Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 155: 106699, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857941

RESUMO

Current analysis highlights the aspects of different nanoparticles in peristalsis with entropy generation. Mathematical equations of considered problem are modelled via conservation laws for mass, momentum and energy. Such equations contain variable viscosity, nonlinear thermal radiation, viscous dissipation, heat generation/absorption and mixed convection aspects. Boundary conditions comprise the second order velocity and first order thermal slip effects. Entropy expression is obtained by utilization thermodynamics. Simplified and dimensionless forms of the considered conservative laws are obtained through lubrication technique. Resulting system of equations subject to the considered boundary conditions is solved numerically via built-in shooting procedure in Mathematica. Such numerical procedure is very suitable to obtain numerical results directly and fastly in the form of graphs. Further all the considered flow quantities are discussed graphically for the significant parameters of interest in detail. Both velocity and temperature are decreasing against large volume fraction parameter. Increasing temperature dependent viscosity effects decrease the entropy and enhance the Bejan number.


Assuntos
Modelos Teóricos , Nanoestruturas , Entropia , Viscosidade , Peristaltismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA