Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 877
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(4): 899-911.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33545089

RESUMO

Changes in appendage structure underlie key transitions in vertebrate evolution. Addition of skeletal elements along the proximal-distal axis facilitated critical transformations, including the fin-to-limb transition that permitted generation of diverse modes of locomotion. Here, we identify zebrafish mutants that form supernumerary long bones in their pectoral fins. These new bones integrate into musculature, form joints, and articulate with neighboring elements. This phenotype is caused by activating mutations in previously unrecognized regulators of appendage patterning, vav2 and waslb, that function in a common pathway. This pathway is required for appendage development across vertebrates, and loss of Wasl in mice causes defects similar to those seen in murine Hox mutants. Concordantly, formation of supernumerary bones requires Hox11 function, and mutations in the vav2/wasl pathway drive enhanced expression of hoxa11b, indicating developmental homology with the forearm. Our findings reveal a latent, limb-like pattern ability in fins that is activated by simple genetic perturbation.


Assuntos
Osso e Ossos/embriologia , Extremidades/embriologia , Peixe-Zebra/embriologia , Actinas/metabolismo , Nadadeiras de Animais/embriologia , Animais , Sequência de Bases , Padronização Corporal , Sistemas CRISPR-Cas/genética , Linhagem da Célula , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Mutação/genética , Fenótipo , Filogenia , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Cell ; 183(7): 2020-2035.e16, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33326746

RESUMO

Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.


Assuntos
Ensaios de Triagem em Larga Escala , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sistemas CRISPR-Cas/genética , Feminino , Inativação Gênica , Genes Reporter , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células K562 , Lentivirus/fisiologia , Anotação de Sequência Molecular , Mutação/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Dedos de Zinco
3.
Cell ; 172(4): 667-682.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425489

RESUMO

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.


Assuntos
Proteínas Aviárias , Galinhas/fisiologia , Evolução Molecular , Proteínas de Peixes , Proteínas de Homeodomínio , Rede Nervosa/fisiologia , Rajidae/fisiologia , Fatores de Transcrição , Caminhada/fisiologia , Peixe-Zebra/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/fisiologia , Natação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Genes Dev ; 35(21-22): 1401-1402, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725128

RESUMO

In this issue of Genes & Development, Amândio and colleagues (pp. 1490-1509) dissect the function of a cluster of several CTCF binding sites in the HoxD cluster by iterative deletions in mice. They found additive functions for some, and intriguingly found that some sites function as insulators, while others function as anchors for enhancer-promoter interactions. These functions vary depending on developmental context. The work provides new insights into the roles played by CTCF in regulating developmental patterns and 3D chromatin organization.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Animais , Sítios de Ligação/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Homeodomínio , Camundongos , Regiões Promotoras Genéticas/genética
5.
Genes Dev ; 35(21-22): 1490-1509, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711654

RESUMO

Mammalian Hox gene clusters contain a range of CTCF binding sites. In addition to their importance in organizing a TAD border, which isolates the most posterior genes from the rest of the cluster, the positions and orientations of these sites suggest that CTCF may be instrumental in the selection of various subsets of contiguous genes, which are targets of distinct remote enhancers located in the flanking regulatory landscapes. We examined this possibility by producing an allelic series of cumulative in cis mutations in these sites, up to the abrogation of CTCF binding in the five sites located on one side of the TAD border. In the most impactful alleles, the global chromatin architecture of the locus was modified, yet not drastically, illustrating that CTCF sites located on one side of a strong TAD border are sufficient to organize at least part of this insulation. Spatial colinearity in the expression of these genes along the major body axis was nevertheless maintained, despite abnormal expression boundaries. In contrast, strong effects were scored in the selection of target genes responding to particular enhancers, leading to the misregulation of Hoxd genes in specific structures. Altogether, while most enhancer-promoter interactions can occur in the absence of this series of CTCF sites, the binding of CTCF in the Hox cluster is required to properly transform a rather unprecise process into a highly discriminative mechanism of interactions, which is translated into various patterns of transcription accompanied by the distinctive chromatin topology found at this locus. Our allelic series also allowed us to reveal the distinct functional contributions for CTCF sites within this Hox cluster, some acting as insulator elements, others being necessary to anchor or stabilize enhancer-promoter interactions, and some doing both, whereas they all together contribute to the formation of a TAD border. This variety of tasks may explain the amazing evolutionary conservation in the distribution of these sites among paralogous Hox clusters or between various vertebrates.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Genes Homeobox/genética , Mamíferos/genética , Camundongos , Mutagênese
6.
Mol Cell ; 78(1): 152-167.e11, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053778

RESUMO

Eukaryotic transcription factors (TFs) form complexes with various partner proteins to recognize their genomic target sites. Yet, how the DNA sequence determines which TF complex forms at any given site is poorly understood. Here, we demonstrate that high-throughput in vitro DNA binding assays coupled with unbiased computational analysis provide unprecedented insight into how different DNA sequences select distinct compositions and configurations of homeodomain TF complexes. Using inferred knowledge about minor groove width readout, we design targeted protein mutations that destabilize homeodomain binding both in vitro and in vivo in a complex-specific manner. By performing parallel systematic evolution of ligands by exponential enrichment sequencing (SELEX-seq), chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and Hi-C assays, we not only classify the majority of in vivo binding events in terms of complex composition but also infer complex-specific functions by perturbing the gene regulatory network controlled by a single complex.


Assuntos
DNA/química , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
7.
Mol Cell ; 80(6): 980-995.e13, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33202249

RESUMO

Ribosomes have been suggested to directly control gene regulation, but regulatory roles for ribosomal RNA (rRNA) remain largely unexplored. Expansion segments (ESs) consist of multitudes of tentacle-like rRNA structures extending from the core ribosome in eukaryotes. ESs are remarkably variable in sequence and size across eukaryotic evolution with largely unknown functions. In characterizing ribosome binding to a regulatory element within a Homeobox (Hox) 5' UTR, we identify a modular stem-loop within this element that binds to a single ES, ES9S. Engineering chimeric, "humanized" yeast ribosomes for ES9S reveals that an evolutionary change in the sequence of ES9S endows species-specific binding of Hoxa9 mRNA to the ribosome. Genome editing to site-specifically disrupt the Hoxa9-ES9S interaction demonstrates the functional importance for such selective mRNA-rRNA binding in translation control. Together, these studies unravel unexpected gene regulation directly mediated by rRNA and how ribosome evolution drives translation of critical developmental regulators.


Assuntos
Proteínas de Homeodomínio/genética , Biossíntese de Proteínas/genética , RNA Ribossômico/ultraestrutura , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/ultraestrutura , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Ribossômico/genética , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Especificidade da Espécie
8.
Genes Dev ; 34(23-24): 1680-1696, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184220

RESUMO

Gene duplication and divergence is a major driver in the emergence of evolutionary novelties. How variations in amino acid sequences lead to loss of ancestral activity and functional diversification of proteins is poorly understood. We used cross-species functional analysis of Drosophila Labial and its mouse HOX1 orthologs (HOXA1, HOXB1, and HOXD1) as a paradigm to address this issue. Mouse HOX1 proteins display low (30%) sequence similarity with Drosophila Labial. However, substituting endogenous Labial with the mouse proteins revealed that HOXA1 has retained essential ancestral functions of Labial, while HOXB1 and HOXD1 have diverged. Genome-wide analysis demonstrated similar DNA-binding patterns of HOXA1 and Labial in mouse cells, while HOXB1 binds to distinct targets. Compared with HOXB1, HOXA1 shows an enrichment in co-occupancy with PBX proteins on target sites and exists in the same complex with PBX on chromatin. Functional analysis of HOXA1-HOXB1 chimeric proteins uncovered a novel six-amino-acid C-terminal motif (CTM) flanking the homeodomain that serves as a major determinant of ancestral activity. In vitro DNA-binding experiments and structural prediction show that CTM provides an important domain for interaction of HOXA1 proteins with PBX. Our findings show that small changes outside of highly conserved DNA-binding regions can lead to profound changes in protein function.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Drosophila/genética , Evolução Molecular , Proteínas de Homeodomínio/genética , Animais , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Camundongos , Modelos Moleculares , Ligação Proteica/genética , Domínios Proteicos , Relação Estrutura-Atividade
9.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940461

RESUMO

The vertebral column is a characteristic structure of vertebrates. Genetic studies in mice have shown that Hox-mediated patterning plays a key role in specifying discrete anatomical regions of the vertebral column. Expression pattern analyses in several vertebrate embryos have provided correlative evidence that the anterior boundaries of Hox expression coincide with distinct anatomical vertebrae. However, because functional analyses have been limited to mice, it remains unclear which Hox genes actually function in vertebral patterning in other vertebrates. In this study, various zebrafish Hox mutants were generated for loss-of-function phenotypic analysis to functionally decipher the Hox code responsible for the zebrafish anterior vertebrae between the occipital and thoracic vertebrae. We found that Hox genes in HoxB- and HoxC-related clusters participate in regulating the morphology of the zebrafish anterior vertebrae. In addition, medaka hoxc6a was found to be responsible for anterior vertebral identity, as in zebrafish. Based on phenotypic similarities with Hoxc6 knockout mice, our results suggest that the Hox patterning system, including at least Hoxc6, may have been functionally established in the vertebral patterning of the common ancestor of ray-finned and lobe-finned fishes.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Coluna Vertebral , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Coluna Vertebral/embriologia , Padronização Corporal/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Genes Homeobox/genética , Oryzias/genética , Oryzias/embriologia , Camundongos
10.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223992

RESUMO

The generation of the post-cranial embryonic body relies on the coordinated production of spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors that are co-expressed in NMPs together with Hox genes, which are essential for axial allocation of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the expression of Wnt, FGF and Notch signalling components. Although the importance of Wnt and FGF in influencing the induction and differentiation of NMPs is well established, the precise role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal character at the expense of neural fate. We show that Notch also contributes to activation of HOX gene expression in human NMPs, partly in a non-cell-autonomous manner. Finally, we provide evidence that Notch exerts its effects via the establishment of a negative-feedback loop with FGF signalling.


Assuntos
Padronização Corporal , Genes Homeobox , Animais , Embrião de Galinha , Humanos , Padronização Corporal/genética , Diferenciação Celular/genética , Mesoderma/metabolismo , Medula Espinal , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
11.
Proc Natl Acad Sci U S A ; 121(25): e2403809121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861596

RESUMO

The dorsal and anal fins can vary widely in position and length along the anterior-posterior axis in teleost fishes. However, the molecular mechanisms underlying the diversification of these fins remain unknown. Here, we used genetic approaches in zebrafish and medaka, in which the relative positions of the dorsal and anal fins are opposite, to demonstrate the crucial role of hox genes in the patterning of the teleost posterior body, including the dorsal and anal fins. By the CRISPR-Cas9-induced frameshift mutations and positional cloning of spontaneous dorsalfinless medaka, we show that various hox mutants exhibit the absence of dorsal or anal fins, or a stepwise posterior extension of these fins, with vertebral abnormalities. Our results indicate that multiple hox genes, primarily from hoxc-related clusters, encompass the regions responsible for the dorsal and anal fin formation along the anterior-posterior axis. These results further suggest that shifts in the anterior boundaries of hox expression which vary among fish species, lead to diversification in the position and size of the dorsal and anal fins, similar to how modulations in Hox expression can alter the number of anatomically distinct vertebrae in tetrapods. Furthermore, we show that hox genes responsible for dorsal fin formation are different between zebrafish and medaka. Our results suggest that a novel mechanism has occurred during teleost evolution, in which the gene network responsible for fin formation might have switched to the regulation downstream of other hox genes, leading to the remarkable diversity in the dorsal fin position.


Assuntos
Nadadeiras de Animais , Genes Homeobox , Proteínas de Homeodomínio , Oryzias , Peixe-Zebra , Animais , Oryzias/genética , Peixe-Zebra/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Padronização Corporal/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
12.
Semin Cell Dev Biol ; 152-153: 16-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36670036

RESUMO

Hox genes are important regulators in animal development. They often show a mosaic of conserved (e.g., longitudinal axis patterning) and lineage-specific novel functions (e.g., development of skeletal, sensory, or locomotory systems). Despite extensive research over the past decades, it remains controversial at which node in the animal tree of life the Hox cluster evolved. Its presence already in the last common metazoan ancestor has been proposed, although the genomes of both putative earliest extant metazoan offshoots, the ctenophores and the poriferans, are devoid of Hox sequences. The lack of Hox genes in the supposedly "simple"-built poriferans and their low number in cnidarians and the basally branching bilaterians, the xenacoelomorphs, seems to support the classical notion that the number of Hox genes is correlated with the degree of animal complexity. However, the 4-fold increase of the Hox cluster in xiphosurans, a basally branching chelicerate clade, as well as the situation in some teleost fishes that show a multitude of Hox genes compared to, e.g., human, demonstrates, that there is no per se direct correlation between organismal complexity and Hox number. Traditional approaches have tried to base homology on the morphological level on shared expression profiles of individual genes, but recent data have shown that, in particular with respect to Hox and other regulatory genes, complex gene-gene interactions rather than expression signatures of individual genes alone are responsible for shaping morphological traits during ontogeny. Accordingly, for sound homology assessments and reconstructions of character evolution on organ system level, additional independent datasets (e.g., morphological, developmental) need to be included in any such analyses. If supported by solid data, proposed structural homology should be regarded as valid and not be rejected solely on the grounds of non-parsimonious distribution of the character over a given phylogenetic topology.


Assuntos
Cnidários , Proteínas de Homeodomínio , Animais , Humanos , Filogenia , Proteínas de Homeodomínio/genética , Evolução Molecular , Cnidários/genética , Genes Homeobox/genética , Família Multigênica/genética
13.
Semin Cell Dev Biol ; 152-153: 44-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029058

RESUMO

The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.


Assuntos
Proteínas de Homeodomínio , Medula Espinal , Animais , Proteínas de Homeodomínio/metabolismo , Medula Espinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Neurônios Motores/metabolismo , Vertebrados
14.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645372

RESUMO

Hox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events. Moreover, the continued expression and function of Hox genes at postnatal and adult stages highlights crucial roles for these genes throughout the life of an organism. Here, we provide an overview of Hox genes, highlighting their evolutionary history, their unique genomic organization and how this impacts the regulation of their expression, what is known about their protein structure, and their deployment in development and beyond.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio , Humanos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Morfogênese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais
15.
Development ; 150(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36815629

RESUMO

Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa11eGFP expression continues in a subset of muscle interstitial cells through adult stages. The induction of Hoxa11-CreERT2-mediated lineage reporting (Hoxa11iTom) at adult stages in mouse results in lineage induction only in the interstitial cells. However, Hoxa11iTom+ cells progressively contribute to muscle fibers at subsequent stages. The contribution to myofibers exceeds parallel Pax7-CreERT2-mediated lineage labeling. Nuclear-specific lineage labeling demonstrates that Hoxa11-expressing interstitial cells contribute nuclear contents to myofibers. Crucially, at no point after Hoxa11iTom induction are satellite cells lineage labeled. When examined in vitro, isolated Hoxa11iTom+ interstitial cells are not capable of forming myotubes, but Hoxa11iTom+ cells can contribute to differentiating myotubes, supporting Hox-expressing interstitial cells as a new population of muscle progenitors, but not stem cells. This work adds to a small but growing body of evidence that supports a satellite cell-independent source of muscle tissue in vivo.


Assuntos
Fibras Musculares Esqueléticas , Células Satélites de Músculo Esquelético , Camundongos , Animais , Células-Tronco , Homeostase , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético , Diferenciação Celular , Desenvolvimento Muscular
16.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272529

RESUMO

The mechanism of pattern formation during limb muscle development remains poorly understood. The canonical view holds that naïve limb muscle progenitor cells (MPCs) invade a pre-established pattern of muscle connective tissue, thereby forming individual muscles. Here, we show that early murine embryonic limb MPCs highly accumulate pSMAD1/5/9, demonstrating active signaling of bone morphogenetic proteins (BMP) in these cells. Overexpression of inhibitory human SMAD6 (huSMAD6) in limb MPCs abrogated BMP signaling, impaired their migration and proliferation, and accelerated myogenic lineage progression. Fewer primary myofibers developed, causing an aberrant proximodistal muscle pattern. Patterning was not disturbed when huSMAD6 was overexpressed in differentiated muscle, implying that the proximodistal muscle pattern depends on BMP-mediated expansion of MPCs before their differentiation. We show that limb MPCs differentially express Hox genes, and Hox-expressing MPCs displayed active BMP signaling. huSMAD6 overexpression caused loss of HOXA11 in early limb MPCs. In conclusion, our data show that BMP signaling controls expansion of embryonic limb MPCs as a prerequisite for establishing the proximodistal muscle pattern, a process that involves expression of Hox genes.


Assuntos
Proteínas Morfogenéticas Ósseas , Músculo Esquelético , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Genes Homeobox , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteína Smad6/metabolismo
17.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102683

RESUMO

Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.


Assuntos
Proteínas de Homeodomínio , Tretinoína , Camundongos , Animais , Tretinoína/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos Transgênicos , Tubo Neural/metabolismo , Hibridização in Situ Fluorescente , Elementos Facilitadores Genéticos
18.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341494

RESUMO

Nymphalid butterfly species often have a different number of eyespots in forewings and hindwings, but how the hindwing identity gene Ultrabithorax (Ubx) drives this asymmetry is not fully understood. We examined a three-gene regulatory network for eyespot development in the hindwings of Bicyclus anynana butterflies and compared it with the same network previously described for forewings. We also examined how Ubx interacts with each of these three eyespot-essential genes. We found similar genetic interactions between the three genes in fore- and hindwings, but we discovered three regulatory differences: Antennapedia (Antp) merely enhances spalt (sal) expression in the eyespot foci in hindwings, but is not essential for sal activation, as in forewings; Ubx upregulates Antp in all hindwing eyespot foci but represses Antp outside these wing regions; and Ubx regulates sal in a wing sector-specific manner, i.e. it activates sal expression only in the sectors that have hindwing-specific eyespots. We propose a model for how the regulatory connections between these four genes evolved to produce wing- and sector-specific variation in eyespot number.


Assuntos
Borboletas , Animais , Asas de Animais/metabolismo , Redes Reguladoras de Genes , Pigmentação/genética
19.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274676

RESUMO

The 5'Hox genes play crucial roles in limb development and specify regions in the proximal-distal axis of limbs. However, there is no direct genetic evidence that Hox genes are essential for limb development in non-mammalian tetrapods or for limb regeneration. Here, we produced single to quadruple Hox13 paralog mutants using the CRISPR/Cas9 system in newts (Pleurodeles waltl), which have strong regenerative capacities, and also produced germline mutants. We show that Hox13 genes are essential for digit formation in development, as in mice. In addition, Hoxa13 has a predominant role in digit formation, unlike in mice. The predominance is probably due to the restricted expression pattern of Hoxd13 in limb buds and the strong dependence of Hoxd13 expression on Hoxa13. Finally, we demonstrate that Hox13 genes are also necessary for digit formation in limb regeneration. Our findings reveal that the general function of Hox13 genes is conserved between limb development and regeneration, and across taxa. The predominance of Hoxa13 function both in newt limbs and fish fins, but not in mouse limbs, suggests a potential contribution of Hoxa13 function in fin-to-limb transition.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Animais , Extremidades , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Botões de Extremidades/metabolismo , Camundongos , Salamandridae/genética , Salamandridae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35088829

RESUMO

A long-standing view in the field of evo-devo is that insect forewings develop without any Hox gene input. The Hox gene Antennapedia (Antp), despite being expressed in the thoracic segments of insects, has no effect on wing development. This view has been obtained from studies in two main model species: Drosophila and Tribolium. Here, we show that partial loss of function of Antp resulted in reduced and malformed adult wings in Bombyx, Drosophila and Tribolium. Antp mediates wing growth in Bombyx by directly regulating the ecdysteriod biosynthesis enzyme gene (shade) in the wing tissue, which leads to local production of the growth hormone 20-hydroxyecdysone. Additional targets of Antp are wing cuticular protein genes CPG24, CPH28 and CPG9, which are essential for wing development. We propose, therefore, that insect wing development occurs in an Antp-dependent manner. This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Asas de Animais/embriologia , Animais , Bombyx , Drosophila , Ecdisterona/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Mutação com Perda de Função , Morfogênese , Tribolium , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA