Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(50): 31935-31944, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257577

RESUMO

The stereotyped dimensions of animal bodies and their component parts result from tight constraints on growth. Yet, the mechanisms that stop growth when organs reach the right size are unknown. Growth of the Drosophila wing-a classic paradigm-is governed by two morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Wing growth during larval life ceases when the primordium attains full size, concomitant with the larval-to-pupal molt orchestrated by the steroid hormone ecdysone. Here, we block the molt by genetically dampening ecdysone production, creating an experimental paradigm in which the wing stops growing at the correct size while the larva continues to feed and gain body mass. Under these conditions, we show that wing growth is limited by the ranges of Dpp and Wg, and by ecdysone, which regulates the cellular response to their signaling activities. Further, we present evidence that growth terminates because of the loss of two distinct modes of morphogen action: 1) maintenance of growth within the wing proper and 2) induced growth of surrounding "pre-wing" cells and their recruitment into the wing. Our results provide a precedent for the control of organ size by morphogen range and the hormonal gating of morphogen action.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/metabolismo , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Tamanho do Órgão/genética , Asas de Animais/citologia
2.
J Am Soc Nephrol ; 33(9): 1694-1707, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35918150

RESUMO

BACKGROUND: The embryonic renal stroma consists of multiple molecularly distinct cell subpopulations, the functional significance of which is largely unknown. Previous work has demonstrated that the transcription factors YAP and TAZ play roles in the development and morphogenesis of the nephrons, collecting ducts, and nephron progenitor cells. METHODS: In embryonic mouse kidneys, we identified a subpopulation of stromal cells with enriched activity in YAP and TAZ. To evaluate the function of these cell types, we genetically ablated both Yap and Taz from the stromal progenitor population and examined how gene activity and development of YAP/TAZ mutant kidneys are affected over a developmental time course. RESULTS: We found that YAP and TAZ are active in a subset of renal interstitium and that stromal-specific coablation of YAP/TAZ disrupts cortical fibroblast, pericyte, and myofibroblast development, with secondary effects on peritubular capillary differentiation. We also demonstrated that the transcription factor SRF cooperates with YAP/TAZ to drive expression of at least a subset of renal myofibroblast target genes and to specify myofibroblasts but not cortical fibroblasts or pericytes. CONCLUSIONS: These findings reveal a critical role for YAP/TAZ in specific embryonic stromal cells and suggest that interaction with cofactors, such as SRF, influence the expression of cell type-specific target genes, thus driving stromal heterogeneity. Further, this work reveals functional roles for renal stroma heterogeneity in creating unique microenvironments that influence the differentiation and maintenance of the renal parenchyma.


Assuntos
Miofibroblastos , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Miofibroblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Sinalização YAP , Rim/metabolismo
3.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668437

RESUMO

Developmental growth and patterning are regulated by an interconnected signalling network of several pathways. In Drosophila, the Warts (Wts) kinase, a component of the Hippo signalling pathway, plays an essential role in regulating transcription and growth by phosphorylating its substrate Yorkie (Yki). The phosphorylation of Yki critically influences its localisation and activity as a transcriptional coactivator. In this study, we identified the homeodomain-interacting protein kinase (Hipk) as another kinase that phosphorylates Yki and mapped several sites of Yki phosphorylated by Hipk, using in vitro analysis: Ser168, Ser169/Ser172 and Ser255. These sites might provide auxiliary input for Yki regulation in vivo, as transgenic flies with mutations in these show prominent phenotypes; Hipk, therefore, represents an additional upstream regulator of Yki that works in concert with Wts.


Assuntos
Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Fosforilação/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Transativadores/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA