Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(3): 3537-3553, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950564

RESUMO

Voltage-gated sodium channels comprise an ion-selective α-subunit and one or more associated ß-subunits. The ß3-subunit (encoded by the SCN3B gene) is an important physiological regulator of the heart-specific sodium channel, Nav1.5. We have previously shown that when expressed alone in HEK293F cells, the full-length ß3-subunit forms trimers in the plasma membrane. We extend this result with biochemical assays and use the proximity ligation assay (PLA) to identify oligomeric ß3-subunits, not just at the plasma membrane, but throughout the secretory pathway. We then investigate the corresponding clustering properties of the α-subunit and the effects upon these of the ß3-subunits. The oligomeric status of the Nav1.5 α-subunit in vivo, with or without the ß3-subunit, has not been previously investigated. Using super-resolution fluorescence imaging, we show that under conditions typically used in electrophysiological studies, the Nav1.5 α-subunit assembles on the plasma membrane of HEK293F cells into spatially localized clusters rather than individual and randomly dispersed molecules. Quantitative analysis indicates that the ß3-subunit is not required for this clustering but ß3 does significantly change the distribution of cluster sizes and nearest-neighbor distances between Nav1.5 α-subunits. However, when assayed by PLA, the ß3-subunit increases the number of PLA-positive signals generated by anti-(Nav1.5 α-subunit) antibodies, mainly at the plasma membrane. Since PLA can be sensitive to the orientation of proteins within a cluster, we suggest that the ß3-subunit introduces a significant change in the relative alignment of individual Nav1.5 α-subunits, but the clustering itself depends on other factors. We also show that these structural and higher-order changes induced by the ß3-subunit do not alter the degree of electrophysiological gating cooperativity between Nav1.5 α-subunits. Our data provide new insights into the role of the ß3-subunit and the supramolecular organization of sodium channels, in an important model cell system that is widely used to study Nav channel behavior.


Assuntos
Membrana Celular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Subunidades Proteicas/metabolismo , Eletrofisiologia , Células HEK293 , Humanos , Imunoprecipitação , Cinética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Técnicas de Patch-Clamp , Subunidades Proteicas/química , Subunidades Proteicas/genética
2.
Chin J Physiol ; 61(1): 1-13, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29374954

RESUMO

Telmisartan (Tel) is recognized as a non-peptide blocker of AT1R. Whether this agent has any direct effects on ion currents remains unexplored. In whole-cell current recordings, addition of Tel increased the peak amplitude of voltage-gated Na⁺ (NaV) current (INa) accompanied by the increased time constant of INa inactivation in differentiated NSC-34 motor neuron-like cells. Tel-stimulated INa in these cells is unlinked to either blockade of AT1R or activation of peroxisome proliferator-activated receptor gamma (PPAR-γ). In order to explore how this compound affects the amplitude and kinetics of INa in neurons, a Hodgkin-Huxley-based (HH-based) model designed to mimic effect of Tel on the functional activities of neurons was computationally created in this study. In this framework, the parameter for h inactivation gating variable, which was changed in a stepwise fashion, was implemented to predict changes in membrane potentials (V) as a function of maximal Na⁺ (GNa), K⁺ conductance (GK), or both. As inactivation time course of INa was increased, the bifurcation point of V versus GNa became lower, and the range between subcritical and supercritical values at the bifurcation of V versus GK correspondingly became larger. During a slowing in INa inactivation, the critical boundary between GNa and GK was shifted towards the left. Simulation studies demonstrated that progressive slowing in the inactivation time course of INa resulted in unanticipated increase of neuronal excitability by mimicking the effect of Tel in neuronal cells. Collectively, Tel can directly interact with the NaV channel to increase peak INa as well as to slow INa inactivation. It is thus highly likely that the effects of Tel or its structurally similar drugs could be another intriguing mechanism underlying their pharmacological actions in neurons or neuroendocrine cells occurring in vivo.


Assuntos
Benzimidazóis/farmacologia , Benzoatos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Células Cultivadas , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Telmisartan
3.
J Neurosci ; 34(14): 4991-5002, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24695716

RESUMO

Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.


Assuntos
Potenciais de Ação/fisiologia , Fenômenos Biofísicos/fisiologia , Região CA1 Hipocampal/citologia , Neurônios/fisiologia , Canais de Potássio Shab/metabolismo , Gânglio Cervical Superior/citologia , Animais , Animais Recém-Nascidos , Proteínas de Artrópodes , Fenômenos Biofísicos/efeitos dos fármacos , Biofísica , Células Cultivadas , Feminino , Masculino , Camundongos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Venenos de Aranha/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA