Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Plant Res ; 137(2): 191-201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206495

RESUMO

Many wetland plants rely on insects for pollination. However, studies examining pollinator communities in wetlands remain limited. Some studies conducted in large wetlands (> 10 ha) have suggested that wetland-dependent flies, which spend their larval stage in aquatic and semi-aquatic habitats, dominate as pollinators. However, smaller wetlands surrounded by secondary forests are more prevalent in Japan, in which pollinators from the surrounding environment might be important. Additionally, information regarding floral traits that attract specific pollinator groups in wetland communities is scarce. Therefore, this study aimed to understand the characteristics of insect pollinators in a small natural wetland (2.5 ha) in Japan. We examined the major pollinator groups visiting 34 plant species and explored the relationship between the flower visitation frequency of each pollinator group and floral traits. Overall, flies were the most dominant pollinators (42%), followed by bees and wasps (33%). Cluster analysis indicated that fly-dominated plants were the most abundant among 14 of the 34 target plant species. However, 85% of the hoverflies, the most abundant flies, and 82% of the bees were non-wetland-dependent species, suggesting that these terrestrial species likely originated from the surrounding environment. Therefore, pollinators from the surrounding environment would be important in small natural wetlands. Flies tend to visit open and white/yellow flowers, whereas bees tended to visit tube-shaped flowers, as in forest and grassland ecosystems. The dominance of flies in small wetlands would be due to the dominance of flowers preferred by flies (e.g., yellow/white flowers) rather than because of their larval habitats.


Assuntos
Dípteros , Ecossistema , Abelhas , Animais , Áreas Alagadas , Japão , Plantas , Polinização , Larva , Flores
2.
Biol Lett ; 14(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29491032

RESUMO

Global declines of insect pollinators jeopardize the delivery of pollination services in both agricultural and natural ecosystems. The importance of infectious diseases has been documented in honeybees, but there is little information on the extent to which these diseases are shared with other pollinator orders. Here, we establish for the first time the presence of three important bee viruses in hoverfly pollinators (Diptera: Syrphidae): black queen cell virus (BQCV), sacbrood virus (SBV) and deformed wing virus strain B (DWV-B). These viruses were detected in two Eristalis species, which are behavioural and morphological bee mimics and share a foraging niche with honeybees. Nucleotide sequences of viruses isolated from the Eristalis species and Apis mellifera were up to 99 and 100% identical for the two viruses, suggesting that these pathogens are being shared freely between bees and hoverflies. Interestingly, while replicative intermediates (negative strand virus) were not detected in the hoverflies, viral titres of SBV were similar to those found in A. mellifera These results suggest that syrphid pollinators may play an important but previously unexplored role in pollinator disease dynamics.


Assuntos
Dípteros/virologia , Vírus de Insetos/fisiologia , Animais , Abelhas/virologia , Dicistroviridae/genética , Dicistroviridae/fisiologia , Vírus de Insetos/isolamento & purificação , Polinização , Vírus de RNA/genética , Vírus de RNA/fisiologia , Homologia de Sequência do Ácido Nucleico
3.
Adv Sci (Weinh) ; 10(34): e2304657, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847885

RESUMO

Remote automated surveillance of insect abundance and diversity is poised to revolutionize insect decline studies. The study reveals spectral analysis of thin-film wing interference signals (WISs) can discriminate free-flying insects beyond what can be accomplished by machine vision. Detectable by photonic sensors, WISs are robust indicators enabling species and sex identification. The first quantitative survey of insect wing thickness and modulation through shortwave-infrared hyperspectral imaging of 600 wings from 30 hover fly species is presented. Fringy spectral reflectance of WIS can be explained by four optical parameters, including membrane thickness. Using a Naïve Bayes Classifier with five parameters that can be retrieved remotely, 91% is achieved accuracy in identification of species and sexes. WIS-based surveillance is therefore a potent tool for remote insect identification and surveillance.


Assuntos
Insetos , Esportes , Animais , Teorema de Bayes , Asas de Animais
4.
Biodivers Data J ; (4): e10185, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28174503

RESUMO

BACKGROUND: The hoverfly Microdon (Chymophila) katsurai Maruyama et Hironaga 2004 was speculated to be a myrmecophilous species associated with the ant Polyrhachis lamellidens based on observations of adults near the ant nest. However, there have been no reports regarding the observation of immature stages of this species in association with P. lamellidens. NEW INFORMATION: For the first time, we found three M. katsurai larvae inside a P. lamellidens nest and conducted rearing experiments on the larval M. katsurai. P. lamellidens workers did not show any inspection or attack behavior against the M. katsurai larvae under rearing conditions, suggesting that M. katsurai larvae can survive inside a P. lamellidens nest. Although no predatory behavior by the M. katsurai larvae was observed, all the M. katsurai larvae pupated and emerged in a rearing environment. The dorsal surface of the larval M. katsurai has a distinct pale green color with a uniform reticular structure. The puparium of M. katsurai shows several morphological features that are characteristic of the subgenus Chymophila. We conclude that M. katsurai is likely a myrmecophilous species that utilizes P. lamellidens as a specific host and that classification of M. katsurai based on puparium morphology is concordant with that based on adult morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA