Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 672
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 442(2): 114270, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39389337

RESUMO

Weightlessness osteoporosis, which progresses continuously and has limited protective effects, has become one of the major problems that need to be solved in manned spaceflight. Our study aims to investigate the regulatory role of PHF8 in disuse osteoporosis by observing the expression of PHF8 in bone marrow mesenchymal stem cells (BMSCs) under simulated weightlessness conditions. Therefore, we used the model of ground-based microgravity simulated by disuse osteoporosis patients and tail suspension in mice to simulate microgravity in vivo, and measured the expression of PHF8 in bone tissue. Subsequently, we used the 2D gyroscope to simulate the weightless effect on bone marrow mesenchymal stem cells. In the weightless condition, we detected the proliferation, apoptosis, osteogenesis, and osteogenic differentiation functions of BMSCs. We also detected the expression of osteogenic-related transcription factors after knocking down and overexpressing PHF8. Our results show that the weightless effect can inhibit the proliferation, osteogenesis, and osteogenic differentiation functions of BMSCs, while enhancing their apoptosis; and overexpression of PHF8 can partially alleviate the osteoporosis caused by simulated weightlessness, providing new ideas and clues for potential drug targets to prevent weightlessness and disuse osteoporosis.


Assuntos
Diferenciação Celular , Proliferação de Células , Histona Desmetilases , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Osteoporose/patologia , Osteoporose/metabolismo , Osteoporose/genética , Animais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Apoptose , Humanos , Ausência de Peso , Camundongos Endogâmicos C57BL , Células Cultivadas , Masculino , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
J Struct Biol ; 216(3): 108111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059753

RESUMO

Osteocytes are the major actors in bone mechanobiology. Within bone matrix, they are trapped close together in a submicrometric interconnected network: the lacunocanalicular network (LCN). The interstitial fluid circulating within the LCN transmits the mechanical information to the osteocytes that convert it into a biochemical signal. Understanding the interstitial fluid dynamics is necessary to better understand the bone mechanobiology. Due to the submicrometric dimensions of the LCN, making it difficult to experimentally investigate fluid dynamics, numerical models appear as a relevant tool for such investigation. To develop such models, there is a need for geometrical and morphological data on the human LCN. This study aims at providing morphological data on the human LCN from measurement of 27 human femoral diaphysis bone samples using synchrotron radiation nano-computed tomography with an isotropic voxel size of 100 nm. Except from the canalicular diameter, the canalicular morphological parameters presented a high variability within one sample. Some differences in terms of both lacunar and canalicular morphology were observed between the male and female populations. But it has to be highlighted that all the canaliculi cannot be detected with a voxel size of 100 nm. Hence, in the current study, only a specific population of large canaliculi that could be characterize. Still, to the authors knowledge, this is the first time such a data set was introduced to the community. Further processing will be achieved in order to provide new insight on the LCN permeability.


Assuntos
Diáfises , Fêmur , Síncrotrons , Humanos , Fêmur/diagnóstico por imagem , Diáfises/diagnóstico por imagem , Feminino , Masculino , Osteócitos/metabolismo , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Pessoa de Meia-Idade
3.
J Gene Med ; 26(5): e3688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686583

RESUMO

BACKGROUND: Despite the interest in mesenchymal stem cells (MSC), their potential to treat abnormal scarring, especially keloids, is yet to be described. The present study aimed to investigate the therapeutic potential of exosomes derived from human bone marrow MSCs (hBMSC-Exos) in alleviating keloid formation. METHODS: Exosomes were isolated from hBMSC, and keloid fibroblasts (KFs) were treated with hBMSC-Exos. Cell counting kit-8, wound healing, transwell invasion, immunofluorescence, and western blot assays were conducted to study the malignant phenotype of KFs. Mice were induced with keloids and treated with hBMSC-Exos. The effect of hBMSC-Exos on keloid formation in vivo was evaluated by hematoxylin and eosin staining, Masson staining, immunohistochemistry, and western blotting. The GSE182192 dataset was screened for differentially expressed long non-coding RNA during keloid formation. Next, maternally expressed gene 3 (MEG3) was knocked down in hBMSC to obtain hBMSC-Exossh-MEG3. The molecular mechanism of MEG3 was investigated by bioinformatic screening, and the relationship between MEG3 and TP53 or MCM5 was verified. RESULTS: hBMSC-Exos inhibited the malignant proliferation, migration, and invasion of KFs at same time as promoting their apoptosis, Moreover, hBMSC-Exos reduced the expression of fibrosis- and collagen-related proteins in the cells and the formation of keloids caused by KFs. The reduction in MEG3 enrichment in hBMSC-Exos weakened the inhibitory effect of hBMSC-Exos on KF activity. hBMSC-Exos delivered MEG3 to promote MCM5 transcription by TP53 in KFs. Overexpression of MCM5 in KFs reversed the effects of hBMSC-Exossh-MEG3, leading to reduced KF activity. CONCLUSIONS: hBMSC-Exos delivered MEG3 to promote the protein stability of TP53, thereby activating MCM5 and promoting KF activity.


Assuntos
Exossomos , Fibroblastos , Queloide , Células-Tronco Mesenquimais , RNA Longo não Codificante , Proteína Supressora de Tumor p53 , Animais , Feminino , Humanos , Masculino , Camundongos , Proliferação de Células , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Queloide/metabolismo , Queloide/genética , Queloide/patologia , Queloide/terapia , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Int J Legal Med ; 138(5): 2157-2167, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38763927

RESUMO

In most experimental protocols, false starts are produced on dry bones obtained through a maceration process for anthropological analyses, for the sake of reproducibility. Although this allows for controlled experimental conditions, the absence of soft parts when experimentally creating false starts does not correspond to the real conditions of criminal dismemberment. The main objective of this study was to determine if the results of experimental work on the characteristics of false starts were valid under medico-legal conditions. In this experimental study, a hand saw (rip saw, wavy set, TPI 32) was used. 240 false starts were produced on human and pig bones. Randomly, the false starts were either produced on a dry bone or on a flesh bone. The criteria for microscopic analysis included the shape of the walls, the shape and visibility of striae on the floor, the shape of the profile, and the minimum width of the false start. On human bone, 100% of the false starts produced on a bone that had previously undergone a maceration process for anthropological analyses (dry bone) allowed the definition of all the blade characteristics. This was the case for 78.3% on bone in the presence of soft tissue (flesh bone). The striae on the floor of the false start are in some cases less visible with flesh bones, implying that it may be more difficult to conclude on the characteristics of a saw under medico-legal conditions.


Assuntos
Osso e Ossos , Desmembramento de Cadáver , Humanos , Suínos , Animais , Osso e Ossos/patologia , Antropologia Forense/métodos
5.
Lasers Med Sci ; 39(1): 158, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888695

RESUMO

Orthopedic surgeons face a significant challenge in treating critical-size femoral defects (CSFD) caused by osteoporosis (OP), trauma, infection, or bone tumor resections. In this study for the first time, the application of photobiomodulation (PBM) and bone marrow mesenchymal stem cell-conditioned medium (BM-MSC-CM) to improve the osteogenic characteristics of mineralized bone scaffold (MBS) in ovariectomy-induced osteoporotic (OVX) rats with a CSFD was tested. Five groups of OVX rats with CSFD were created: (1) Control (C); (2) MBS; (3) MBS + CM; (4) MBS + PBM; (5) MBS + CM + PBM. Computed tomography scans (CT scans), compression indentation tests, and histological and stereological analyses were carried out after euthanasia at 12 weeks following implantation surgery. The CT scan results showed that CSFD in the MBS + CM, MBS + PBM, and MBS + CM + PBM groups was significantly smaller compared to the control group (p = 0.01, p = 0.04, and p = 0.000, respectively). Moreover, the CSFD size was substantially smaller in the MBS + CM + PBM treatment group than in the MBS, MBS + CM, and MBS + PBM treatment groups (p = 0.004, p = 0.04, and p = 0.01, respectively). The MBS + PBM and MBS + CM + PBM treatments had significantly increased maximum force relative to the control group (p = 0.01 and p = 0.03, respectively). Bending stiffness significantly increased in MBS (p = 0.006), MBS + CM, MBS + PBM, and MBS + CM + PBM treatments (all p = 0.004) relative to the control group. All treatment groups had considerably higher new trabecular bone volume (NTBV) than the control group (all, p = 0.004). Combined therapies with MBS + PBM and MBS + CM + PBM substantially increased the NTBV relative to the MBS group (all, p = 0.004). The MBS + CM + PBM treatment had a markedly higher NTBV than the MBS + PBM (p = 0.006) and MBS + CM (p = 0.004) treatments. MBS + CM + PBM, MBS + PBM, and MBS + CM treatments significantly accelerated bone regeneration of CSFD in OVX rats. PBM + CM enhanced the osteogenesis of the MBS compared to other treatment groups.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Animais , Ratos , Terapia com Luz de Baixa Intensidade/métodos , Meios de Cultivo Condicionados , Feminino , Ratos Sprague-Dawley , Fêmur/efeitos da radiação , Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Osteoporose/radioterapia , Osteoporose/terapia , Ovariectomia , Alicerces Teciduais , Osteogênese/efeitos da radiação , Regeneração Óssea/efeitos da radiação
6.
Genomics ; 115(6): 110719, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757977

RESUMO

Heat stroke (HS) is an acute physical illness associated with a higher risk of organ dysfunction. This study is the first to explore exosomal miR-548x-3p derived from human bone marrow mesenchymal stem cells (BMSCs) in the pyroptosis of vascular endothelial cells (VECs) associated with HS. Human BMSCs-derived exosome alleviated the injury of the heart, liver, kidney and ileum tissues, the increase of IL-1ß, IL-18 and TNF-α levels, pyroptosis of endothelial cells and the increase of HGMB1, NLRP3, ASC, caspase1 and GSDMD-N protein expression in HS mice and HS-induced human umbilical vein endothelial cells (HUVECs). miR-548x-3p was down-expressed in HS patients, while up-expressed in BMSCs-derived exosome. BMSCs-ExomiR-548x-3p mimics to inhibit pyroptosis, inflammation and HGMB1/NLRP3 activation in HS-induced HUVECs and HS mice, which were blocked by overexpression of HMGB1. In conclusion, human BMSCs-derived exosomes carried miR-548x-3p mimics to inhibit pyroptosis of VECs through HMGB1 in HS mice.


Assuntos
Proteína HMGB1 , Golpe de Calor , Células-Tronco Mesenquimais , MicroRNAs , Animais , Humanos , Camundongos , Proteína HMGB1/genética , Células Endoteliais da Veia Umbilical Humana , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose
7.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791362

RESUMO

In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models.


Assuntos
Osseointegração , Técnicas de Cultura de Tecidos , Titânio , Humanos , Técnicas de Cultura de Tecidos/métodos , Microtomografia por Raio-X , Osso e Ossos/citologia , Materiais Biocompatíveis , Próteses e Implantes , Osso Esponjoso/citologia
8.
J Biol Chem ; 298(6): 101981, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35472332

RESUMO

Mesenchymal stem cells (MSCs) are adult stem cell populations and exhibit great potential in regenerative medicine and oncology. Platelet-derived growth factors (PDGFs) are well known to regulate MSC biology through their chemotactic and mitogenic properties. However, their direct roles in the regulation of MSC lineage commitment are unclear. Here, we show that PDGF D promotes the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) into osteoblasts and inhibits hBMSC differentiation into adipocytes. We demonstrate that PDGF D-induced ß-actin expression and polymerization are essential for mediating this differential regulation of osteoblastogenesis and adipogenesis. Interestingly, we found that PDGF D induces massive upward molecular weight shifts of its cognate receptor, PDGF receptor beta (ß-PDGFR) in hBMSCs, which was not observed in fibroblasts. Proteomic analysis indicated that the E3 ubiquitin ligase HECT, UBA, and WWE domain-containing protein 1 (HUWE1) associates with the PDGF D-activated ß-PDGFR signaling complex in hBMSCs, resulting in ß-PDGFR polyubiquitination. In contrast to the well-known role of ubiquitin in protein degradation, we provide evidence that HUWE1-mediated ß-PDGFR polyubiquitination delays ß-PDGFR internalization and degradation, thereby prolonging AKT signaling. Finally, we demonstrate that HUWE1-regulated ß-PDGFR signaling is essential for osteoblastic differentiation of hBMSCs, while being dispensable for PDGF D-induced hBMSC migration and proliferation as well as PDGF D-mediated inhibition of hBMSC differentiation into adipocytes. Taken together, our findings provide novel insights into the molecular mechanism by which PDGF D regulates the commitment of hBMSCs into the osteoblastic lineage.


Assuntos
Linfocinas/metabolismo , Células-Tronco Mesenquimais , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ubiquitina-Proteína Ligases , Diferenciação Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteômica , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Clin Immunol ; 255: 109730, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562724

RESUMO

Aging is associated with bone marrow (BM) inflammaging and, in some individuals, with the onset of clonal hematopoiesis (CH) of indeterminate potential. In this study conducted on 94 strictly healthy volunteers (18 to 80 yo), we measured BM and peripheral blood (PB) plasma levels of 49 hematopoietic and inflammatory cytokines. With aging, 7 cytokines increased in BM (FLT3L, CXCL9, HGF, FGF-2, CCL27, IL-16, IL-18) and 8 decreased (G-CSF, TNF, IL-2, IL-15, IL-17A, CCL7, IL-4, IL-10). In PB, 10 cytokines increased with age (CXCL9, FLT3L, CCL27, CXCL10, HGF, CCL11, IL-16, IL-6, IL-1 beta, CCL2). CH was associated with higher BM levels of MIF and IL-1 beta, lower BM levels of IL-9 and IL-5 and higher PB levels of IL-15, VEGF-A, IL-2, CXCL8, CXCL1 and G-CSF. These reference values provide a useful tool to investigate anomalies related to inflammaging and potentially leading to the onset of age-related myeloid malignancies or inflammatory conditions.


Assuntos
Medula Óssea , Citocinas , Humanos , Interleucina-1beta , Interleucina-15 , Hematopoiese Clonal , Interleucina-16 , Interleucina-2 , Fator Estimulador de Colônias de Granulócitos , Células da Medula Óssea , Hematopoese
10.
Cytotherapy ; 25(9): 967-976, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330732

RESUMO

BACKGROUND/AIMS: Although several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma. METHODS: hMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed. RESULTS: Serum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-ß, interleukin (IL)-10, tumor necrosis factor-α-stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs. CONCLUSIONS: Serum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.


Assuntos
Asma , Células-Tronco Mesenquimais , Humanos , Asma/terapia , Pulmão/patologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fagocitose
11.
BMC Cancer ; 23(1): 1135, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993769

RESUMO

BACKGROUND: Most patients diagnosed with head and neck tumor will present with locally advanced disease, requiring multimodality therapy. Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. We aimed to determine whether microRNA-21(miR-21) would play a vital role in HNSCC induced transition of human bone marrow mesenchymal stem cells (hBMSCs) to cancer-associated fibroblasts (CAFs). METHODS: In this study, we used electron microscope to observed exosomes collected from human tissue and two cell lines. We co-cultured hBMSCs with exosomes from FaDu and Cal-27 cells with miR-21 inhibited or not, then assessed cell cycle changes of hBMSCs with flow cytometry and determined expression level of α-SMA and FAP through qRT-PCR and Western blot. RESULTS: We observed an up-regulation of miR-21 expression in HNSCC tissue and FaDu and Cal-27 cells. Importantly, the exosomes derived from both cells induced CAFs-like characteristics in hBMSCs. while treatment with a miR-21 inhibitor effectively suppressed the transition of hBMSCs to CAFs and reversed the changes in the cell cycle distribution. This suggests that miR-21 plays a crucial role in facilitating the transition of hBMSCs to CAFs and modulating the cell cycle dynamics. CONCLUSION: Our findings highlight the significance of miR-21 in mediating the communication between HNSCC cells and hBMSCs through exosomes, leading to the promotion of CAFs-like features and alterations in the cell cycle of hBMSCs.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , Neoplasias de Cabeça e Pescoço , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fibroblastos Associados a Câncer/metabolismo , Exossomos/genética , Exossomos/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Microambiente Tumoral/genética
12.
Protein Expr Purif ; 206: 106245, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36805029

RESUMO

Human bone morphogenetic protein 2 (hBMP-2) plays a leading role in the process of osteogenesis and is one of the key components of osteoplastic materials, ensuring their high osteoinduction. In order to obtain a homodimeric form hBMP-2 using the E. coli expression system, a number of problems associated with refolding in vitro and purification from monomer and oligomeric forms must be solved. The developed method for co-expression of the target protein with chaperone proteins makes it possible to obtain the biologically active homodimeric form of hBMP-2 in vivo. Purification with simple ion-exchange sorbents without the use of denaturing reagents affecting the structure of the protein molecule provides a chromatographic purity of the product of at least 97%. The expressed hBMP-2 was identified by Western blotting and the LC-ESI-TOF mass spectrometry confirmed its molecular weight of 26052.72 Da. Circular dichroism spectroscopy showed that recombinant hBMP-2 has a native secondary structure.


Assuntos
Proteína Morfogenética Óssea 2 , Escherichia coli , Humanos , Proteína Morfogenética Óssea 2/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Osteogênese , Proteína Morfogenética Óssea 7/metabolismo
13.
Liver Int ; 43(6): 1345-1356, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810858

RESUMO

BACKGROUND AND AIMS: Human bone marrow mesenchymal stem cells (hBMSCs) are important for developing a dual-humanized mouse model to clarify disease pathogenesis. We aimed to elucidate the characteristics of hBMSC transdifferentiation into liver and immune cells. METHODS: A single type of hBMSCs was transplanted into immunodeficient Fah-/- Rag2-/- IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF). Liver transcriptional data from the hBMSC-transplanted mice were analysed to identify transdifferentiation with traces of liver and immune chimerism. RESULTS: Mice with FHF were rescued by implanted hBMSCs. Human albumin/leukocyte antigen (HLA) and CD45/HLA double-positive hepatocytes and immune cells were observed in the rescued mice during the initial 3 days. The transcriptomics analysis of liver tissues from dual-humanized mice identified two transdifferentiation phases (cellular proliferation at 1-5 days and cellular differentiation/maturation at 5-14 days) and ten cell lineages transdifferentiated from hBMSCs: human hepatocytes, cholangiocytes, stellate cells, myofibroblasts, endothelial cells and immune cells (T/B/NK/NKT/Kupffer cells). Two biological processes, hepatic metabolism and liver regeneration, were characterized in the first phase, and two additional biological processes, immune cell growth and extracellular matrix (ECM) regulation, were observed in the second phase. Immunohistochemistry verified that the ten hBMSC-derived liver and immune cells were present in the livers of dual-humanized mice. CONCLUSIONS: A syngeneic liver-immune dual-humanized mouse model was developed by transplanting a single type of hBMSC. Four biological processes linked to the transdifferentiation and biological functions of ten human liver and immune cell lineages were identified, which may help to elucidate the molecular basis of this dual-humanized mouse model for further clarifying disease pathogenesis.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Células Endoteliais , Transcriptoma , Camundongos SCID , Fígado/patologia , Células-Tronco Mesenquimais/metabolismo
14.
Exp Cell Res ; 410(1): 112945, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838812

RESUMO

OBJECTIVE: Mesenchymal stem cells (MSCs), especially genetically modified MSCs, have become a promising therapeutic approach for the treatment of rheumatoid arthritis (RA) through modulating immune responses. However, most MSCs used in the treatment of RA are modified based on a single gene. In this study, we evaluated the therapeutic effects of human BMSCs (hBMSCs) with COX-2 silence and TGF-ß3 overexpression in the treatment of RA in a rabbit model. MATERIALS AND METHODS: hBMSCs were cotransfected with shCOX-2 and TGF-ß3 through lentiviral vector delivery. After SPIO-Molday ION Rhodamine-B™ (MIRB) labeling, lenti-shCOX2-TGF-ß3 hBMSCs, lenti-shCOX2 hBMSCs, lenti-TGF-ß3 hBMSCs, hBMSCs without genetic modification, or phosphate-buffered saline (PBS) were injected into the knee joint of rabbits with antigen-induced arthritis (AIA). The diameter of the knee joint and soft-tissue swelling score (STS) were recorded, and the levels of inflammatory mediators, including interleukin-1ß (IL-1ß), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) were evaluated by ELISA. Clinical 3.0T MR imaging (MRI) was used to track the distribution and dynamic migration of hBMSCs in the joint. Histopathological and immunohistochemical assays were conducted to localize labeled hBMSCs and assess the alteration of synovial hyperplasia, inflammatory cell infiltration, and cartilage damage. RESULTS: COX-2 silencing and TGF-ß3 overexpression in hBMSCs were confirmed through real-time PCR and Western blot analyses. Reduced joint diameter, soft-tissue swelling (STS) score, and PGE2, IL-1ß, and TNF-α expression were detected 4 weeks after injection of MIRB-labeled lenti-shCOX2-TGF-ß3 hBMSCs into the joint in rabbits with AIA. Eight weeks after hBMSC injection, reduced inflammatory cell infiltration, improved hyperplasia of the synovial lining, recovered cartilage damage, and increased matrix staining were observed in joints injected with lenti-shCOX2-TGF-ß3 hBMSCs and lenti-shCOX2 hBMSCs. Slight synovial hyperplasia, no surface fibrillation, and strong positive expression of collagen II staining in chondrocytes and cartilage matrix were detected in the joints 12 weeks after injection of lenti-shCOX2-TGF-ß3 hBMSCs. In addition, hBMSCs were detected by MRI imaging throughout the process of hBMSC treatment. CONCLUSION: Intra-articular injection of hBMSCs with COX-2 silence and TGFß3 overexpression not only significantly inhibited joint inflammation and synovium hyperplasia, but also protected articular cartilage at the early stage. In addition, intra-articular injection of hBMSCs with COX-2 silence and TGFß3 overexpression promoted chondrocyte and matrix proliferation. This study provides an alternative therapeutic strategy for the treatment of RA using genetically modified hBMSCs.


Assuntos
Artrite Reumatoide/genética , Ciclo-Oxigenase 2/genética , Inflamação/genética , Fator de Crescimento Transformador beta3/genética , Animais , Antígenos/farmacologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Condrócitos/imunologia , Condrócitos/metabolismo , Ciclo-Oxigenase 2/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Modelos Animais de Doenças , Humanos , Imunidade/genética , Inflamação/etiologia , Inflamação/imunologia , Inflamação/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Coelhos
15.
Biotechnol Lett ; 45(1): 57-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36550337

RESUMO

OBJECTIVES: To develop a rapid and simple method to fabricate intact, robust cell sheets from common cell culture dishes by combination of a macromolecular crowding (MMC) reagent and vitamin C. RESULTS: It was found that 3T3 fibroblasts or human bone marrow mesenchymal stem cells (hBMSCs) and their secreted cell derived extracellular matrices could be easily detached as intact cell sheets under gently pipetting after treated by MMC and vitamin C for 4 days. This method also allowed fabrication of functional multi-layered hepatic cell sheets by culturing 10 × 104 cells/cm2 HepG2 cells on top of confluent 3T3 fibroblast layers. What's more, MMC induced hBMSC cell sheets demonstrated 1.9 times larger area and 1.6 times greater cell number than that of cell sheets harvested from temperature-responsive cell culture dishes. CONCLUSION: MMC based method make it possible to fabricate various types of cell sheets more conveniently, economically, and thus may facilitate wide application of cell sheet technology.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Fibroblastos , Matriz Extracelular , Células-Tronco Mesenquimais/fisiologia , Ácido Ascórbico , Engenharia Tecidual
16.
Genomics ; 114(4): 110422, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817314

RESUMO

In human, bone loss is associated with increased marrow adipose tissue and recent data suggest that medullary adipocytes could play a role in osteoporosis by acting on neighboring bone-forming osteoblasts. Supporting this hypothesis, we previously showed, in a coculture model based on human bone marrow stromal cells, that factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this work, we employed an original integrative bioinformatics approach connecting proteomic and transcriptomic data from adipocytes and osteoblasts, respectively, to investigate the mechanisms underlying their crosstalk. Our analysis identified a total of 271 predicted physical interactions between adipocyte-secreted proteins and osteoblast membrane protein coding genes and proposed three pathways for their potential contribution to osteoblast transdifferentiation, the PI3K-AKT, the JAK2-STAT3 and the SMAD pathways. Our findings demonstrated the effectiveness of our integrative omics strategy to decipher cell-cell communication events.


Assuntos
Transdiferenciação Celular , Biologia Computacional , Adipócitos/metabolismo , Diferenciação Celular , Humanos , Osteoblastos , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica
17.
Br J Neurosurg ; : 1-7, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029604

RESUMO

BACKGROUND: The authors report an Australian experience of lateral lumbar interbody fusion (LLIF) with respect to clinical outcomes, fusion rates, and complications, with recombinant human bone morphogenetic protein-2 (rhBMP-2) and other graft materials. METHODS: Retrospective cohort study of LLIF patients 2011-2021. LLIFs performed lateral decubitus by four experienced surgeons past their learning curve. Graft materials classified rhBMP-2 or non-rhBMP-2. Patient-reported outcomes assessed by VAS, ODI, and SF-12 preoperatively and postoperatively. Fusion rates assessed by CT postoperatively at 6 and 12 months. Complications classified minor or major. Clinical outcomes and complications analysed and compared between rhBMP-2 and non-rhBMP-2 groups. RESULTS: A cohort of 343 patients underwent 437 levels of LLIF. Mean age 67 ± 11 years (range 29-89) with a female preponderance (65%). Mean BMI 29kg/m2 (18-56). Most common operated levels L3/4 (36%) and L4/5 (35%). VAS, ODI and SF-12 improved significantly from baseline. Total complication rate 15% (53/343) with minor 11% (39/343) and major 4% (14/343). Ten patients returned to OR (2-wound infection, 8-further instrumentation and decompression). Most patients (264, 77%) received rhBMP-2, the remainder a non-rhBMP-2 graft material. No significant differences between groups at baseline. No increase in minor or major complications in the rhBMP-2 group compared to the non-rhBMP-2 group respectively; (10.6% vs 13.9% [p = 0.42], 2.7% vs 8.9% [p < 0.01]). Fusion rates significantly higher in the rhBMP-2 group at 6 and 12 months (63% vs 40%, [p < 0.01], 92% vs 80%, [p < 0.02]). CONCLUSION: LLIF is a safe and efficacious procedure. rhBMP-2 in LLIF produced earlier and higher fusion rates compared to available non-rhBMP-2 graft substitutes.

18.
Alzheimers Dement ; 19(1): 261-273, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35357079

RESUMO

HYPOTHESIS: We hypothesized that Lomecel-B, an allogeneic medicinal signaling cell (MSC) therapeutic candidate for Alzheimer's disease (AD), is safe and potentially disease-modifying via pleiotropic mechanisms of action. KEY PREDICTIONS: We prospectively tested the predictions that Lomecel-B administration to mild AD patients is safe (primary endpoint) and would provide multiple exploratory indications of potential efficacy in clinical and biomarker domains (prespecified secondary/exploratory endpoints). STRATEGY AND KEY RESULTS: Mild AD patient received a single infusion of low- or high-dose Lomecel-B, or placebo, in a double-blind, randomized, phase I trial. The primary safety endpoint was met. Fluid-based and imaging biomarkers indicated significant improvement in the Lomecel-B arms versus placebo. The low-dose Lomecel-B arm showed significant improvements versus placebo on neurocognitive and other assessments. INTERPRETATION: Our results support the safety of Lomecel-B for AD, suggest clinical potential, and provide mechanistic insights. This early-stage study provides important exploratory information for larger efficacy-powered clinical trials.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Resultado do Tratamento , Método Duplo-Cego , Biomarcadores
19.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835079

RESUMO

The bone cancer osteosarcoma, found mainly in adolescents, routinely forms around the growth plate/metaphysis of long bones. Bone marrow composition changes with age, shifting from a more hematopoietic to an adipocyte-rich tissue. This conversion occurs in the metaphysis during adolescence, implicating a link between bone marrow conversion and osteosarcoma initiation. To assess this, the tri-lineage differentiation potential of human bone marrow stromal cells (HBMSCs) isolated from the femoral diaphysis/metaphysis (FD) and epiphysis (FE) was characterized and compared to two osteosarcoma cell lines, Saos-2 and MG63. Compared to FE-cells, FD-cells showed an increase in tri-lineage differentiation. Additionally, differences were found between the Saos-2 cells exhibiting higher levels of osteogenic differentiation, lower adipogenic differentiation, and a more developed chondrogenic phenotype than MG63, with the Saos-2 being more comparable to FD-derived HBMSCs. The differences found between the FD and FE derived cells are consistent with the FD region containing more hematopoietic tissue compared to the FE. This may be related to the similarities between FD-derived cells and Saos-2 cells during osteogenic and chondrogenic differentiation. These studies reveal distinct differences in the tri-lineage differentiations of 'hematopoietic' and 'adipocyte rich' bone marrow, which correlate with specific characteristics of the two osteosarcoma cell lines.


Assuntos
Células-Tronco Mesenquimais , Osteossarcoma , Adolescente , Humanos , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Linhagem Celular , Células da Medula Óssea , Osteossarcoma/metabolismo , Células Estromais
20.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675188

RESUMO

Human bone marrow mesenchymal stem cell derived-extracellular vesicles (HBMSC-EV) are known for their regenerative and anti-inflammatory effects in animal models of myocardial ischemia. However, it is not known whether the efficacy of the EVs can be modulated by pre-conditioning of HBMSC by exposing them to either starvation or hypoxia prior to EV collection. HBMSC-EVs were isolated following normoxia starvation (NS), normoxia non-starvation (NNS), hypoxia starvation (HS), or hypoxia non-starvation (HNS) pre-conditioning. The HBMSC-EVs were characterized by nanoparticle tracking analysis, electron microscopy, Western blot, and proteomic analysis. Comparative proteomic profiling revealed that starvation pre-conditioning led to a smaller variety of proteins expressed, with the associated lesser effect of normoxia versus hypoxia pre-conditioning. In the absence of starvation, normoxia and hypoxia pre-conditioning led to disparate HBMSC-EV proteomic profiles. HNS HBMSC-EV was found to have the greatest variety of proteins overall, with 74 unique proteins, the greatest number of redox proteins, and pathway analysis suggestive of improved angiogenic properties. Future HBMSC-EV studies in the treatment of cardiovascular disease may achieve the most therapeutic benefits from hypoxia non-starved pre-conditioned HBMSC. This study was limited by the lack of functional and animal models of cardiovascular disease and transcriptomic studies.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Humanos , Doenças Cardiovasculares/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA