplast localization, whereas the genes found in other groups are primarily localized in the cytoplasm. These 21 identified HaCCOs were regulated by 60 miRNAs, indicating the crucial role of microRNAs in gene regulation in sunflowers. Gene expression analysis under drought stress revealed significant up-regulation of HaNCED16 and HaNCED19, genes that are pivotal in ABA hormone biosynthesis. During organ-specific gene expression analysis, HaCCD12 and HaCCD20 genes exhibit higher activity in leaves, indicating a potential role in leaf pigmentation. This study provides a foundation for future research on the regulation and functions of the CCO gene family in sunflower and beyond. There is potential for developing molecular markers that could be employed in breeding programs to create new sunflower lines resistant to biotic and abiotic stresses.


Assuntos
Helianthus , Helianthus/genética , Reguladores de Crescimento de Plantas , Filogenia , Melhoramento Vegetal , Ácido Abscísico , Estresse Fisiológico/genética
5.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648104

RESUMO

Sunflowers of the genus Helianthus are models for hybridization research and contain three of the best-studied examples of homoploid hybrid speciation. To understand a broader picture of hybridization within the annual sunflowers, we used whole-genome resequencing to conduct a phylogenomic analysis and test for gene flow between lineages. We find that all annual sunflower species tested have evidence of admixture, suggesting hybridization was common during the radiation of the genus. Support for the major species tree decreases with increasing recombination rate, consistent with hybridization and introgression contributing to discordant topologies. Admixture graphs found hybridization to be associated with the origins of the three putative hybrid species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus). However, the hybridization events are more ancient than suggested by previous work. Furthermore, H. anomalus and H. deserticola appear to have arisen from a single hybridization event involving an unexpected donor, rather than through multiple independent events as previously proposed. This means our results are consistent with, but not definitive proof of, two ancient independent homoploid hybrid speciation events in the genus. Using a broader data set that covers the whole Helianthus genus, including perennial species, we find that signals of introgression span the genus and beyond, suggesting highly divergent introgression and/or the sorting of ancient haplotypes. Thus, Helianthus can be viewed as a syngameon in which largely reproductively isolated species are linked together by occasional or frequent gene flow.


Assuntos
Helianthus , Helianthus/genética , Filogenia , Hibridização Genética , Haplótipos , Fluxo Gênico
6.
Biochem Biophys Res Commun ; 733: 150442, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053103

RESUMO

INTRODUCTION: Radioprotectors help to protect the body or at least minimize the negative consequences of radiation exposure. The present study aimed to assess the radioprotective potential of Helianthus tuberosus L. polysaccharide (HTLP) in vitality and micronuclei tests. To assess the cytotoxic effects of HTLP, both vitality and MTT reductase assays were conducted. MATERIALS AND METHODS: RAW 264.7 cells viability was assessed 24 h after adding 200 µg/ml HTLP solution by staining cell cultures with propidium iodide and bis-benzimide to detect the nuclei of dead cells and the total number of cells in culture. To assess cell viability via cellular metabolic activity MTT test was used. In this work outbred 24-30 g 5-months old SHK mice have been used. Irradiation was provided with proton beams with an energy of 660 MeV at a dose rate of 80 Gy with doses 1.5 Gy for micronuclei test and 8.5 Gy for survival test. Whole body X-ray irradiation was conducted using the RUT-15 therapeutic X-ray unit with doses of 1.5 Gy for MN test and 6.5 Gy for survival. The HTLP sterile solution in dose 100 µg/animal was injected into the tail vein 15 min before X-ray or proton irradiation. RESULTS AND CONCLUSION: s: Vitality test showed no significant differences between the control group and cells treated with 200 µl of 200 µg/ml HTLP solution, though a greater variability was noted. In contrast, the MTT assay indicated enhanced cell viability in the HTLP-treated cells. HTLP does not exert any toxic effects in cell culture. Moreover, results of MTT reductase assay shows, that HTLP may enhance the cells' metabolic activity. Animals pre-treated with HTLP displayed a significant reduction in micronuclei formation, showing five times fewer micronuclei in bone marrow cells compared to the non-treated group. This comparison highlights HTLP's potential protective effect against radiation-induced chromosomal damage. HTLP treatment demonstrates a significant reduction in hazard compared to the control, indicating its protective effects against irradiation. Thus, it can be concluded that the use of HTLP increases the likelihood of animal survival under the ionizing effects of X-rays and protons. The survival analysis reveals that the HTLP-treated groups exhibit a higher survival rate compared to both the control and Cysteamine-treated groups, suggesting a significant protective effect of HTLP against irradiation, regardless of the type of irradiation (proton or X-ray) with p < 0.0001.

7.
Mol Ecol ; 33(2): e17218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038696

RESUMO

Host-microbe interactions are increasingly recognized as important drivers of organismal health, growth, longevity and community-scale ecological processes. However, less is known about how genetic variation affects hosts' associated microbiomes and downstream phenotypes. We demonstrate that sunflower (Helianthus annuus) harbours substantial, heritable variation in microbial communities under field conditions. We show that microbial communities co-vary with heritable variation in resistance to root infection caused by the necrotrophic pathogen Sclerotinia sclerotiorum and that plants grown in autoclaved soil showed almost complete elimination of pathogen resistance. Association mapping suggests at least 59 genetic locations with effects on both microbial relative abundance and Sclerotinia resistance. Although the genetic architecture appears quantitative, we have elucidated previously unexplained genetic variation for resistance to this pathogen. We identify new targets for plant breeding and demonstrate the potential for heritable microbial associations to play important roles in defence in natural and human-altered environments.


Assuntos
Melhoramento Vegetal , Rizosfera , Humanos , Fenótipo , Plantas , Microbiologia do Solo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia
8.
Mol Ecol ; 33(4): e17280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38247305

RESUMO

Understanding how natural selection drives diversification in nature has been at the forefront of biological research for over a century. The main idea is simple: natural selection favours individuals best suited to pass on their genes. However, the journey from birth to reproduction is complex as organisms experience multiple developmental stages, each influenced by genetic and environmental factors (Orr, 2009). These complexities compound even further as each stage of development might be governed by a unique underlying set of alleles and genes. In this issue of Molecular Ecology, Goebl et al. (2022) examine the role of natural selection in driving ecotypic divergence across different life history stages of the prairie sunflower Helianthus petiolaris. The authors used reciprocal transplant experiments, demographic models, and genomic sequencing to explore fitness variation across developmental stages. They show how natural selection impacts population divergence across multiple life history stages and evaluate the resulting allele frequency changes. Goebl et al. link these results to the role of chromosomal inversions, thus furthering our understanding of how ecological divergence proceeds in the face of gene flow. Below, we explore these results in detail and complement their interpretation by considering the evolution of genetic correlations amongst traits governing fitness.


Assuntos
Helianthus , Seleção Genética , Humanos , Frequência do Gene , Mapeamento Cromossômico , Ecótipo , Genômica , Helianthus/genética
9.
Plant Cell Environ ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965879

RESUMO

Thrips, Frankliniella intonsa, is a highly polyphagous pest with a worldwide distribution. F. intonsa-infested sunflower seeds show marked visual damage. The study findings revealed that significantly more F. intonsa infested confection sunflower compared to oilseed sunflower, via olfactometer bioassay studies, we found that compared with the flower and pollen of oilseed sunflowers, those of confection sunflowers attract F. intonsa. Considering this discrepancy in the preference of F. intonsa on oilseed and confection sunflowers, the volatiles of the flower and pollens of two sunflowers were analysed by gas chromatography-mass spectroscopy. The behavioural responses of F. intonsa were assessed for these compounds using Y-tube bioassays. Geranyl bromide, a unique volatile component of oilseed sunflowers, induced an assertive approach-avoidance behaviour in F. intonsa, whereas the unique component ethyl isovalerate in confection sunflowers attracted F. intonsa. F. intonsa adults demonstrated significant attraction to the blends of confection sunflowers. Furthermore, field verification revealed that intercropping confection and oilseed sunflowers could effectively control F. intonsa. The study provided insights into the chemical cues used by F. intonsa in locating hosts. Therefore, oilseed sunflowers can be used as repellent plants to prevent F. intonsa invasion.

10.
Chem Pharm Bull (Tokyo) ; 72(1): 93-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38233137

RESUMO

Sunflower seed extract, an antioxidant agent registered on the List of Existing Food Additives in Japan, was evaluated using HPLC, and three common constituents were detected. These peaks were identified as monocaffeoylquinic acids (3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, and 5-O-caffeoylquinic acid [chlorogenic acid]). Upon scrutinizing other components, dicaffeoylquinic acids (isochlorogenic acids; 3,4-di-O-caffeoylquinic, 3,5-di-O-caffeoylquinic, and 4,5-di-O-caffeoylquinic acids) were also identified. Structures of two newly isolated compounds were determined to be 3-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic and 4-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic acids. To identify the components that contribute to the antioxidant activity of sunflower seed extract, we fractionated the food additive sample solution and examined the active fractions for 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Monocaffeoylquinic and dicaffeoylquinic acids showed high DPPH activity, including their contribution to the antioxidant activity of this food additive. DPPH radical scavenging activity of the new compounds showed almost the same value as that of the positive control, Trolox. Therefore, the contribution of these compounds was also considered.


Assuntos
Antioxidantes , Ácido Clorogênico/análogos & derivados , Helianthus , Ácido Quínico/análogos & derivados , Antioxidantes/farmacologia , Antioxidantes/química , Aditivos Alimentares/análise , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Indóis
11.
Plant Dis ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300848

RESUMO

Sunflower (Helianthus annuus) is an ornamental, edible-seed, and important oil source plant in the USA. In June 2023, head rot was observed in sunflowers grown in an experimental field at Yuma County Cooperative Extension, University of Arizona, AZ (32°42'35.5"N, 114°42'25.0"W). The disease incidence was of >70%. Head lesions were dark-brown and extended through the head to the bracts and stem. White to gray mycelia and black sporangia-like structures were also observed on sunflower heads. Symptomatic plants (n =10) were sampled to determine the disease causing agent. Five symptomatic tissues for each plant (0.5 to 1 cm) were submitted to surface sterilization by dipping in 75% ethanol 2min, 1% NaOCl for 2 mins and rinsing with sterile water. Once sterilized, the tissues were plated on potato dextrose agar (PDA) plates and incubated at 25±0.2 °C. After two days, hyaline mycelia were observed on PDA which turned white after 7 days. A total of 50 isolates were obtained, of which ten were randomly selected and purified by the hyphal-tip method and later used for morphological analysis. Microscopic observations revealed hyaline and aseptate hyphae, sporangiophores measuring 900 to 1.2000 µm in length and dark-brown sporangium (72 to 144 µm, mean = 90). The columella was sub-globose, and the sporangiospores ranged from 7.29 to 9.37 µm in size (mean = 7.5 µm). The morphological characteristics described above were similar for the ten isolates and were in accordance with the species R. arrhizus as described by (Gryganskyi et al. 2018). Genomic DNA was extracted from three randomly chosen isolates using The DNeasy Plant kit (Qiagen) and used for further molecular identification. The internal transcribed spacer (ITS) region was amplified using ITS1/ITS4 primers (White et al. 1990) and then Sanger sequenced. The sequences shared 100% nucleotide identity with each other (GenBank accession numbers PP747852, PP747853 and PP747854) and shared 100% identity to R. arrhizus GenBank accessions (MT316366.1, MN547407.1). One isolate, YPHC-94-A, was randomly selected for Phylogenetics and Pathogenicity analyses. Phylogenetics analysis based on sequence data of ITS showed that the isolated YPHC-94-A clustered together with R. arrhizus species (Zhang. 2023). Pathogenicity test was conducted by inoculating four sunflower varieties (American giant, Lemon queen, Solar eclipse and Mammoth) (n = 12 for each variety). Plant heads were inoculated with a disc of mycelia (0.5 cm2) and incubated for 24 h at 30 ±2 °C and 94% RH. Five uninoculated plants of each variety were used as controls. Head rot symptoms were observed within 3-5 days on inoculated plant post inoculation depending on the variety, whereas the control plants stayed asymptomatic. R. arrhizus was re-isolated from all the inoculated plants and was morphologically and molecularly identical to the field isolates, thus fulfilling Koch's postulates. R. arrhizus has already been reported in different US regions (Sanogo et al. 2010), however, to the best of our knowledge this is the first report in Arizona. Due the high disease incidence and pathogen aggressiveness found in the environmental conditions of the U.S southwest desert, we consider sunflower Head rot a potential risk for sunflower production in Arizona as well as the large population of wild sunflowers in the State.

12.
Plant Dis ; 108(7): 2017-2026, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38301222

RESUMO

Phoma black stem (PBS), caused by Phoma macdonaldii Boerema (teleomorph Leptosphaeria lindquistii Frezzi), is the most common stem disease of sunflower (Helianthus annuus L.) in the northern Great Plains region of the United States. However, the impact of PBS on sunflower yield in the United States is unclear, and a near complete absence of information on the impact of fungicides on disease management exists. The objectives of this study were to determine the impact of PBS on sunflower yield, the efficacy of available fungicides, the optimal fungicide application timing, and the economic viability of fungicides as a management tool. Fungicide timing efficacy was evaluated by applying single and/or sequential applications of pyraclostrobin fungicide at three sunflower growth stages in 10 field trials between 2017 and 2019. Efficacy of 10 fungicides from the Fungicide Resistance Action Committee (FRAC) groups 3, 7, and 11 were evaluated in four field trials between 2018 and 2019. The impact of treatments on PBS were evaluated by determination of incidence, severity, maximum lesion height, disease severity index (DSI), and harvested yield. Nine of the 10 fungicides evaluated and all fungicide timings that included an early bud application resulted in disease reductions when compared with the nontreated controls. The DSI was negatively correlated to sunflower yield in high-yield environments (P = 0.0004; R2 = 0.3425) but not in low- or moderate-yield environments. Although FRAC 7 fungicides were generally most efficacious, the sufficient efficacy and lower cost of FRAC 11 fungicides make them more economically viable in high-yielding environments at current market conditions.


Assuntos
Ascomicetos , Fungicidas Industriais , Helianthus , Doenças das Plantas , Fungicidas Industriais/farmacologia , Helianthus/efeitos dos fármacos , Helianthus/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Estados Unidos , Caules de Planta/microbiologia , Estrobilurinas/farmacologia , Fatores de Tempo
13.
Int J Phytoremediation ; 26(10): 1643-1654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644603

RESUMO

One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.


The current study confirms and provides new insights into the low Cd and Zn concentration responses of two cultivars of Helianthus annuus as potential HM phytoremediators. HMA3 and HMA4 mediated both root sequestration and reduced root-to-shoot translocation rates. Moreover, high CAT and POX activities may reduce oxidative damage and enhance plant tolerance. The V120 showed higher levels of Cd accumulation in its roots and could be a promising cultivar for the phytoremediation of this heavy metal. This work recalls that Cd tolerance is a trait that may vary among cultivars of the same species and should be taken into consideration in the phytomanagement of heavy metals in contaminated soils.


Assuntos
Biodegradação Ambiental , Cádmio , Helianthus , Poluentes do Solo , Zinco , Helianthus/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Zinco/metabolismo , Egito , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
14.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612905

RESUMO

Sunflower (Helianthus annuus L.) is an important, substantial global oil crop with robust resilience to drought and salt stresses. The TGA (TGACG motif-binding factor) transcription factors, belonging to the basic region leucine zipper (bZIP) family, have been implicated in orchestrating multiple biological processes. Despite their functional significance, a comprehensive investigation of the TGA family's abiotic stress tolerance in sunflowers remains elusive. In the present study, we identified 14 TGA proteins in the sunflower genome, which were unequally distributed across 17 chromosomes. Employing phylogenetic analysis encompassing 149 TGA members among 13 distinct species, we revealed the evolutionary conservation of TGA proteins across the plant kingdom. Collinearity analysis suggested that both HaTGA01 and HaTGA03 were generated due to HaTGA08 gene duplication. Notably, qRT-PCR analysis demonstrated that HaTGA04, HaTGA05, and HaTGA14 genes were remarkably upregulated under ABA, MeJA, and salt treatments, whereas HaTGA03, HaTGA06, and HaTGA07 were significantly repressed. This study contributes valuable perspectives on the potential roles of the HaTGA gene family under various stress conditions in sunflowers, thereby enhancing our understanding of TGA gene family dynamics and function within this agriculturally significant species.


Assuntos
Asteraceae , Helianthus , Helianthus/genética , Filogenia , Estresse Salino , Evolução Biológica
15.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791426

RESUMO

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Assuntos
Apoptose , Helianthus , Tubérculos , Poliaminas , Helianthus/metabolismo , Helianthus/crescimento & desenvolvimento , Poliaminas/metabolismo , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento
16.
Bull Environ Contam Toxicol ; 113(4): 39, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242363

RESUMO

Phytoremediation is a rapidly expanding process due to its technical and economic viability. The objective of this work was to evaluate the phytoremediation potential of Helianthus annuus in three cultivation media: artificially contaminated Catalão soil, hydroponics and roadside soil. In hydroponics, ZnCl2 doses 0.32 mgL- 1, 29.94 mgL- 1, 60.06 mgL- 1, 119.94 mgL- 1 were used. While in the artificially contaminated soil, the doses were 0 mgkg- 1, 299 mgkg- 1, 599 mgkg- 1, 1498 mgkg- 1. Physiological analyzes made it possible to demonstrate that treatments T3 and T4, with the highest concentrations of the metal, inhibited growth and promoted darkening of the roots. The highest Zn contents occurred in the aerial part. The results indicated that Helianthus annuus was classified as hyperaccumulator due to its ability to accumulate high levels of Zn mainly in artificially contaminated soil.


Assuntos
Biodegradação Ambiental , Helianthus , Poluentes do Solo , Clima Tropical , Zinco , Helianthus/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Zinco/metabolismo , Raízes de Plantas/metabolismo , Hidroponia
17.
Plant J ; 111(5): 1439-1452, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35811570

RESUMO

Sunflower heat shock factor A9 (HSFA9, hereafter A9) is a transcription factor involved in seed desiccation tolerance and longevity. A9 also links the regulation of seed maturation with that of seedling photomorphogenesis through visible light receptors. Analyses in transgenic Nicotiana tabacum (tobacco) indicated that A9 also affects responses mediated by NtUVR8, the receptor of ultraviolet light B (UV-B). We compared the effects of A9 and UV-B illumination on the nuclear localization of GFP-NtUVR8 in Nicotiana benthamiana leaves. We also used co-immunoprecipitation and limited proteolysis for analyzing the interaction between A9 and NtUVR8. We found that A9, by binding to NtUVR8, induced structural changes that resulted in enhancing the nuclear localization of NtUVR8 by hindering its nuclear export. The localization of UVR8 is crucial for receptor activation and function in Arabidopsis, where UV-B-activated nuclear UVR8 binds the E3 ubiquitin ligase COP1, leading to enhanced UV-B responses and photoprotection. A9 similarly activated NtUVR8 by enhancing COP1 binding without UV-B light. Seedlings and dark-germinated seeds that overexpress A9 showed primed UV-B light stress protection. Our results unveil a UV-B-independent activation mechanism and a role for UVR8 in plant seeds that might contribute to early stress protection, facilitating seedling establishment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas , Plântula/genética , Plântula/metabolismo , Sementes/genética , Sementes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta
18.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35535689

RESUMO

Recombination is critical both for accelerating adaptation and purging deleterious mutations. Chromosomal inversions can act as recombination modifiers that suppress local recombination in heterozygotes and thus, under some conditions, are predicted to accumulate such mutations. In this study, we investigated patterns of recombination, transposable element abundance, and coding sequence evolution across the genomes of 1,445 individuals from three sunflower species, as well as within nine inversions segregating within species. We also analyzed the effects of inversion genotypes on 87 phenotypic traits to test for overdominance. We found significant negative correlations of long terminal repeat retrotransposon abundance and deleterious mutations with recombination rates across the genome in all three species. However, we failed to detect an increase in these features in the inversions, except for a modest increase in the proportion of stop codon mutations in several very large or rare inversions. Consistent with this finding, there was little evidence of overdominance of inversions in phenotypes that may relate to fitness. On the other hand, significantly greater load was observed for inversions in populations polymorphic for a given inversion compared to populations monomorphic for one of the arrangements, suggesting that the local state of inversion polymorphism affects deleterious load. These seemingly contradictory results can be explained by the low frequency of inversion heterozygotes in wild sunflower populations, apparently due to divergent selection and associated geographic structure. Inversions contributing to local adaptation represent ideal recombination modifiers, acting to facilitate adaptive divergence with gene flow, while largely escaping the accumulation of deleterious mutations.


Assuntos
Inversão Cromossômica , Helianthus , Fluxo Gênico , Helianthus/genética , Heterozigoto , Mutação
19.
Curr Issues Mol Biol ; 45(6): 4841-4849, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367057

RESUMO

Interspecific hybridization is widespread for sunflowers, both in wild populations and commercial breeding. One of the most common species that can efficiently cross with Helianthus annuus is the Silverleaf sunflower-Helianthus argophyllus. The current study carried out structural and functional organization analyses of mitochondrial DNA in H. argophyllus and the interspecific hybrid, H. annuus (VIR114A line) × H. argophyllus. The complete mitogenome of H. argophyllus counts 300,843 bp, has a similar organization to the mitogenome of cultivated sunflower, and holds SNPs typical for wild sunflowers. RNA editing analysis predicted 484 sites in H. argophyllus mitochondrial CDS. The mitochondrial genome of the H. annuus × H. argophyllus hybrid is identical to the maternal line (VIR114A). We expected that significant rearrangements in the mitochondrial DNA of the hybrid would occur, due to the frequent recombination. However, the hybrid mitogenome lacks rearrangements, presumably due to the preservation of nuclear-cytoplasmic interaction paths.

20.
Proc Biol Sci ; 290(1996): 20230055, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37015273

RESUMO

Community diversity can reduce the prevalence and spread of disease, but certain species may play a disproportionate role in diluting or amplifying pathogens. Flowers act as both sources of nutrition and sites of pathogen transmission, but the effects of specific plant species in shaping bee disease dynamics are not well understood. We evaluated whether plantings of sunflower (Helianthus annuus), whose pollen reduces infection by some pathogens when fed to bees in captivity, lowered pathogen levels and increased reproduction in free-foraging bumblebee colonies (Bombus impatiens). Sunflower abundance reduced the prevalence of a common gut pathogen, Crithidia bombi, and reduced infection intensity, with an order of magnitude lower infection intensity at high sunflower sites compared with sites with little to no sunflower. Sunflower abundance was also positively associated with greater queen production in colonies. Sunflower did not affect prevalence of other detected pathogens. This work demonstrates that a single plant species can drive disease dynamics in foraging B. impatiens, and that sunflower plantings can be used as a tool for mitigating a prevalent pathogen while also increasing reproduction of an agriculturally important bee species.


Assuntos
Helianthus , Abelhas , Animais , Flores , Pólen , Plantas , Crithidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA