Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38752444

RESUMO

Stem cell homeostasis in the shoot apical meristem involves a core regulatory feedback loop between the signalling peptide CLAVATA3 (CLV3), produced in stem cells, and the transcription factor WUSCHEL, expressed in the underlying organising centre. clv3 mutant meristems display massive overgrowth, which is thought to be caused by stem cell overproliferation, although it is unknown how uncontrolled stem cell divisions lead to this altered morphology. Here, we reveal local buckling defects in mutant meristems, and use analytical models to show how mechanical properties and growth rates may contribute to the phenotype. Indeed, clv3 mutant meristems are mechanically more heterogeneous than the wild type, and also display regional growth heterogeneities. Furthermore, stereotypical wild-type meristem organisation, in which cells simultaneously express distinct fate markers, is lost in mutants. Finally, cells in mutant meristems are auxin responsive, suggesting that they are functionally distinguishable from wild-type stem cells. Thus, all benchmarks show that clv3 mutant meristem cells are different from wild-type stem cells, suggesting that overgrowth is caused by the disruption of a more complex regulatory framework that maintains distinct genetic and functional domains in the meristem.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Meristema , Mutação , Brotos de Planta , Células-Tronco , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Meristema/metabolismo , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/genética , Mutação/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
2.
Proc Natl Acad Sci U S A ; 119(39): e2201226119, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36126101

RESUMO

Continental, orogenic, and oceanic lithospheric mantle embeds sizeable parcels of exotic cratonic lithospheric mantle (CLM) derived from distant, unrelated sources. This hints that CLM recycling into the mantle and its eventual upwelling and relamination at the base of younger plates contribute to the complex structure of the growing lithosphere. Here, we use numerical modeling to investigate the fate and survival of recycled CLM in the ambient mantle and test the viability of CLM relamination under Hadean to present-day mantle temperature conditions and its role in early lithosphere evolution. We show that the foundered CLM is partially mixed and homogenized in the ambient mantle; then, as thermal negative buoyancy vanishes, its long-lasting compositional buoyancy drives upwelling, relaminating unrelated growing lithospheric plates and contributing to differentiation under cratonic, orogenic, and oceanic regions. Parts of the CLM remain in the mantle as diffused depleted heterogeneities at multiple scales, which can survive for billions of years. Relamination is maximized for high depletion degrees and mantle temperatures compatible with the early Earth, leading to the upwelling and underplating of large volumes of foundered CLM, a process we name massive regional relamination (MRR). MRR explains the complex source, age, and depletion heterogeneities found in ancient cratonic lithospheric mantle, suggesting this may have been a key component of the construction of continents in the early Earth.

3.
Biotechnol Bioeng ; 121(4): 1244-1256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192095

RESUMO

During the scale-up of biopharmaceutical production processes, insufficiently predictable performance losses may occur alongside gradients and heterogeneities. To overcome such performance losses, tools are required to explain, predict, and ultimately prohibit inconsistencies between laboratory and commercial scale. In this work, we performed CHO fed-batch cultivations in the single multicompartment bioreactor (SMCB), a new scale-down reactor system that offers new access to study large-scale heterogeneities in mammalian cell cultures. At volumetric power inputs of 20.4-1.5 W m-3, large-scale characteristics like long mixing times and dissolved oxygen (DO) heterogeneities were mimicked in the SMCB. Compared to a reference bioreactor (REFB) set-up, the conditions in the SMCB provoked an increase in lactate accumulation of up to 87%, an increased glucose uptake, and reduced viable cell concentrations in the stationary phase. All are characteristic for large-scale performance. The unique possibility to distinguish between the effects of changing power inputs and observed heterogeneities provided new insights into the potential reasons for altered product quality attributes. Apparently, the degree of galactosylation in the evaluated glycan patterns changed primarily due to the different power inputs rather than the provoked heterogeneities. The SMCB system could serve as a potent tool to provide new insights into scale-up behavior and to predict cell line-specific drawbacks at an early stage of process development.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Animais , Cricetinae , Linhagem Celular , Células CHO , Cricetulus , Oxigênio
4.
Environ Sci Technol ; 58(17): 7393-7402, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38622815

RESUMO

Peatlands are recognized as crucial greenhouse gas sources and sinks and have been extensively studied. Their emissions exhibit high spatial heterogeneity when measured on site using flux chambers. However, the mechanism by which this spatial variability behaves on a very fine scale remains unclear. This study investigates the fine-scale spatial variability of greenhouse gas emissions from a subantarctic Sphagnum peatland bog. Using a recently developed skirt chamber, methane emissions and ecosystem respiration (as carbon dioxide) were measured at a submeter scale resolution, at five specific 3 × 3 m plots, which were examined across the site throughout a single campaign during the Austral summer season. The results indicated that methane fluxes were significantly less homogeneously distributed compared with ecosystem respiration. Furthermore, we established that the spatial variation scale, i.e., the minimum spatial domain over which notable changes in methane emissions and ecosystem respiration occur, was <0.56 m2. Factors such as ground height relative to the water table and vegetation coverage were analyzed. It was observed that Tetroncium magellanicum exhibited a notable correlation with higher methane fluxes, likely because of the aerenchymatous nature of this species, facilitating gas transport. This study advances understanding of gas exchange patterns in peatlands but also emphasizes the need for further efforts for characterizing spatial dynamics at a very fine scale for precise greenhouse gas budget assessment.


Assuntos
Gases de Efeito Estufa , Metano , Áreas Alagadas , Gases de Efeito Estufa/análise , Metano/análise , Dióxido de Carbono/análise , Solo/química , Ecossistema , Sphagnopsida , Monitoramento Ambiental
5.
J Theor Biol ; 568: 111509, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120132

RESUMO

While microvascular cerebral capillary networks are known to be highly heterogeneous, previous computational models have predicted that heterogeneous cerebral capillary flow patterns result in lower brain tissue partial oxygen pressures. Moreover, as blood flow increases, the flux among capillaries homogenizes. This homogenization of flow is expected to improve the efficiency of oxygenation extraction from the blood. In this work, we use mathematical modeling to explore a possible functional role for the high degree of heterogeneity observed in cerebral capillary networks. Our results suggest that heterogeneity allows for a greater response of tissue oxygen levels to local changes in vessel diameters due to neuronal activation. This result is confirmed for a full 3-dimensional model of capillary networks that includes oxygen diffusion within the tissue region and a reduced model that accounts for changes in capillary blood flow.


Assuntos
Capilares , Hemodinâmica , Hemodinâmica/fisiologia , Microvasos , Circulação Cerebrovascular/fisiologia , Oxigênio
6.
Chemphyschem ; 23(23): e202200557, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-35944124

RESUMO

We report strong isotope effects for the protic ionic liquid triethylammonium methanesulfonate [TEA][OMs] by means of deuterium solid-state NMR spectroscopy covering broad temperature ranges from 65 K to 313 K. Both isotopically labelled PILs differ in non-deuterated and fully deuterated ethyl groups of the triethyl ammonium cations. The N-D bond of both cations is used as sensitive probe for hydrogen bonding and structural ordering. The 2 H NMR line shape analysis provides the deuteron quadrupole coupling constants and the characteristics of a broad heterogeneous phase with simultaneously present static and mobile states indicating plastic crystal behavior. The temperatures where both states are equally populated differ by about 80 K for the two PILs, showing that deuteration of the ethyl groups in the trialkylammonium cations tremendously shifts the equilibrium towards the static state. In addition, it leads to a significant less cooperative transition, associated with a significantly reduced standard molar transition entropy.


Assuntos
Líquidos Iônicos , Ligação de Hidrogênio , Líquidos Iônicos/química , Deutério/química , Espectroscopia de Ressonância Magnética , Cátions
7.
Int J Legal Med ; 136(6): 1737-1743, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36083564

RESUMO

Next-generation sequencing and single-cell RNA sequencing (scRNA-seq) technologies have advanced rapidly in recent years. scRNA-seq reveals the unique gene expression of each cell type, providing directions for exploring cell heterogeneity, cell type-specific responses to injury/disease, and the mechanisms underlying these processes. The development of sequencing technology and improved sequencing throughput have brought about a revolution in single-cell transcriptome study, bringing great benefits to the fields of medicine and biomedical science. From our perspective, certain issues in forensic medicine may potentially be addressed using single-cell transcriptome studies; however, this powerful technique has not yet attracted sufficient attention in forensic medicine-associated research. Therefore, examining and reviewing the latest developments and applications of single-cell transcriptome studies, we present our views on the future directions of forensic research using this technology, aiming to expand the frontiers of forensic science.


Assuntos
Análise de Célula Única , Transcriptoma , Medicina Legal , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
8.
Nanotechnology ; 33(49)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36041399

RESUMO

The incidence of intra-flake heterogeneity of spectroscopic and electrical properties in chemical vapour deposited (CVD) WS2flakes is explored in a multi-physics investigation via spatially resolved spectroscopic maps correlated with electrical, electronic and mechanical properties. The investigation demonstrates that the three-fold symmetric segregation of spectroscopic response, in topographically uniform WS2flakes are accompanied by commensurate segmentation of electronic properties e.g. local carrier density and the differences in the mechanics of tip-sample interactions, evidenced via scanning probe microscopy phase maps. Overall, the differences are understood to originate from point defects, namely sulfur vacancies within the flake along with a dominant role played by the substrate. While evolution of the multi-physics maps upon sulfur annealing elucidates the role played by sulfur vacancy, substrate-induced effects are investigated by contrasting data from WS2flake on Si and Au surfaces. Local charge depletion induced by the nature of the sample-substrate junction in case of WS2on Au is seen to invert the electrical response with comprehensible effects on their spectroscopic properties. Finally, the role of these optoelectronic properties in preserving valley polarization that affects valleytronic applications in WS2flakes, is investigated via circular polarization discriminated photoluminescence experiments. The study provides a thorough understanding of spatial heterogeneity in optoelectronic properties of WS2and other transition metal chalcogenides, which are critical for device fabrication and potential applications.

9.
Environ Sci Technol ; 56(18): 13008-13018, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069624

RESUMO

In situ bioremediation is a common remediation strategy for many groundwater contaminants. It was traditionally believed that (in the absence of mixing-limitations) a better in situ bioremediation is obtained in a more homogeneous medium where the even distribution of both substrate and bacteria facilitates the access of a larger portion of the bacterial community to a higher amount of substrate. Such conclusions were driven with the typical assumption of disregarding substrate inhibitory effects on the metabolic activity of enzymes at high concentration levels. To investigate the influence of pore matrix heterogeneities on substrate inhibition, we use a numerical approach to solve reactive transport processes in the presence of pore-scale heterogeneities. To this end, a rigorous reactive pore network model is developed and used to model the reactive transport of a self-inhibiting substrate under both transient and steady-state conditions through media with various, spatially correlated, pore-size distributions. For the first time, we explore on the basis of a pore-scale model approach the link between pore-size heterogeneities and substrate inhibition. Our results show that for a self-inhibiting substrate, (1) pore-scale heterogeneities can consistently promote degradation rates at toxic levels, (2) the effect reverses when the concentrations fall to levels essential for microbial growth, and (3) an engineered combination of homogeneous and heterogeneous media can increase the overall efficiency of bioremediation.


Assuntos
Água Subterrânea , Bactérias/metabolismo , Biodegradação Ambiental , Modelos Teóricos
10.
BMC Pediatr ; 22(1): 384, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773654

RESUMO

BACKGROUND: The impacts of socio-demographic and environmental risk factors on child growth have been widely documented. However, it remains unclear whether the impacts of such risk factors on child growth have remained static or changed with child's age. The present study aims to assess the underlying age heterogeneities in child growth and its potential determinants over age in under-five children. METHODS: Cross-sectional data on child height (measured as height-for-age z-score, i.e., HAZ) and weight (measured as weight-for-age z-score, i.e., WAZ) and potential confounding factors from India's 2015-16 National Family Health Survey (NFHS) were used to construct anthropometric age-profiles by a number of bio-demographic and socioeconomic characteristics. Further, age-interacted multilevel regression analyses were performed to examine differential effects of such/those risk factors on child height and weight by age. RESULTS: Faltered height and weight growth during first two years of life was noticed in children of all socioeconomic groups studied, albeit with varying magnitude. In case of child's height, factors such as short birth interval, higher birth order, maternal education, household wealth, district level mortality rate have shown strong interaction with child's age during the first 23 months, signifying their age-varying role in different developmental stages of child growth. These factors explain the observed upward and downward shifts in height curve during first two years. Some of these variables (e.g., household wealth) have shown even stronger age interactions after the second birthday of children. For child's weight, interactive effects of most socio-demographic risk factors attenuated parabolically with child's age. CONCLUSIONS: The impacts of several risk factors, measured at the child, mother, community, and district levels, on child growth indicators varied significantly with the child's age. Nutritional interventions aimed at preventing poor linear growth in children in India should consider these underlying age heterogeneities for growth determinants into account.


Assuntos
Intervalo entre Nascimentos , Estatura , Antropometria , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Índia/epidemiologia , Lactente , Fatores Socioeconômicos
11.
Metab Eng ; 67: 75-87, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34098100

RESUMO

In large-scale bioprocesses microbes are exposed to heterogeneous substrate availability reducing the overall process performance. A series of deletion strains was constructed from E. coli MG1655 aiming for a robust phenotype in heterogeneous fermentations with transient starvation. Deletion targets were hand-picked based on a list of genes derived from previous large-scale simulation runs. Each gene deletion was conducted on the premise of strict neutrality towards growth parameters in glucose minimal medium. The final strain of the series, named E. coli RM214, was cultivated continuously in an STR-PFR (stirred tank reactor - plug flow reactor) scale-down reactor. The scale-down reactor system simulated repeated passages through a glucose starvation zone. When exposed to nutrient gradients, E. coli RM214 had a significantly lower maintenance coefficient than E. coli MG1655 (Δms = 0.038 gGlucose/gCDW/h, p < 0.05). In an exemplary protein production scenario E. coli RM214 remained significantly more productive than E. coli MG1655 reaching 44% higher eGFP yield after 28 h of STR-PFR cultivation. This study developed E. coli RM214 as a robust chassis strain and demonstrated the feasibility of engineering microbial hosts for large-scale applications.


Assuntos
Reatores Biológicos , Escherichia coli , Meios de Cultura , Escherichia coli/genética , Fermentação , Glucose
12.
Biotechnol Bioeng ; 118(1): 265-278, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32940924

RESUMO

Escherichia coli exposed to industrial-scale heterogeneous mixing conditions respond to external stress by initiating short-term metabolic and long-term strategic transcriptional programs. In native habitats, long-term strategies allow survival in severe stress but are of limited use in large bioreactors, where microenvironmental conditions may change right after said programs are started. Related on/off switching of genes causes additional ATP burden that may reduce the cellular capacity for producing the desired product. Here, we present an agent-based data-driven model linked to computational fluid dynamics, finally allowing to predict additional ATP needs of Escherichia coli K12 W3110 exposed to realistic large-scale bioreactor conditions. The complex model describes transcriptional up- and downregulation dynamics of about 600 genes starting from subminute range covering 28 h. The data-based approach was extracted from comprehensive scale-down experiments. Simulating mixing and mass transfer conditions in a 54 m3 stirred bioreactor, 120,000 E. coli cells were tracked while fluctuating between different zones of glucose availability. It was found that cellular ATP demands rise between 30% and 45% of growth decoupled maintenance needs, which may limit the production of ATP-intensive product formation accordingly. Furthermore, spatial analysis of individual cell transcriptional patterns reveal very heterogeneous gene amplifications with hot spots of 50%-80% messenger RNA upregulation in the upper region of the bioreactor. The phenomenon reflects the time-delayed regulatory response of the cells that propagate through the stirred tank. After 4.2 h, cells adapt to environmental changes but still have to bear an additional 6% ATP demand.


Assuntos
Trifosfato de Adenosina/metabolismo , Reatores Biológicos , Simulação por Computador , Escherichia coli/crescimento & desenvolvimento , Modelos Biológicos
13.
J Theor Biol ; 527: 110817, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34157352

RESUMO

Maintaining cerebral blood flow is critical for adequate neuronal function. Previous computational models of brain capillary networks have predicted that heterogeneous cerebral capillary flow patterns result in lower brain tissue partial oxygen pressures PO2). However, these previous models have often considered simple capillary networks in terms of their geometric properties. In this current work, we developed and analyzed computational models of brain capillary networks to determine how perturbations of network properties impact tissue oxygen levels. The models include variabilities in both their geometric (segment lengths and diameters) and three-dimensional, topological structure. Two classes of capillary network models are considered. The first consists of equations for the oxygen partial pressure, PO2, in both a capillary network and the surrounding tissue. In order to gain insight into the behavior of this detailed model, we also consider a reduced model for changes in PO2 in just the capillary network. The main result is that for a general class of networks, random perturbations of either segment diameters or conductances will always, on average, decrease the average tissue oxygen levels. This result is supported through both simulations of the models and mathematical analysis. Our results promise to expand our understanding of cerebral capillary blood flow and its impact on the brain function in health and disease.


Assuntos
Capilares , Oxigênio , Encéfalo , Circulação Cerebrovascular , Humanos , Consumo de Oxigênio , Veias
14.
Proc Natl Acad Sci U S A ; 115(11): 2640-2645, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483243

RESUMO

Polymer-based bioresorbable scaffolds (BRS) seek to eliminate long-term complications of metal stents. However, current BRS designs bear substantially higher incidence of clinical failures, especially thrombosis, compared with metal stents. Research strategies inherited from metal stents fail to consider polymer microstructures and dynamics--issues critical to BRS. Using Raman spectroscopy, we demonstrate microstructural heterogeneities within polymeric scaffolds arising from integrated strain during fabrication and implantation. Stress generated from crimping and inflation causes loss of structural integrity even before chemical degradation, and the induced differences in crystallinity and polymer alignment across scaffolds lead to faster degradation in scaffold cores than on the surface, which further enlarge localized deformation. We postulate that these structural irregularities and asymmetric material degradation present a response to strain and thereby clinical performance different from metal stents. Unlike metal stents which stay patent and intact until catastrophic fracture, BRS exhibit loss of structural integrity almost immediately upon crimping and expansion. Irregularities in microstructure amplify these effects and can have profound clinical implications. Therefore, polymer microstructure should be considered in earliest design stages of resorbable devices, and fabrication processes must be well-designed with microscopic perspective.


Assuntos
Polímeros/química , Alicerces Teciduais/química , Implantes Absorvíveis , Animais , Materiais Biocompatíveis/química , Vasos Sanguíneos/crescimento & desenvolvimento , Humanos , Poliésteres/química , Análise Espectral Raman
15.
J Neurophysiol ; 123(2): 755-772, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913748

RESUMO

The dentate gyrus (DG), the input gate to the hippocampus proper, is anatomically segregated into three different sectors, namely, the suprapyramidal blade, the crest region, and the infrapyramidal blade. Although there are well-established differences between these sectors in terms of neuronal morphology, connectivity patterns, and activity levels, differences in electrophysiological properties of granule cells within these sectors have remained unexplored. Here, employing somatic whole cell patch-clamp recordings from the rat DG, we demonstrate that granule cells in these sectors manifest considerable heterogeneities in their intrinsic excitability, temporal summation, action potential characteristics, and frequency-dependent response properties. Across sectors, these neurons showed positive temporal summation of their responses to inputs mimicking excitatory postsynaptic currents and showed little to no sag in their voltage responses to pulse currents. Consistently, the impedance amplitude profile manifested low-pass characteristics and the impedance phase profile lacked positive phase values at all measured frequencies and voltages and for all sectors. Granule cells in all sectors exhibited class I excitability, with broadly linear firing rate profiles, and granule cells in the crest region fired significantly fewer action potentials compared with those in the infrapyramidal blade. Finally, we found weak pairwise correlations across the 18 different measurements obtained individually from each of the three sectors, providing evidence that these measurements are indeed reporting distinct aspects of neuronal physiology. Together, our analyses show that granule cells act as integrators of afferent information and emphasize the need to account for the considerable physiological heterogeneities in assessing their roles in information encoding and processing.NEW & NOTEWORTHY We employed whole cell patch-clamp recordings from granule cells in the three subregions of the rat dentate gyrus to demonstrate considerable heterogeneities in their intrinsic excitability, temporal summation, action potential characteristics, and frequency-dependent response properties. Across sectors, granule cells did not express membrane potential resonance, and their impedance profiles lacked inductive phase leads at all measured frequencies. Our analyses also show that granule cells manifest class I excitability characteristics, categorizing them as integrators of afferent information.


Assuntos
Giro Denteado/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Neurônios/fisiologia , Animais , Giro Denteado/citologia , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
16.
Biotechnol Bioeng ; 117(11): 3400-3412, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32672835

RESUMO

Significant amounts of soluble product aggregates were observed in the low-pH viral inactivation (VI) operation during an initial scale-up run for an immunoglobulin-G 4 (IgG4) monoclonal antibody (mAb IgG4-N1). Being earlier in development, a scale-down model did not exist, nor was it practical to use costly Protein A eluate (PAE) for testing the VI process at scale, thus, a computational fluid dynamics (CFD)-based high-molecular weight (HMW) prediction model was developed for troubleshooting and risk mitigation. It was previously reported that the IgG4-N1 molecules upon exposure to low pH tend to change into transient and partially unfolded monomers during VI acidification (i.e., VIA) and form aggregates after neutralization (i.e., VIN). Therefore, the CFD model reported here focuses on the VIA step. The model mimics the continuous addition of acid to PAE and tracks acid distribution during VIA. Based on the simulated low-pH zone (≤pH 3.3) profiles and PAE properties, the integrated low-pH zone (ILPZ) value was obtained to predict HMW level at the VI step. The simulations were performed to examine the operating parameters, such as agitation speed, acid addition rate, and protein concentration of PAE, of the pilot scale (50-200 L) runs. The conditions with predictions of no product aggregation risk were recommended to the real scale-up runs, resulted in 100% success rate of the consecutive 12 pilot-scale runs. This study demonstrated that the CFD-based HMW prediction model could be used as a tool to facilitate the scale up of the low-pH VI process directly from bench to pilot/production scale.


Assuntos
Reatores Biológicos/virologia , Técnicas de Cultura de Células/métodos , Simulação por Computador , Inativação de Vírus , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetulus , Hidrodinâmica , Concentração de Íons de Hidrogênio , Agregados Proteicos , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/normas
17.
Mol Pharm ; 17(1): 118-131, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31825626

RESUMO

The poor prognosis of triple-negative breast cancer (TNBC) is attributed largely to the lack of tumor-selective therapeutic modalities that effectively deliver lethal doses at the sites of metastatic disease. Tumor-selective drug delivery strategies that aim to improve uniformity in intratumoral drug microdistributions and to prolong exposure of these cancer cells to delivered therapeutics may improve therapeutic efficacy against established TNBC metastases. In this study, we present lipid carriers for selective (due to their nanometer size) tumor delivery, which are loaded with cisplatin and designed to exhibit the following properties when in the tumor interstitium: (1) interstitial drug release (for deeper tumor penetration of cisplatin) and/or (2) intratumoral/interstitial adhesion of the carriers to tumors' extracellular matrix (ECM)-not accompanied by cell internalization-for delayed tumor clearance of carriers prolonging cancer cell exposure to the cisplatin being released. We show that on large multicellular spheroids, used as surrogates of avascular solid tumor regions, greater growth inhibition was strongly correlated with spatially more uniform drug concentrations (due to interstitial drug release) and with longer exposure to the released drug (i.e., higher time-integrated drug concentrations enabled by slow clearing of adhesive nanoparticles). Lipid nanoparticles with both the release and adhesion properties were the most effective, followed by nanoparticles with only the releasing property and then by nanoparticles with only the adhering property. In vivo, cisplatin-loaded nanoparticles with releasing and/or adhering properties significantly inhibited the growth of spontaneous TNBC metastases compared to conventional liposomal cisplatin, and the efficacy of different property combinations followed the same trends as in spheroids. This study demonstrates the therapeutic potential of a general strategy to bypass treatment limitations of established TNBC metastases due to the lack of cell-targeting markers: aiming to optimize the temporal intratumoral drug microdistributions for more uniform and prolonged drug exposure.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Portadores de Fármacos/administração & dosagem , Lipossomos/administração & dosagem , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacocinética , Cisplatino/farmacologia , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/química , Lipídeos/farmacologia , Lipossomos/química , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos NOD , Nanopartículas/administração & dosagem , Metástase Neoplásica , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Radiat Environ Biophys ; 59(2): 295-306, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32236740

RESUMO

The main aim of this study was to investigate the dosimetric characteristics of the INTRABEAM ® system in the presence of air gaps between the surface of applicators (APs) and tumor bed. Additionally, the effect of tissue heterogeneities was another focus. Investigating the dosimetric characteristics of the INTRABEAM® system is essential to deliver the required dose to the tumor bed correctly and reduce the delivered dose to the ribs and lung. Choosing the correct AP size and fitting it to the lumpectomy cavity is essential to remove the effect of air gaps and avoid inaccurate dose delivery. Consequently, the Geant4 toolkit was used to simulate the INTRABEAM ® system with spherical APs of various sizes. The wall effect of the ion chamber (IC) PTW 34013 used in the present study was checked. The simulations were validated in comparison with measurements, and then used to calculate any inaccuracies in dose delivery in the presence of 4- and 10-mm air gaps between the surface of the APs and the tumor bed. Also, the doses received due to tissue heterogeneities were characterized. It turned out that measurements and simulations were approximately in agreement (± 2%) for all sizes of APs. The perturbation factor introduced by the IC due to differences in graphite-coated polyethylene and air as compared to the phantom material was approximately equal to one for all AP. The greatest relative dose delivery difference was observed for an AP with a diameter of 1.5 cm, i.e., 44% and 70% in the presence of 4- and 10-mm air gaps, respectively. In contrast, the lowest relative dose delivery difference was observed for an AP with a diameter of 5 cm, i.e., 24% and 42% in the presence of 4- and 10-mm air gaps, respectively. Increasing APs size showed a decrease in relative dose delivery difference due to the presence of air gaps. In addition, the undesired dose received by the ribs turned out to be higher when a treatment site closer to the ribs was assumed. The undesired dose received by the ribs increased as the AP size increased. The lung dose turned out to be decreased due to the shielding effect of the ribs, small lung density, and long separation distance from the AP surface.


Assuntos
Radiometria , Radioterapia/instrumentação , Ar , Mama , Neoplasias da Mama/radioterapia , Simulação por Computador , Feminino , Humanos , Pulmão , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Costelas
19.
Nano Lett ; 19(6): 3811-3820, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31082246

RESUMO

Optimizing the chemical and morphological parameters of lithium-ion (Li-ion) electrodes is extremely challenging, due in part to the absence of techniques to construct spatial and temporal descriptions of chemical and morphological heterogeneities. We present the first demonstration of combined high-speed X-ray diffraction (XRD) and XRD computed tomography (XRD-CT) to probe, in 3D, crystallographic heterogeneities within Li-ion electrodes with a spatial resolution of 1 µm. The local charge-transfer mechanism within and between individual particles was investigated in a silicon(Si)-graphite composite electrode. High-speed XRD revealed charge balancing kinetics between the graphite and Si during the minutes following the transition from operation to open circuit. Subparticle lithiation heterogeneities in both Si and graphite were observed using XRD-CT, where the core and shell structures were segmented, and their respective diffraction patterns were characterized.


Assuntos
Grafite/química , Lítio/química , Silício/química , Eletrodos , Tomografia Computadorizada por Raios X , Difração de Raios X
20.
Biotechnol Bioeng ; 116(4): 769-780, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30450609

RESUMO

The formation of pH gradients in a 700 L batch fermentation of Streptococcus thermophilus was studied using multi-position pH measurements and computational fluid dynamics (CFD) modeling. To this end, a dynamic, kinetic model of S. thermophilus and a pH correlation were integrated into a validated one-phase CFD model, and a dynamic CFD simulation was performed. First, the fluid dynamics of the CFD model were validated with NaOH tracer pulse mixing experiments. Mixing experiments and simulations were performed whereas multiple pH sensors, which were placed vertically at different locations in the bioreactor, captured the response. A mixing time of about 46 s to reach 95% homogeneity was measured and predicted at an impeller speed of 242 rpm. The CFD simulation of the S. thermophilus fermentation captured the experimentally observed pH gradients between a pH of 5.9 and 6.3, which occurred during the exponential growth phase. A pH higher than 7 was predicted in the vicinity of the base solution inlet. Biomass growth, lactic acid production, and substrate consumption matched the experimental observations. Moreover, the biokinetic results obtained from the CFD simulation were similar to a single-compartment simulation, for which a homogeneous distribution of the pH was assumed. This indicates no influence of pH gradients on growth in the studied bioreactor. This study verified that the pH gradients during a fermentation in the pilot-scale bioreactor could be accurately predicted using a coupled simulation of a biokinetic and a CFD model. To support the understanding and optimization of industrial-scale processes, future biokinetic CFD studies need to assess multiple types of environmental gradients, like pH, substrate, and dissolved oxygen, especially at industrial scale.


Assuntos
Hidrodinâmica , Força Próton-Motriz , Streptococcus thermophilus/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Simulação por Computador , Desenho de Equipamento , Fermentação , Concentração de Íons de Hidrogênio , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA