Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMC Genomics ; 25(1): 442, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702658

RESUMO

Genes containing the SET domain can catalyse histone lysine methylation, which in turn has the potential to cause changes to chromatin structure and regulation of the transcription of genes involved in diverse physiological and developmental processes. However, the functions of SET domain-containing (StSET) genes in potato still need to be studied. The objectives of our study can be summarized as in silico analysis to (i) identify StSET genes in the potato genome, (ii) systematically analyse gene structure, chromosomal distribution, gene duplication events, promoter sequences, and protein domains, (iii) perform phylogenetic analyses, (iv) compare the SET domain-containing genes of potato with other plant species with respect to protein domains and orthologous relationships, (v) analyse tissue-specific expression, and (vi) study the expression of StSET genes in response to drought and heat stresses. In this study, we identified 57 StSET genes in the potato genome, and the genes were physically mapped onto eleven chromosomes. The phylogenetic analysis grouped these StSET genes into six clades. We found that tandem duplication through sub-functionalisation has contributed only marginally to the expansion of the StSET gene family. The protein domain TDBD (PFAM ID: PF16135) was detected in StSET genes of potato while it was absent in all other previously studied species. This study described three pollen-specific StSET genes in the potato genome. Expression analysis of four StSET genes under heat and drought in three potato clones revealed that these genes might have non-overlapping roles under different abiotic stress conditions and durations. The present study provides a comprehensive analysis of StSET genes in potatoes, and it serves as a basis for further functional characterisation of StSET genes towards understanding their underpinning biological mechanisms in conferring stress tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética , Estresse Fisiológico/genética , Duplicação Gênica , Domínios PR-SET/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Secas
2.
New Phytol ; 235(5): 1957-1976, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633111

RESUMO

Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood. We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses. SDG33 and SDG34 gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli. The double but not the single mutants show resistance to the fungal pathogen Botrytis cinerea. Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought. Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations in SDG33 and SDG34 are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade-offs, through modification of histone epigenetic marks.


Assuntos
Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Solanum lycopersicum/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Domínios PR-SET
3.
EMBO Rep ; 20(12): e48297, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31576654

RESUMO

Understanding of the appropriate regulation of enzymatic activities of histone-modifying enzymes remains poor. The lysine methyltransferase, SETDB1, is one of the enzymes responsible for the methylation of histone H3 at lysine 9 (H3K9) and plays a key role in H3K9 trimethylation-mediated silencing of genes and retrotransposons. Here, we reported that how SETDB1's enzymatic activities can be regulated by the nuclear protein, ATF7IP, a known binding partner of SETDB1. Mechanistically, ATF7IP mediates SETDB1 retention inside the nucleus, presumably by inhibiting its nuclear export by binding to the N-terminal region of SETDB1, which harbors the nuclear export signal motifs, and also by promoting its nuclear import. The nuclear localization of SETDB1 increases its ubiquitinated, enzymatically more active form. Our results provided an insight as to how ATF7IP can regulate the histone methyltransferase activity of SETDB1 accompanied by its nuclear translocation.


Assuntos
Núcleo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Células Cultivadas , Células HEK293 , Histona-Lisina N-Metiltransferase/química , Humanos , Camundongos , Ligação Proteica , Proteínas Repressoras/química
4.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802993

RESUMO

Despite advances in the preparation of metal oxide (MO) nanoparticles (NPs) as catalysts for various applications, concerns about the biosafety of these particles remain. In this study, we prepared transition metal-doped cerium oxide (TM@CeO2; TM = Cr, Mn, Fe, Co, or Ni) nanoparticles and investigated the mechanism underlying dopant-dependent toxicity in HaCaT human keratinocytes. We show that doping with Cr or Co but not Fe, Mn, or Ni increased the toxicity of CeO2 NPs in dose- and time-dependent manners and led to apoptotic cell death. Interestingly, while both undoped and transition metal-doped NPs increased intracellular reactive oxygen species (ROS), toxic Cr@CeO2 and Co@CeO2 NPs failed to induce the expression of NRF2 (nuclear factor erythroid 2-related factor 2) as well as its downstream target genes involved in the antioxidant defense system. Moreover, activation of NRF2 transcription was correlated with dynamic changes in H3K4me3 and H3K27me3 at the promoter of NRF2, which was not observed in cells exposed to Cr@CeO2 NPs. Furthermore, exposure to relatively non-toxic Fe@CeO2 NPs, but not the toxic Cr@CeO2 NPs, resulted in increased binding of MLL1 complex, a major histone lysine methylase mediating trimethylation of histone H3 lysine 4, at the NRF2 promoter. Taken together, our findings strongly suggest that failure of cells to respond to oxidative stress is critical for dopant-dependent toxicity of CeO2 NPs and emphasize that careful evaluation of newly developed NPs should be preceded before industrial or biomedical applications.


Assuntos
Cério/toxicidade , Células HaCaT/metabolismo , Histonas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Nanopartículas/toxicidade , Ativação Transcricional/genética , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HaCaT/efeitos dos fármacos , Humanos , Metilação , Fator 2 Relacionado a NF-E2/metabolismo , Nanopartículas/ultraestrutura , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo
5.
BMC Plant Biol ; 20(1): 40, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992218

RESUMO

BACKGROUND: Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG) proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum are unknown. RESULTS: In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes (I~VII and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG members mainly in Arabidopsis, Class I (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class II (Ash-like) for H3K36me, Class III (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like) for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed the expressions of DcASHR3, DcSUVR3, DcATXR4, DcATXR5b, and DcSDG49 are closely associated with drought-recovery treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVR14a are significantly influenced by low temperature, and even 61% DcSDG genes are in response to heat shock. CONCLUSIONS: This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress responses. These results provide constructive clues for further functional investigation and epigenetic mechanism dissection of SET-containing proteins in orchids.


Assuntos
Dendrobium/genética , Domínios PR-SET/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Filogenia , Proteínas de Plantas/genética , Transcriptoma
6.
Clin Sci (Lond) ; 133(20): 2085-2105, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31654063

RESUMO

A previous study reported that histone methyltransferase SETD3 is up-regulated in tumor tissues of hepatocellular carcinoma (HCC) and is associated with the growth of HCC. However, the clinical significance and the effect of SETD3 on HCC metastasis remain unclear. In the present study, both the protein and mRNA expression levels of SETD3 were measured in a larger cohort of HCC patients. The results showed that the protein level of SETD3 in HCC tissues was significantly higher than that in non-tumorous tissues, which was inconsistent with the mRNA expression level of SETD3. The high protein level of SETD3 in HCC tissues was significantly associated with male gender, poor pathological differentiation, liver cirrhosis and unfavorable prognosis of HCC patients. Subsequently, we demonstrated that SETD3 could be regulated at post-transcriptional step by a couple of miRNAs (miR-16, miR-195 and miR-497). Additionally, in vitro and in vivo experiments revealed that SETD3 played opposing roles in proliferation and metastasis of HCC: promoting proliferation but inhibiting metastasis. Mechanistic experiments revealed that doublecortin-like kinase 1 (DCLK1) was a downstream target of SETD3. SETD3 could increase the DNA methylation level of DCLK1 promoter to inhibit the transcription of DCLK1. Further study revealed that DCLK1/PI3K/matrix metalloproteinase (MMP) 2 (MMP-2) was an important pathway that mediated the effect of SETD3 on HCC metastasis. In conclusion, the present study revealed that SETD3 is associated with tumorigenesis and is a promising biomarker for predicting the prognosis of HCC patients after surgical resection. In addition, SETD3 plays inhibitory role in HCC metastasis partly through DCLK1/PI3K/MMP-2 pathway.


Assuntos
Carcinoma Hepatocelular/genética , Histona Metiltransferases/genética , Neoplasias Hepáticas/genética , Idoso , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/secundário , Carcinoma Hepatocelular/cirurgia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Metilação de DNA/genética , Quinases Semelhantes a Duplacortina , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatectomia , Histona Metiltransferases/deficiência , Histona Metiltransferases/metabolismo , Histona Metiltransferases/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Processamento Pós-Transcricional do RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Regulação para Cima
7.
Neurobiol Learn Mem ; 142(Pt A): 66-78, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28232238

RESUMO

Epigenetic mechanisms such as DNA methylation and histone methylation are critical regulators of gene transcription changes during memory consolidation. However, it is unknown how these epigenetic modifications coordinate control of gene expression following reactivation of a previously consolidated memory. Here, we found that retrieval of a recent contextual fear conditioned memory increased global levels of H3 lysine 4-trimethylation (H3K4me3) and DNA 5-hydroxymethylation (5hmC) in area CA1 of the dorsal hippocampus. Further experiments revealed increased levels of H3K4me3 and DNA 5hmC within a CpG-enriched coding region of the Npas4, but not c-fos, gene. Intriguingly, retrieval of a 30-day old memory increased H3K4me3 and DNA 5hmC levels at a CpG-enriched coding region of c-fos, but not Npas4, in the anterior cingulate cortex, suggesting that while these two epigenetic mechanisms co-occur following the retrieval of a recent or remote memory, their gene targets differ depending on the brain region. Additionally, we found that in vivo siRNA-mediated knockdown of the H3K4me3 methyltransferase Mll1 in CA1 abolished retrieval-induced increases in DNA 5hmC levels at the Npas4 gene, suggesting that H3K4me3 couples to DNA 5hmC mechanisms. Consistent with this, loss of Mll1 prevented retrieval-induced increases in Npas4 mRNA levels in CA1 and impaired fear memory. Collectively, these findings suggest an important link between histone methylation and DNA hydroxymethylation mechanisms in the epigenetic control of de novo gene transcription triggered by memory retrieval.


Assuntos
Epigênese Genética , Medo/fisiologia , Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Histonas/metabolismo , Memória/fisiologia , Animais , Metilação de DNA , Masculino , Ratos , Ratos Sprague-Dawley
8.
Oral Dis ; 23(6): 709-720, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27514027

RESUMO

Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate. These cofactors have been targeted when devising KDM inhibitors, which may yield therapeutic benefit. KDMs and their counterpart Lys methyltransferases (KMTs) regulate multiple biological processes, including oncogenesis and inflammation. KDMs' functional interactions with retinoblastoma (Rb) and E2 factor (E2F) target promoters illustrate their regulatory role in cell cycle progression and oncogenesis. Recent findings also demonstrate the control of inflammation and immune functions by KDMs, such as KDM6B that regulates the pro-inflammatory gene expression and CD4+ T helper (Th) cell lineage determination. This review will highlight the mechanisms by which KDMs and KMTs regulate the target gene expression and how epigenetic mechanisms may be applied to our understanding of oral inflammation.


Assuntos
Carcinogênese/genética , Ciclo Celular/genética , Periodontite Crônica/genética , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Processo Alveolar/crescimento & desenvolvimento , Metilação de DNA , Humanos , Dente/crescimento & desenvolvimento
9.
Int J Mol Sci ; 18(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665350

RESUMO

Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Animais , Epigênese Genética/genética , Humanos , Metilação , Processamento de Proteína Pós-Traducional
10.
Psychiatry Clin Neurosci ; 70(12): 536-550, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27485392

RESUMO

The mammalian brain dynamically activates or silences gene programs in response to environmental input and developmental cues. This neuroplasticity is controlled by signaling pathways that modify the activity, localization, and/or expression of transcriptional-regulatory enzymes in combination with alterations in chromatin structure in the nucleus. Consistent with this key neurobiological role, disruptions in the fine-tuning of epigenetic and transcriptional regulation have emerged as a recurrent theme in studies of the genetics of neurodevelopmental and neuropsychiatric disorders. Furthermore, environmental factors have been implicated in the increased risk of heterogeneous, multifactorial, neuropsychiatric disorders via epigenetic mechanisms. Aberrant epigenetic regulation of gene expression thus provides an attractive unifying model for understanding the complex risk architecture of mental illness. Here, we review emerging genetic evidence implicating dysregulation of histone lysine methylation in neuropsychiatric disease and outline advancements in small-molecule probes targeting this chromatin modification. The emerging field of neuroepigenetic research is poised to provide insight into the biochemical basis of genetic risk for diverse neuropsychiatric disorders and to develop the highly selective chemical tools and imaging agents necessary to dissect dynamic transcriptional-regulatory mechanisms in the nervous system. On the basis of these findings, continued advances may lead to the validation of novel, disease-modifying therapeutic targets for a range of disorders with aberrant chromatin-mediated neuroplasticity.


Assuntos
Descoberta de Drogas , Epigênese Genética/fisiologia , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Transtornos Mentais/enzimologia , Doenças do Sistema Nervoso/enzimologia , Plasticidade Neuronal/fisiologia , Animais , Epigênese Genética/efeitos dos fármacos , Histona Desmetilases/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/efeitos dos fármacos , Humanos , Transtornos Mentais/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos
11.
Biochim Biophys Acta ; 1839(12): 1362-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24560929

RESUMO

DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine methylation may help to target DNA methylation during development, and vice versa. In addition, the emerging role of non-methylated DNA found in CpG islands in defining histone lysine methylation profiles at gene regulatory elements will be discussed in the context of gene regulation.


Assuntos
Metilação de DNA/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Ilhas de CpG/genética , Histona Metiltransferases , Humanos , Metilação
12.
Biochim Biophys Acta ; 1839(12): 1373-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24859457

RESUMO

Transcriptionally repressive histone lysine methylation is used by eukaryotes to tightly control cell fate. Here we explore the importance of this form of regulation in the control of clustered genes in the genome. Two distinctly regulated gene families with important roles in vertebrates are discussed, namely the Hox genes and olfactory receptor genes. Major recent advances in these two fields are compared and contrasted, with an emphasis on the roles of the two different forms of histone trimethylation. We discuss how this repression may impact both the transcriptional output of these loci and the way higher-order chromatin organization is related to their unique control.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Animais , Regulação para Baixo , Determinismo Genético , Histona Metiltransferases , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Processos Estocásticos
13.
Biochim Biophys Acta ; 1839(12): 1404-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24946978

RESUMO

Lysine methylation has emerged as a prominent covalent modification in histones and non-histone proteins. This modification has been implicated in numerous genomic processes, including heterochromatinization, cell cycle progression, DNA damage response, DNA replication, genome stability, and epigenetic gene regulation that underpins developmental programs defining cell identity and fate. The site and degree of lysine methylation is dynamically modulated through the enzymatic activities of protein lysine methyltransferases (KMTs) and protein lysine demethylases (KDMs). These enzymes display distinct substrate specificities that in part define their biological functions. This review explores recent progress in elucidating the molecular basis of these specificities, highlighting structural and functional studies of the methyltransferases SUV4-20H1 (KMT5B), SUV4-20H2 (KMT5C), and ATXR5, and the demethylases UTX (KDM6A), JMJD3 (KDM6B), and JMJD2D (KDM4D). We conclude by examining these findings in the context of related KMTs and KDMs and by exploring unresolved questions regarding the specificities and functions of these enzymes.


Assuntos
Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animais , Histona Desmetilases/química , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/química , Humanos , Lisina/química , Metilação , Modelos Moleculares , Ligação Proteica/genética , Especificidade por Substrato
14.
Mol Cell Neurosci ; 61: 187-200, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24983519

RESUMO

Enzymes that regulate histone lysine methylation play important roles in neuronal differentiation, but little is known about their contributions to activity-regulated gene transcription in differentiated neurons. We characterized activity-regulated expression of lysine demethylases and lysine methyltransferases in the hippocampus of adult male mice following pilocarpine-induced seizure. Pilocarpine drove a 20-fold increase in mRNA encoding the histone H3 lysine 27-specific demethylase Kdm6b selectively in granule neurons of the dentate gyrus, and this induction was recapitulated in cultured hippocampal neurons by bicuculline and 4-aminopyridine (Bic + 4AP) stimulation of synaptic activity. Because activity-regulated gene expression is highly correlated with neuronal survival, we tested the requirement for Kdm6b expression in Bic + 4AP induced preconditioning of neuronal survival. Prior exposure to Bic + 4AP promoted neuronal survival in control neurons upon growth factor withdrawal; however, this effect was ablated when we knocked down Kdm6b expression. Loss of Kdm6b did not disrupt activity-induced expression of most genes, including that of a gene set previously established to promote neuronal survival in this assay. However, using bioinformatic analysis of RNA sequencing data, we discovered that Kdm6b knockdown neurons showed impaired inducibility of a discrete set of genes annotated for their function in inflammation. These data reveal a novel function for Kdm6b in activity-regulated neuronal survival, and they suggest that activity- and Kdm6b-dependent regulation of inflammatory gene pathways may serve as an adaptive pro-survival response to increased neuronal activity.


Assuntos
Hipocampo/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neurônios/metabolismo , Convulsões/patologia , 4-Aminopiridina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Bicuculina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Antagonistas de Receptores de GABA-A/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Muscarínicos/toxicidade , Neurônios/efeitos dos fármacos , Pilocarpina/toxicidade , Bloqueadores dos Canais de Potássio/farmacologia , Interferência de RNA/fisiologia , Convulsões/induzido quimicamente
15.
Int J Cancer ; 134(12): 2778-88, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24242335

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and is rising in incidence worldwide. The molecular mechanisms leading to the development of HCC are complex and include both genetic and epigenetic events. To determine the relative contribution of these alterations in liver tumorigenesis, we evaluated epigenetic modifications at both global and gene specific levels, as well as the mutational profile of genes commonly altered in liver tumors. A mouse model of fibrosis-associated liver cancer that was designed to emulate cirrhotic liver, a prevailing disease state observed in most humans with HCC, was used. Tumor and nontumor liver samples from B6C3F1 mice treated with N-nitrosodiethylamine (DEN; a single ip injection of 1 mg/kg at 14 days of age) and carbon tetrachloride (CCl4; 0.2 ml/kg, 2 times/week ip starting at 8 weeks of age for 14 weeks), as well as corresponding vehicle control animals, were analyzed for genetic and epigenetic alterations. H-ras, Ctnnb1 and Hnf1α genes were not mutated in tumors in mice treated with DEN+CCl4 . In contrast, the increased tumor incidence in mice treated with DEN+CCl4 was associated with marked epigenetic changes in liver tumors and nontumor liver tissue, including demethylation of genomic DNA and repetitive elements, a decrease in histone 3 lysine 9 trimethylation (H3K9me3) and promoter hypermethylation and functional downregulation of Riz1, a histone lysine methyltransferase tumor suppressor gene. Additionally, the reduction in H3K9me3 was accompanied by increased expression of long interspersed nucleotide elements 1 and short interspersed nucleotide elements B2, which is an indication of genomic instability. In summary, our results suggest that epigenetic events, rather than mutations in known cancer-related genes, play a prominent role in increased incidence of liver tumors in this mouse model of fibrosis-associated liver cancer.


Assuntos
Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Metilação de DNA/genética , Epigênese Genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Animais , Tetracloreto de Carbono , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/patologia , Cromatina/genética , Cromatina/metabolismo , Dietilnitrosamina , Modelos Animais de Doenças , Regulação para Baixo , Instabilidade Genômica/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Histona-Lisina N-Metiltransferase/biossíntese , Histonas/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Fatores de Transcrição/biossíntese , beta Catenina/genética
16.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719857

RESUMO

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Assuntos
Artrite Reumatoide , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide , Membrana Sinovial , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Células Cultivadas , Quimiocinas/metabolismo , Quimiocinas/genética , Citocinas/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Mol Neurobiol ; 61(9): 6245-6263, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38289455

RESUMO

Psychostimulants regulate behavioral responses in zebrafish via epigenetic mechanisms. We have previously shown that DNA methylation and histone deacetylase (HDAC) inhibition abolish nicotine-induced conditioned place preference (CPP) but little is known about the role of histone methylation in addictive-like behaviors. To assess the influence of histone methylation on nicotine-CPP, zebrafish were treated with a histone (H3) lysine-9 (K9) dimethyltransferase G9a/GLP inhibitor, BIX-01294 (BIX), which was administered before conditioning sessions. We observed a dual effect of the inhibitor BIX: at high doses inhibited while at low doses potentiated nicotine reward. Transcriptional expression of α6 and α7 subunits of the nicotinic acetylcholine receptor and of G9a, DNA methyl transferase-3, and HDAC-1 was upregulated in zebrafish with positive scores for nicotine-CPP. Changes in relative levels of these mRNA molecules reflected the effects of BIX on nicotine reward. BIX treatment per sé did not affect transcriptional levels of epigenetic enzymes that regulate trimethylation or demethylation of H3. BIX reduced H3K9me2 protein levels in a dose-dependent manner in key structures of the reward pathway. Thus, our findings indicated that different doses of BIX differentially affect nicotine CPP via strong or weak inhibition of G9a/GLP activity. Additionally, we found that the lysine demethylase inhibitor daminozide abolished nicotine-CPP and drug seeking. Our data demonstrate that H3 methylation catalyzed by G9a/GLP is involved in nicotine-CPP induction. Dimethylation of K9 at H3 is an important epigenetic modification that should be considered as a potential therapeutic target to treat nicotine reward and perhaps other drug addictions.


Assuntos
Histona-Lisina N-Metiltransferase , Nicotina , Peixe-Zebra , Animais , Nicotina/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Azepinas/farmacologia , Histonas/metabolismo , Recompensa , Quinazolinas/farmacologia , Receptores Nicotínicos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Masculino
19.
J Agric Food Chem ; 71(31): 12140-12152, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37503871

RESUMO

To gain a comprehensive understanding of non-histone methylation during berry ripening in grape (Vitis vinifera L.), the methylation of non-histone lysine residues was studied using a 4D label-free quantitative proteomics approach. In total, 822 methylation sites in 416 methylated proteins were identified, with xxExxx_K_xxxxxx as the conserved motif. Functional annotation of non-histone proteins with methylated lysine residues indicated that these proteins were mostly associated with "ripening and senescence", "energy metabolism", "oxidation-reduction process", and "stimulus response". Most of the genes encoding proteins subjected to methylation during grape berry ripening showed a significant increase in expression during maturation at least at one developmental stage. The correlation of methylated proteins with QTLs, SNPs, and selective regions associated with fruit quality and development was also investigated. This study reports the first proteomic analysis of non-histone lysine methylation in grape berry and indicates that non-histone methylation plays an important role in grape berry ripening.


Assuntos
Vitis , Vitis/anatomia & histologia , Vitis/química , Vitis/metabolismo , Proteoma/metabolismo , Histonas/química , Metilação , Lisina/química , Peptídeos/química , Mapas de Interação de Proteínas , Perfilação da Expressão Gênica
20.
Prog Mol Biol Transl Sci ; 197: 261-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37019596

RESUMO

Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.


Assuntos
Neoplasias do Colo , Histonas , Humanos , Histonas/metabolismo , Lisina , Arginina/genética , Arginina/metabolismo , Metilação de DNA , Processamento de Proteína Pós-Traducional , Neoplasias do Colo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA