Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Oecologia ; 204(1): 95-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123786

RESUMO

Understanding the circumstances under which insect herbivores will adopt a novel host plant is a longstanding question in basic and applied ecology. While geographic variation in host use can arise through differences in both herbivore preference and plant characteristics, there is a tendency to attribute geographic variation in host use to regional differences in herbivore preference alone. This is especially true for herbivores specialized to one or a few plant species. We compared how geographic variation in herbivore preference and host plant origin shape regional differences in host plant use by the specialized herbivore, Euphydryas phaeton. In parts of its range, E. phaeton uses only a native host, Chelone glabra, while in others, it also uses an introduced host, Plantago lanceolata. We offered female butterflies from each region the non-native host plant sourced from both regions and compared their oviposition behavior. The non-native host was almost universally rejected by butterflies in the region where only the native plant is used. In the region where butterflies use both hosts, females accepted non-native plants from their natal region twice as often as non-native plants from the other region where they are not used. Acceptance differed substantially among individual butterflies within regions but not among plants within regions. Thus, both individual preference and regional differences in both the insect and non-native host contributed to the geographic variation in different ways. These results highlight that, in addition to herbivore preference, regional differences in perceived plant suitability may be an important driver of diet breadth.


Assuntos
Borboletas , Animais , Feminino , Herbivoria , Larva , Plantas , Dieta , Oviposição
2.
J Fish Biol ; 103(5): 1232-1236, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37492980

RESUMO

We investigated an interaction between bitterlings and a parasitic leech Hemiclepsis kasmiana in freshwater mussel hosts. We found that leeches fed on bitterling eggs and embryos; this may exert a considerable negative effect on bitterling fitness. Host choices by females of three bitterling species may be differently affected by the presence of leeches within mussels; Tanakia limbata apparently avoided laying eggs in infested mussels while T. lanceolata and Acheilognathus rhombeus did not. Our novel findings suggest that relationships between the parasitic leech and the host mussel may be context dependent.


Assuntos
Bivalves , Cyprinidae , Sanguessugas , Parasitos , Feminino , Animais , Água Doce , Cyprinidae/parasitologia , Bivalves/parasitologia
3.
Phytopathology ; 112(4): 944-952, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34698541

RESUMO

Susceptible plants infected by single or multiple viruses can differ in symptoms and other alterations influencing virus dissemination. Furthermore, behavior of viruliferous vectors may be altered in certain cases to favor acquisition and inoculation processes conductive to virus transmission. We explored single and mixed infections frequently occurring in tomato crops, caused by two viruses transmitted by the whitefly Bemisia tabaci: Tomato yellow leaf curl virus (TYLCV, Begomovirus, Geminiviridae) and Tomato chlorosis virus (ToCV, Crinivirus, Closteroviridae). Coinfection of both viruses in tomato plants showed more severe symptoms at late stages compared with single infections, although at earlier stages the interaction began with attenuation. This asymmetric synergism correlated with the dynamics of ToCV accumulation and expression of the salicylic acid responsive gene PR-P6. Visual and olfactory cues in whitefly preference were evaluated under controlled conditions in choice assays, testing viruliferous and nonviruliferous adult whiteflies. In experiments allowing both visual and olfactory cues, whiteflies preferred symptomatic leaflets from plants infected either with TYLCV alone or with TYLCV and ToCV, over those infected with ToCV alone or noninfected leaflets, suggesting that TYLCV drove host selection. Odor cues tested in Y-tube olfactometer assays showed neutral effects on whiteflies' preference, and bioassays comparing the attractiveness of colored sticky cards confirmed preference for sectors colored to mimic TYLCV symptomatic leaves compared with asymptomatic leaves. Our results show that the presence of coinfecting viruses affect the host and could alter the behavior of insect vectors.


Assuntos
Begomovirus , Coinfecção , Crinivirus , Hemípteros , Solanum lycopersicum , Animais , Begomovirus/genética , Crinivirus/genética , Doenças das Plantas
4.
Proc Biol Sci ; 288(1947): 20210192, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33757346

RESUMO

Changes in behaviour often drive rapid adaptive evolution and speciation. However, the mechanistic basis for behavioural shifts is largely unknown. The tephritid fruit fly Rhagoletis pomonella is an example of ecological specialization and speciation in action via a recent host plant shift from hawthorn to apple. These flies primarily use specific odours to locate fruit, and because they mate only on or near host fruit, changes in odour preference for apples versus hawthorns translate directly to prezygotic reproductive isolation, initiating speciation. Using a variety of techniques, we found a reversal between apple and hawthorn flies in the sensory processing of key odours associated with host fruit preference at the first olfactory synapse, linking changes in the antennal lobe of the brain with ongoing ecological divergence. Indeed, changes to specific neural pathways of any sensory modality may be a broad mechanism for changes in animal behaviour, catalysing the genesis of new biodiversity.


Assuntos
Crataegus , Malus , Tephritidae , Animais , Odorantes , Percepção
5.
Bull Entomol Res ; 111(2): 229-237, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32945251

RESUMO

Many parasitoid species discriminate already parasitized hosts, thus avoiding larval competition. However, females incur in superparasitism under certain circumstances. Superparasitism is commonly observed in the artificial rearing of the parasitoid Diachasmimorpha longicaudata, yet host discrimination has been previously suggested in this species. Here, we addressed host discrimination in virgin D. longicaudata females in a comprehensive way by means of direct and indirect methods, using Ceratitis capitata and Anastrepha fraterculus which are major fruit fly pests in South America. Direct methods relied on the description of the foraging behaviour of females in arenas with parasitized and non-parasitized host larvae. In the indirect methods, healthy larvae were offered to single females and the egg distributions were compared to a random distribution. We found that D. longicaudata was able to recognize parasitized host from both host species, taking 24 h since a first parasitization for A. fraterculus and 48 h for C. capitata. Indirect methods showed females with different behaviours for both host species: complete discrimination, non-random (with superparasitism), and random distributions. A larger percentage of females reared and tested on A. fraterculus incurred in superparasitism, probably associated with higher fecundity. In sum, we found strong evidence of host discrimination in D. longicaudata, detecting behavioural variability associated with the host species, the time since the first parasitization and the fecundity of the females.


Assuntos
Interações Hospedeiro-Parasita , Tephritidae/parasitologia , Vespas/fisiologia , Animais , Ceratitis capitata/parasitologia , Comportamento Alimentar , Feminino , Fertilidade , Larva/parasitologia
6.
Parasitol Res ; 118(10): 2935-2943, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31486946

RESUMO

Varroa destructor, an acarian parasite of the Western honey bee Apis mellifera L., is a serious threat to colonies and beekeeping worldwide. The parasite lifecycle occurs in close synchrony with its host development. The females have to discriminate between different developmental stages of the host and trigger an appropriate behavioral response. Many studies have focused on these behavioral aspects, whether it is the choice of a precise host stage or the reproduction of female mites. Behavioral tests often require laboratory settings that are very different from the mite's environment. Our first experiment was designed to study the impact of the surface of test arena on the mite behavior. We found that plastic from Petri dishes commonly used as test arenas disturbs the female mites and can cause death. We searched for a substrate that does not harm mites and found that gelatin-coated plastic Petri dishes responded to these expectations. We then investigated the host choice behavior of phoretic mites confronted with larval stages of the bee on gelatin-coated arenas to watch if the well-documented orientation towards 5th instar larva was observable in our conditions. Pupal stages were included in the host choice experiments, initially to act as neutral stimuli. As white-eyed pupae were revealed attractive to the mite, several pupal stages were then included in a series of host choice bioassays. These additional experiments tend to show that the positive response to the white-eyed pupa stage depends on cues only delivered by living pupae. Further investigation on the nature and impact of these cues are needed as they could shed light on key signals involved in the parasite lifecycle.


Assuntos
Abelhas/parasitologia , Comportamento de Busca por Hospedeiro/fisiologia , Varroidae/fisiologia , Animais , Abelhas/crescimento & desenvolvimento , Feminino , Gelatina , Interações Hospedeiro-Parasita , Larva/crescimento & desenvolvimento , Larva/parasitologia , Pupa/crescimento & desenvolvimento , Pupa/parasitologia
7.
J Chem Ecol ; 43(3): 243-253, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28258317

RESUMO

A widely accepted hypothesis for host-plant selection in herbivorous insects is that ovipositing females select host-plants that maximize the survival and performance of their offspring. However, numerous studies indicate that this is not always the case for polyphagous species. Lymantria dispar is a highly polyphagous forest defoliator and has flightless females in some subspecies, resulting in a limited capacity to make host-choices. Males of other Lepidopteran species utilize a combination of sexual pheromones and plant volatiles in their mating choices and exhibit preferences among plant species. We explored the behavior of L. dispar males towards sexual pheromone in the presence and absence of plant volatiles and their ability to discriminate between two plant species with different degrees of suitability for their offspring: a suboptimal host (Pinus sylvestris), and an optimal host (Quercus robur). In no-choice wind tunnel assays, we found that rates of male success in locating a pheromone source were not altered by the presence of plant odors; however, the time spent by males searching for the pheromone source after reaching the full length of the tunnel was reduced by more than 50% in the presence of plant volatiles. In dual choice assays, males exhibited a clear preference for a combination of pheromones and plant volatiles over the pheromone alone. However, we did not find evidence of an innate ability to discriminate between the odors of optimal and suboptimal host plants. We discuss possible ecological and evolutionary explanations for these observations.


Assuntos
Especificidade de Hospedeiro , Lepidópteros/efeitos dos fármacos , Odorantes/análise , Pinus/química , Quercus/química , Atrativos Sexuais/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Masculino , Compostos Orgânicos Voláteis/química
8.
Proc Biol Sci ; 283(1845)2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28003447

RESUMO

Behavioural changes in habitat or mate choice can trigger population divergence, leading to speciation. However, little is known about the neurological bases for such changes. Rhagoletis pomonella (Diptera: Tephritidae) is a model for ecological speciation via host plant shifts. Within the past 180 years, Rhagoletis flies infesting hawthorn (Crataegus spp.) shifted to attack domesticated apple (Malus pumila). The two populations differ in their olfactory preferences for apple versus hawthorn fruit. Here, we looked for patterns of sensory organization that may have contributed to this shift by characterizing the morphology, specificity and distribution of olfactory sensory neurons (OSNs) on the antennae of Rhagoletis responding to host fruit and non-host volatiles. Of 28 OSN classes identified, two colocalized OSN pairs were found that specifically responded to the major behavioural attractant and antagonist volatiles for each fly population. A reversal in the response of these OSNs to fruit volatiles, either through a switch in receptor expression between these paired neurons or changes in neuronal projections in the brain, could therefore account for the behavioural difference between apple and hawthorn flies. The finding supports the hypothesis that relatively minor changes in olfactory sensory pathways may contribute to rapid host shifting and divergence in Rhagoletis.


Assuntos
Especiação Genética , Percepção Olfatória , Neurônios Receptores Olfatórios/fisiologia , Tephritidae/fisiologia , Animais , Antenas de Artrópodes/fisiologia , Frutas/química , Malus , Odorantes , Compostos Orgânicos Voláteis/química
9.
Ecol Lett ; 17(2): 185-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24188323

RESUMO

Mutualisms require protection from non-reciprocating exploiters. Pseudomyrmex workers that engage in an obligate defensive mutualism with Acacia hosts feed exclusively on the sucrose-free extrafloral nectar (EFN) that is secreted by their hosts, a behaviour linking ant energy supply directly to host performance and thus favouring reciprocating behaviour. We tested the hypothesis that Acacia hosts manipulate this digestive specialisation of their ant mutualists. Invertase (sucrose hydrolytic) activity in the ant midguts was inhibited by chitinase, a dominant EFN protein. The inhibition occurred quickly in cell-free gut liquids and in native gels and thus likely results from an enzyme-enzyme interaction. Once a freshly eclosed worker ingests EFN as the first diet available, her invertase becomes inhibited and she, thus, continues feeding on host-derived EFN. Partner manipulation acts at the phenotypic level and means that one partner actively controls the phenotype of the other partner to enhance its dependency on host-derived rewards.


Assuntos
Acacia/química , Formigas/enzimologia , Quitinases/química , Simbiose , beta-Frutofuranosidase/antagonistas & inibidores , Animais , Quitinases/metabolismo , Digestão , Feminino , Larva/enzimologia , Fenótipo , Néctar de Plantas/química , Proteínas de Plantas/química , beta-Frutofuranosidase/metabolismo
10.
R Soc Open Sci ; 9(9): 220962, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36117862

RESUMO

Host shifts are considered a key generator of insect biodiversity. For insects, adaptation to new host plants often requires changes in larval/pupal development and adult behavioural preference toward new hosts. Neurochemicals play key roles in both development and behaviour and therefore provide a potential source for such synchronization. Here, we correlated life-history timing, brain development and corresponding levels of 14 neurochemicals in Rhagoletis pomonella (Diptera: Tephritidae), a species undergoing ecological speciation through an ongoing host shift from hawthorn to apple fruit. These races exhibit differences in pupal diapause timing as well as adult behavioural preference with respect to their hosts. This difference in behavioural preference is coupled with differences in neurophysiological response to host volatiles. We found that apple race pupae exhibited adult brain morphogenesis three weeks faster after an identical simulated winter than the hawthorn race, which correlated with significantly lower titres of several neurochemicals. In some cases, particularly biogenic amines, differences in titres were reflected in the mature adult stage, when host preference is exhibited. In summary, life-history timing, neurochemical titre and brain development can be coupled in this speciating system, providing new hypotheses for the origins of new species through host shifts.

11.
Front Microbiol ; 12: 695167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177876

RESUMO

The spruce bark beetle Ips typographus is the most damaging pest in European spruce forests and has caused great ecological and economic disturbances in recent years. Although native to Eurasia, I. typographus has been intercepted more than 200 times in North America and could establish there as an exotic pest if it can find suitable host trees. Using in vitro bioassays, we compared the preference of I. typographus for its coevolved historical host Norway spruce (Picea abies) and two non-coevolved (naïve) North American hosts: black spruce (Picea mariana) and white spruce (Picea glauca). Additionally, we tested how I. typographus responded to its own fungal associates (conspecific fungi) and to fungi vectored by the North American spruce beetle Dendroctonus rufipennis (allospecific fungi). All tested fungi were grown on both historical and naïve host bark media. In a four-choice Petri dish bioassay, I. typographus readily tunneled into bark medium from each of the three spruce species and showed no preference for the historical host over the naïve hosts. Additionally, the beetles showed a clear preference for bark media colonized by fungi and made longer tunnels in fungus-colonized media compared to fungus-free media. The preference for fungus-colonized media did not depend on whether the medium was colonized by conspecific or allospecific fungi. Furthermore, olfactometer bioassays demonstrated that beetles were strongly attracted toward volatiles emitted by both con- and allospecific fungi. Collectively, these results suggest that I. typographus could thrive in evolutionary naïve spruce hosts if it becomes established in North America. Also, I. typographus could probably form and maintain new associations with local allospecific fungi that might increase beetle fitness in naïve host trees.

12.
Environ Entomol ; 50(4): 940-947, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33885745

RESUMO

Wheat stem sawfly, [Cephus cinctus (Hymenoptera: Cephidae)], females display complex behaviors for host selection and oviposition. Susceptible hollow stem wheat (Triticum aestivum L.) cultivars release a greater amount of attractive compound, (Z)-3-hexenyl acetate and receive a greater number of eggs compared to resistant solid stem wheat cultivars. However, barley (Hordeum vulgare L.) is becoming a more common host for C. cinctus in Montana. Therefore, how do host selection and oviposition behaviors on barley cultivars compare to what happens when encountering wheat cultivars? To answer this question, we carried out greenhouse experiments using two barley cultivars: 'Hockett' and 'Craft'. Between these cultivars at Zadoks stages 34 and 49, we compared host selection decisions using a Y-tube olfactometer, compared oviposition behaviors on stems, and counted the number of eggs inside individual stems. In Y-tube bioassays, we found a greater number of C. cinctus females were attracted to the airstream passing over 'Hockett' than 'Craft' barley cultivars. Although the frequencies of oviposition behaviors were similar between these cultivars, the number of eggs was greater in 'Hockett'. Volatile profiles indicated that the amount of linalool was greater in the airstream from 'Craft' than in 'Hockett' at Zadoks 34 while the amount of (Z)-3-hexenyl acetate was greater in airstream from 'Hockett' at both Zadoks 34 and 49. These results suggest that volatiles of barley plants influenced host selection behavior of ovipositing C. cinctus females, while other discriminating behaviors do not differ between cultivars.


Assuntos
Hordeum , Himenópteros , Animais , Montana , Oviposição , Óvulo
13.
Parasit Vectors ; 14(1): 75, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482889

RESUMO

BACKGROUND: Mosquito-borne diseases are a global health problem, causing hundreds of thousands of deaths per year. Pathogens are transmitted by mosquitoes feeding on the blood of an infected host and then feeding on a new host. Monitoring mosquito host-choice behaviour can help in many aspects of vector-borne disease control. Currently, it is possible to determine the host species and an individual human host from the blood meal of a mosquito by using genotyping to match the blood profile of local inhabitants. Epidemiological models generally assume that mosquito biting behaviour is random; however, numerous studies have shown that certain characteristics, e.g. genetic makeup and skin microbiota, make some individuals more attractive to mosquitoes than others. Analysing blood meals and illuminating host-choice behaviour will help re-evaluate and optimise disease transmission models. METHODS: We describe a new blood meal assay that identifies the sex of the person that a mosquito has bitten. The amelogenin locus (AMEL), a sex marker located on both X and Y chromosomes, was amplified by polymerase chain reaction in DNA extracted from blood-fed Aedes aegypti and Anopheles coluzzii. RESULTS: AMEL could be successfully amplified up to 24 h after a blood meal in 100% of An. coluzzii and 96.6% of Ae. aegypti, revealing the sex of humans that were fed on by individual mosquitoes. CONCLUSIONS: The method described here, developed using mosquitoes fed on volunteers, can be applied to field-caught mosquitoes to determine the host species and the biological sex of human hosts on which they have blood fed. Two important vector species were tested successfully in our laboratory experiments, demonstrating the potential of this technique to improve epidemiological models of vector-borne diseases. This viable and low-cost approach has the capacity to improve our understanding of vector-borne disease transmission, specifically gender differences in exposure and attractiveness to mosquitoes. The data gathered from field studies using our method can be used to shape new transmission models and aid in the implementation of more effective and targeted vector control strategies by enabling a better understanding of the drivers of vector-host interactions.


Assuntos
Sangue , Comportamento Alimentar/fisiologia , Especificidade de Hospedeiro , Mordeduras e Picadas de Insetos/sangue , Refeições , Análise para Determinação do Sexo/métodos , Amelogenina/genética , Animais , Feminino , Humanos , Masculino , Mosquitos Vetores/fisiologia
14.
Insect Sci ; 28(5): 1338-1353, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32790032

RESUMO

Chemosensory systems are considered to play an important role in host plant selection in herbivorous insects. However, few studies have focused on chemosensory proteins (CSPs) for aphid host-location mechanisms. The roles of CSPs in searching for different Poaceae species (wheat, barley, triticale, maize and sorghum) were tested in Rhopalosiphum padi, an important cereal pest. The olfactometer assays showed that R. padi responds to plant odors. Seven R. padi CSP genes were identified. Influence of aphid morph, tissue and starvation state on expression patterns of CSPs was evaluated. Expression levels of CSP1, CSP4, CSP5 and CSP6 in winged aphids were significantly higher than those in wingless ones. Transcription levels of four genes (CSP1, CSP4, CSP5 and CSP6) were relatively higher in the head with antennae, and the four genes tended to be upregulated following starvation. Silencing of three CSPs (CSP4, CSP5 and CSP6) altered aphid host-location behavior in response to the five different host plants tested. Three volatile compounds of host plants (octanal, [E]-2-hexenol and linalool) have significant attraction to winged R. padi according to the four-arm olfactometer tests. Molecular docking predicted hydrogen bonding sites which played key roles in the binding of CSP4, CSP5 and CSP6 with volatile compounds. Knockdown of CSP4 or CSP5 significantly decreased the staying time of R. padi in the arms with octanal. However, knockdown of CSP6 could not affect the response of R. padi to octanal. These results bring evidence for the involvement of three CSPs in R. padi host-location behavior.


Assuntos
Afídeos , Comportamento Apetitivo , Proteínas de Insetos/fisiologia , Poaceae , Animais , Afídeos/genética , Afídeos/fisiologia , Grão Comestível , Proteínas de Insetos/genética , Simulação de Acoplamento Molecular
15.
Insects ; 12(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357282

RESUMO

Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae) is a vector of Candidatus Liberibacter spp., the causal agent of Huanglongbing disease (HLB). This study evaluates the preference of T. erytreae in different citrus seedlings. Thus, six different non-grafted citrus rootstocks were used for these experiments: (a) Carrizo citrange; (b) Citrus macrophylla; (c) 'Cleopatra' mandarin; (d) Forner-Alcaide No. 5; (e) Forner-Alcaide No. 517, and (f) Poncirus trifoliata ('Flying Dragon'). The behaviour and survival of this psyllid was evaluated through the feeding preference of T. erytreae adults for different rootstocks (in a choice trial under greenhouse conditions) and oviposition and survival of T. erytreae adults on the different citrus material (in a no-choice trial under laboratory conditions). Trioza erytreae showed a clear preference for hosting and feeding on C. macrophylla, and Carrizo citrange was the most suitable rootstock for insect reproduction and survival followed by C. macrophylla. Conversely, Poncirus trifoliata was the least attractive rootstock to T. erytreae adults in the greenhouse trial and led to significantly lower T. erytreae survival. Our results suggest that conventional citrus rootstocks, such as Carrizo citrange and C. macrophylla, could increase T. erytreae populations.

16.
Microorganisms ; 9(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804003

RESUMO

Zoontic visceral leishmaniasis (ZVL) due to Leishmania infantum is a potentially fatal protozoan parasitic disease of humans and dogs. In the Americas, dogs are the reservoir and the sand fly, Lutzomyia longipalpis, the principal vector. A synthetic version of the male sand fly produced sex-aggregation pheromone attracts both female and male conspecifics to co-located insecticide, reducing both reservoir infection and vector abundance. However the effect of the synthetic pheromone on the vector's "choice" of host (human, animal reservoir, or dead-end host) for blood feeding in the presence of the pheromone is less well understood. In this study, we developed a modelling framework to allow us to predict the relative attractiveness of the synthetic pheromone and potential alterations in host choice. Our analysis indicates that the synthetic pheromone can attract 53% (95% CIs: 39%-86%) of host-seeking female Lu. longipalpis and thus it out-competes competing host odours. Importantly, the results suggest that the synthetic pheromone can lure vectors away from humans and dogs, such that when co-located with insecticide, it provides protection against transmission leading to human and canine ZVL.

17.
Insects ; 12(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34680678

RESUMO

Olfaction plays a key role in the location of food and oviposition resources by tephritid fruit flies. Adult females, including oriental fruit fly, Bactrocera dorsalis, can sustain egg production throughout their lives provided they obtain sufficient protein. Thus, preferential attraction to food or oviposition sites (host fruit) will depend on a fly's particular physiological state. In this study, laboratory bioassays were conducted with mature, mated B. dorsalis (provisioned protein and sugar ad libitum) to evaluate attraction to traps baited with torula yeast versus six host fruit sources (guava, guava juice, mango, orange, Surinam cherry, or white sapote). Females that preferred fruit laid a significant number of eggs around the trap entrance (average 405 eggs/fly), while almost no eggs were laid by females that preferred yeast (0.5 and 1.3 eggs/fly on two occasions). Similar results were observed in a bioassay using headspace extracts of guava juice and torula yeast, supporting olfactory-mediated responses. When individual females were allowed to oviposit in guava juice traps 0-24 h after a choice test, 45.8% of females that chose guava juice laid eggs (average 14.7 eggs/fly), compared with 27.5% that chose yeast (average 6.5 eggs/fly). Dissections indicated that females with a preference for guava juice had an egg load 2.4 times greater than females that preferred yeast. These results suggest there is an olfactory-based behavioral switch in preference from protein to host odors when female B. dorsalis are oviposition-ready. We discuss the implications of our findings for practical behavioral management and detection programs for B. dorsalis.

18.
J Parasitol ; 106(1): 1-8, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31922458

RESUMO

The manipulation of host organisms by their parasites has captured the attention of ecologists, parasitologists, and the public. However, our knowledge of parasite behavior independent of a host is limited despite the far-reaching implications of parasite behavior. Parasite behaviors can help explain trematode community structure, the aggregation of parasites within host populations, and can potentially be harnessed in biocontrol measures. In this study, we used a simple choice chamber design to examine whether trematode parasites can detect the infection status of a potential host and avoid hosts infected with a competitively dominant species. Our results show that Schistosoma mansoni, a competitively subordinate species, can detect and avoid hosts infected with a competitively dominant parasite, Echinostoma caproni. However, E. caproni, despite showing a significant preference for snails infected with S. mansoni over uninfected snails, showed little ability to detect the infection status of the host or even the host's presence. We propose subordinate species may be under stronger selection to avoid dominant competitors whereas dominant competitors may be more strongly selected to find any suitable host, regardless of infection status. Previous research has focused on parasites distinguishing between 'host' and 'non-host', which does not fully capture the complexity of these interactions. However, the ability of subordinate parasites to determine the infection status of a host results in a consistent evolutionary advantage.


Assuntos
Biomphalaria/parasitologia , Echinostoma/fisiologia , Interações Hospedeiro-Parasita , Comportamento de Busca por Hospedeiro/fisiologia , Schistosoma mansoni/fisiologia , Animais , Galinhas , Dominação-Subordinação , Masculino , Camundongos , Camundongos Endogâmicos BALB C
19.
Insects ; 10(6)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242634

RESUMO

Trichopria drosophilae is a pupal parasitoid that can develop in a large number of drosophilid host species including the invasive pest Drosophila suzukii, and is considered a biological control agent. We investigated the influence of the rearing host on the preference and performance of the parasitoid, using two different strains of T. drosophilae, reared on D. melanogaster or D. suzukii for approximately 30 generations. Host switching was employed to assess the impact of host adaptation on T. drosophilae performance. In a no-choice experimental setup, T. drosophilae produced more and larger offspring on the D. suzukii host. When given a choice, T. drosophilae showed a preference towards D. suzukii, and an increased female ratio on this host compared to D. melanogaster and D. immigrans. The preference was independent from the rearing host and was confirmed in behavioral assays. However, the preference towards D. suzukii increased further after a host switch from D. melanogaster to D. suzukii in just one generation. Our data indicate that rearing T. drosophilae for several years on D. melanogaster does not compromise its performance on D. suzukii in the laboratory. However, producing a final generation on D. suzukii prior to release could increase its efficacy towards the pest.

20.
Insects ; 10(5)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058845

RESUMO

Early experience of olfactory stimuli associated with their host-plant complex (HPC) is an important driver of parasitoid foraging choices, notably leading to host fidelity. Mechanisms involved, such as peripheral or central modulation, and the impact of a complex olfactory environment are unknown. Using olfactometer assays, we compared HPC preference of Aphidius ervi Haliday (Hymenoptera:Braconidae) females originating from two different HPCs, either with the other HPC in close vicinity (complex environment) or without (simple environment). We also investigated antennal responses to volatiles differentially emitted by the two respective HPCs. In a simple environment, HPC of origin had an influence on olfactory choice, but the preferences observed were asymmetric according to parasitoid origin. Electroantennographic recordings revealed significant sensitivity differences for some of the tested individual volatiles, which are emitted differentially by the two HPCs. Besides, presence of an alternative HPC during early stages modified subsequent parasitoid preferences. We discuss how increased olfactory complexity could influence parasitoid host foraging and biological control in diversified cropping systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA