RESUMO
Although cardiac action potential (AP) generation and propagation have traditionally been attributed exclusively to cardiomyocytes (CM), other cell types in the heart are also capable of forming electrically conducting junctions. Interactions between CM and nonmyocytes (NM) enable and modulate each other's activity. This review provides an overview of the current understanding of heterocellular electrical communication in the heart. Although cardiac fibroblasts were initially thought to be electrical insulators, recent studies have demonstrated that they form functional electrical connections with CM in situ. Other NM, such as macrophages, have also been recognized as contributing to cardiac electrophysiology and arrhythmogenesis. Novel experimental tools have enabled the investigation of cell-specific activity patterns in native cardiac tissue, which is expected to yield exciting new insights into the development of novel or improved diagnostic and therapeutic strategies.
Assuntos
Fibroblastos , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Fibroblastos/metabolismo , Arritmias Cardíacas/metabolismo , Potenciais de Ação , Fenômenos EletrofisiológicosRESUMO
Healthy cardiomyocytes are electrically coupled at the intercalated discs by gap junctions. In infarcted hearts, adverse gap-junctional remodeling occurs in the border zone, where cardiomyocytes are chemically and electrically influenced by myofibroblasts. The physical movement of these contacts remains unquantified. Using scanning ion conductance microscopy, we show that intercellular contacts between cardiomyocytes and myofibroblasts are highly dynamic, mainly owing to the edge dynamics (lamellipodia) of the myofibroblasts. Decreasing the amount of functional connexin-43 (Cx43) at the membrane through Cx43 silencing, suppression of Cx43 trafficking, or hypoxia-induced Cx43 internalization attenuates heterocellular contact dynamism. However, we found decreased dynamism and stabilized membrane contacts when cellular coupling was strengthened using 4-phenylbutyrate (4PB). Fluorescent-dye transfer between cells showed that the extent of functional coupling between the 2 cell types correlated with contact dynamism. Intercellular calcein transfer from myofibroblasts to cardiomyocytes is reduced after myofibroblast-specific Cx43 down-regulation. Conversely, 4PB-treated myofibroblasts increased their functional coupling to cardiomyocytes. Consistent with lamellipodia-mediated contacts, latrunculin-B decreases dynamism, lowers physical communication between heterocellular pairs, and reduces Cx43 intensity in contact regions. Our data show that heterocellular cardiomyocyte-myofibroblast contacts exhibit high dynamism. Therefore, Cx43 is a potential target for prevention of aberrant cardiomyocyte coupling and myofibroblast proliferation in the infarct border zone.-Schultz, F., Swiatlowska, P., Alvarez-Laviada, A., Sanchez-Alonso, J. L., Song, Q., de Vries, A. A. F., Pijnappels, D. A., Ongstad, E., Braga, V. M. M., Entcheva, E., Gourdie, R. G., Miragoli, M., Gorelik, J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43.
Assuntos
Adesão Celular , Comunicação Celular , Movimento Celular , Conexina 43/metabolismo , Miócitos Cardíacos/fisiologia , Miofibroblastos/fisiologia , Animais , Antineoplásicos/farmacologia , Células Cultivadas , Junções Comunicantes , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Fenilbutiratos/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
Electrophysiological studies of excitable organs usually focus on action potential (AP)-generating cells, whereas nonexcitable cells are generally considered as barriers to electrical conduction. Whether nonexcitable cells may modulate excitable cell function or even contribute to AP conduction via direct electrotonic coupling to AP-generating cells is unresolved in the heart: such coupling is present in vitro, but conclusive evidence in situ is lacking. We used genetically encoded voltage-sensitive fluorescent protein 2.3 (VSFP2.3) to monitor transmembrane potential in either myocytes or nonmyocytes of murine hearts. We confirm that VSFP2.3 allows measurement of cell type-specific electrical activity. We show that VSFP2.3, expressed solely in nonmyocytes, can report cardiomyocyte AP-like signals at the border of healed cryoinjuries. Using EM-based tomographic reconstruction, we further discovered tunneling nanotube connections between myocytes and nonmyocytes in cardiac scar border tissue. Our results provide direct electrophysiological evidence of heterocellular electrotonic coupling in native myocardium and identify tunneling nanotubes as a possible substrate for electrical cell coupling that may be in addition to previously discovered connexins at sites of myocyte-nonmyocyte contact in the heart. These findings call for reevaluation of cardiac nonmyocyte roles in electrical connectivity of the heterocellular heart.
Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Sistema de Condução Cardíaco/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Optogenética , Potenciais de Ação , Animais , Proteínas de Bactérias/metabolismo , Comunicação Celular , Contagem de Células , Membrana Celular/metabolismo , Condutividade Elétrica , Feminino , Fibroblastos/metabolismo , Coração/fisiologia , Proteínas Luminescentes/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Células Musculares/metabolismoRESUMO
Background: Myocardial delivery of non-excitable cells-namely human mesenchymal stem cells (hMSCs) and c-kit+ cardiac interstitial cells (hCICs)-remains a promising approach for treating the failing heart. Recent empirical studies attempt to improve such therapies by genetically engineering cells to express specific ion channels, or by creating hybrid cells with combined channel expression. This study uses a computational modeling approach to test the hypothesis that custom hypothetical cells can be rationally designed to restore a healthy phenotype when coupled to human heart failure (HF) cardiomyocytes. Methods: Candidate custom cells were simulated with a combination of ion channels from non-excitable cells and healthy human cardiomyocytes (hCMs). Using a genetic algorithm-based optimization approach, candidate cells were accepted if a root mean square error (RMSE) of less than 50% relative to healthy hCM was achieved for both action potential and calcium transient waveforms for the cell-treated HF cardiomyocyte, normalized to the untreated HF cardiomyocyte. Results: Custom cells expressing only non-excitable ion channels were inadequate to restore a healthy cardiac phenotype when coupled to either fibrotic or non-fibrotic HF cardiomyocytes. In contrast, custom cells also expressing cardiac ion channels led to acceptable restoration of a healthy cardiomyocyte phenotype when coupled to fibrotic, but not non-fibrotic, HF cardiomyocytes. Incorporating the cardiomyocyte inward rectifier K+ channel was critical to accomplishing this phenotypic rescue while also improving single-cell action potential metrics associated with arrhythmias, namely resting membrane potential and action potential duration. The computational approach also provided insight into the rescue mechanisms, whereby heterocellular coupling enhanced cardiomyocyte L-type calcium current and promoted calcium-induced calcium release. Finally, as a therapeutically translatable strategy, we simulated delivery of hMSCs and hCICs genetically engineered to express the cardiomyocyte inward rectifier K+ channel, which decreased action potential and calcium transient RMSEs by at least 24% relative to control hMSCs and hCICs, with more favorable single-cell arrhythmia metrics. Conclusion: Computational modeling facilitates exploration of customizable engineered cell therapies. Optimized cells expressing cardiac ion channels restored healthy action potential and calcium handling phenotypes in fibrotic HF cardiomyocytes and improved single-cell arrhythmia metrics, warranting further experimental validation studies of the proposed custom therapeutic cells.
RESUMO
In this study, we developed three-dimensional (3D) printed annular ring-like scaffolds of hydrogel (gelatin-alginate) constructs encapsulated with a mixture of human cardiac AC16 cardiomyocytes (CMs), fibroblasts (CFs), and microvascular endothelial cells (ECs) as cardiac organoid models in preparation for investigating the role of microgravity in cardiovascular disease initiation and development. We studied the mechanical properties of the acellular scaffolds and confirmed their cell compatibility as well as heterocellular coupling for cardiac tissue engineering. Rheological analysis performed on the acellular scaffolds showed the scaffolds to be elastogenic with elastic modulus within the range of a native in vivo heart tissue. The microstructural and physicochemical properties of the scaffolds analyzed through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (ATR-FTIR) confirmed the mechanical and functional stability of the scaffolds for long-term use in in vitro cell culture studies. HL-1 cardiomyocytes bioprinted in these hydrogel scaffolds exhibited contractile functions over a sustained period of culture. Cell mixtures containing CMs, CFs, and ECs encapsulated within the 3D printed hydrogel scaffolds exhibited a significant increase in viability and proliferation over 21 days, as shown by flow cytometry analysis. Moreover, via the expression of specific cardiac biomarkers, cardiac-specific cell functionality was confirmed. Our study depicted the heterocellular cardiac cell interactions, which is extremely important for the maintenance of normal physiology of the cardiac wall in vivo and significantly increased over a period of 21 days in in vitro. This 3D bioprinted "cardiac organoid" model can be adopted to simulate cardiac environments in which cellular crosstalk in diseased pathologies like cardiac atrophy can be studied in vitro and can further be used for drug cytotoxicity screening or underlying disease mechanisms.
Assuntos
Bioimpressão , Bioimpressão/métodos , Células Endoteliais , Gelatina , Humanos , Hidrogéis/química , Longevidade , Miócitos Cardíacos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/químicaRESUMO
Myocardial delivery of human c-kit+ cardiac interstitial cells (hCICs) and human mesenchymal stem cells (hMSCs), an emerging approach for treating the failing heart, has been limited by an incomplete understanding of the effects on host myocardium. This computational study aims to model hCIC and hMSC effects on electrophysiology and calcium cycling of healthy and diseased human cardiomyocytes (hCM), and reveals a possible cardiotherapeutic benefit independent of putative regeneration processes. First, we developed an original hCIC mathematical model with an electrical profile comprised of distinct experimentally identified ion currents. Next, we verified the model by confirming it is representative of published experiments on hCIC whole-cell electrophysiology and on hCIC co-cultures with rodent cardiomyocytes. We then used our model to compare electrophysiological effects of hCICs to other non-excitable cells, as well as clinically relevant hCIC-hMSC combination therapies and fused hCIC-hMSC CardioChimeras. Simulation of direct coupling of hCICs to healthy or failing hCMs through gap junctions led to greater increases in calcium cycling with lesser reductions in action potential duration (APD) compared with hMSCs. Combined coupling of hCICs and hMSCs to healthy or diseased hCMs led to intermediate effects on electrophysiology and calcium cycling compared to individually coupled hCICs or hMSCs. Fused hCIC-hMSC CardioChimeras decreased healthy and diseased hCM APD and calcium transient amplitude compared to individual or combined cell treatments. Finally, to provide a theoretical basis for optimizing cell-based therapies, we randomized populations of 2,500 models incorporating variable hMSC and hCIC interventions and simulated their effects on restoring diseased cardiomyocyte electrophysiology and calcium handling. The permutation simulation predicted the ability to correct abnormal properties of heart failure hCMs in fibrotic, but not non-fibrotic, myocardium. This permutation experiment also predicted paracrine signaling to be a necessary and sufficient mechanism for this correction, counteracting the fibrotic effects while also restoring arrhythmia-related metrics such as upstroke velocity and resting membrane potential. Altogether, our in silico findings suggest anti-fibrotic effects of paracrine signaling are critical to abrogating pathological cardiomyocyte electrophysiology and calcium cycling in fibrotic heart failure, and support further investigation of delivering an optimized cellular secretome as a potential strategy for improving heart failure therapy.
RESUMO
Connexin 43 expression (Cx43) is increased in cardiac fibroblasts (CFs) following myocardial infarction. Here, potential mediators responsible for increasing Cx43 expression and effects of differential CF phenotype on cardiac myocyte (CM) function were investigated. Stimulating adult rat CFs with proinflammatory mediators revealed that interleukin 1ß (IL-1ß) significantly enhanced Cx43 levels through the IL-1ß pathway. Additionally, IL-1ß reduced mRNA levels of the myofibroblast (MF) markers: (i) connective tissue growth factor (CTGF) and (ii) α smooth muscle actin (αSMA), compared to control CFs. A co-culture adult rat CM:CF model was utilised to examine cell-to-cell interactions. Transfer of calcein from CMs to underlying CFs suggested functional gap junction formation. Functional analysis revealed contraction duration (CD) of CMs was shortened in co-culture with CFs, while treatment of CFs with IL-1ß reduced this mechanical effect of co-culture. No effect on action potential rise time or duration of CMs cultured with control or IL-1ß-treated CFs was observed. These data demonstrate that stimulating CFs with IL-1ß increases Cx43 and reduces MF marker expression, suggesting altered cell phenotype. These changes may underlie the reduced mechanical effects of IL-1ß treated CFs on CD of co-cultured CMs and therefore have an implication for our understanding of heterocellular interactions in cardiac disease.
RESUMO
Optogenetics is an elegant approach of precisely controlling and monitoring the biological functions of a cell, group of cells, tissues, or organs with high temporal and spatial resolution by using optical system and genetic engineering technologies. The field evolved with the need to precisely control neurons and decipher neural circuity and has made great accomplishments in neuroscience. It also evolved in cardiovascular research almost a decade ago and has made considerable progress in both in vitro and in vivo animal studies. Thus, this review is written with an objective to provide information on the evolution, background, methodical advances, and potential scope of the field for cardiovascular research and medicine. We begin with a review of literatures on optogenetic proteins related to their origin, structure, types, mechanism of action, methods to improve their performance, and the delivery vehicles and methods to express such proteins on target cells and tissues for cardiovascular research. Next, we reviewed historical and recent literatures to demonstrate the scope of optogenetics for cardiovascular research and regenerative medicine and examined that cardiac optogenetics is vital in mimicking heart diseases, understanding the mechanisms of disease progression and also in introducing novel therapies to treat cardiac abnormalities, such as arrhythmias. We also reviewed optogenetics as promising tools in providing high-throughput data for cardiotoxicity screening in drug development and also in deciphering dynamic roles of signaling moieties in cell signaling. Finally, we put forth considerations on the need of scaling up of the optogenetic system, clinically relevant in vivo and in silico models, light attenuation issues, and concerns over the level, immune reactions, toxicity, and ectopic expression with opsin expression. Detailed investigations on such considerations would accelerate the translation of cardiac optogenetics from present in vitro and in vivo animal studies to clinical therapies.