Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Genomics ; 15(1): 25, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933170

RESUMO

BACKGROUND: Trisomy 21 (T21) is a genetic alteration characterised by the presence of an extra full or partial human chromosome 21 (Hsa21) leading to Down syndrome (DS), the most common form of intellectual disability (ID). It is broadly agreed that the presence of extra genetic material in T21 gives origin to an altered expression of genes located on Hsa21 leading to DS phenotype. The aim of this study was to analyse T21 and normal control blood cell gene expression profiles obtained by total RNA sequencing (RNA-Seq). RESULTS: The results were elaborated by the TRAM (Transcriptome Mapper) software which generated a differential transcriptome map between human T21 and normal control blood cells providing the gene expression ratios for 17,867 loci. The obtained gene expression profiles were validated through real-time reverse transcription polymerase chain reaction (RT-PCR) assay and compared with previously published data. A post-analysis through transcriptome mapping allowed the identification of the segmental (regional) variation of the expression level across the whole genome (segment-based analysis of expression). Interestingly, the most over-expressed genes encode for interferon-induced proteins, two of them (MX1 and MX2 genes) mapping on Hsa21 (21q22.3). The altered expression of genes involved in mitochondrial translation and energy production also emerged, followed by the altered expression of genes encoding for the folate cycle enzyme, GART, and the folate transporter, SLC19A1. CONCLUSIONS: The alteration of these pathways might be linked and involved in the manifestation of ID in DS.


Assuntos
Carbono-Nitrogênio Ligases/genética , Síndrome de Down/genética , Proteínas de Resistência a Myxovirus/genética , Fosforribosilglicinamido Formiltransferase/genética , Proteína Carregadora de Folato Reduzido/genética , Células Sanguíneas/metabolismo , Células Sanguíneas/patologia , Cromossomos Humanos Par 21/genética , Síndrome de Down/epidemiologia , Síndrome de Down/patologia , Metabolismo Energético/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA-Seq , Software , Transcriptoma/genética
2.
Genomics ; 109(5-6): 391-400, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28648597

RESUMO

Among Down syndrome (DS) children, 40-50% have congenital heart disease (CHD). Although trisomy 21 is not sufficient to cause CHD, three copies of at least part of chromosome 21 (Hsa21) increases the risk for CHD. In order to establish a genotype-phenotype correlation for CHD in DS, we built an integrated Hsa21 map of all described partial trisomy 21 (PT21) cases with sufficient indications regarding presence or absence of CHD (n=107), focusing on DS PT21 cases. We suggest a DS CHD candidate region on 21q22.2 (0.96Mb), being shared by most PT21 cases with CHD and containing three known protein-coding genes (DSCAM, BACE2, PLAC4) and four known non-coding RNAs (DSCAM-AS1, DSCAM-IT1, LINC00323, MIR3197). The characterization of a DS CHD candidate region provides a useful approach to identify specific genes contributing to the pathology and to orient further investigations and possibly more effective therapy in relation to the multifactorial pathogenesis of CHD.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos Par 21/genética , Síndrome de Down/complicações , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Moléculas de Adesão Celular/genética , Estudos de Associação Genética , Humanos , Proteínas da Gravidez/genética , RNA Longo não Codificante/genética
3.
BMC Genomics ; 18(1): 739, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923001

RESUMO

BACKGROUND: The thyroid is the earliest endocrine structure to appear during human development, and thyroid hormones are necessary for proper organism development, in particular for the nervous system and heart, normal growth and skeletal maturation. To date a quantitative, validated transcriptional atlas of the whole normal human thyroid does not exist and the availability of a detailed expression map might be an excellent occasion to investigate the many features of the thyroid transcriptome. RESULTS: We present a view at the molecular level of the normal human thyroid histology and physiology obtained by a systematic meta-analysis of all the available gene expression profiles for the whole organ. A quantitative transcriptome reference map was generated by using the TRAM (Transcriptome Mapper) software able to combine, normalize and integrate a total of 35 suitable datasets from different sources thus providing a typical reference expression value for each of the 27,275 known, mapped transcripts obtained. The experimental in vitro validation of data was performed by "Real-Time" reverse transcription polymerase chain reaction showing an excellent correlation coefficient (r = 0.93) with data obtained in silico. CONCLUSIONS: Our study provides a quantitative global reference portrait of gene expression in the normal human thyroid and highlights differential expression between normal human thyroid and a pool of non-thyroid tissues useful for modeling correlations between thyroidal gene expression and specific thyroid functions and diseases. The experimental in vitro validation supports the possible usefulness of the human thyroid transcriptome map as a reference for molecular studies of the physiology and pathology of this organ.


Assuntos
Perfilação da Expressão Gênica/normas , Glândula Tireoide/metabolismo , Bases de Dados Genéticas , Feminino , Genes Essenciais/genética , Humanos , Masculino , Mutação , Especificidade de Órgãos , Fenótipo , Padrões de Referência , Glândula Tireoide/fisiologia
4.
Hippocampus ; 26(1): 13-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26108741

RESUMO

We performed an innovative systematic meta-analysis of 41 gene expression profiles of normal human hippocampus to provide a quantitative transcriptome reference map of it, i.e. a reference typical value of expression for each of the 30,739 known mapped and the 16,258 uncharacterized (unmapped) transcripts. For this aim, we used the software called TRAM (Transcriptome Mapper), which is able to generate transcriptome maps based on gene expression data from multiple sources. We also analyzed differential expression by comparing the hippocampus with the whole brain transcriptome map to identify a typical expression pattern of this subregion compared with the whole organ. Finally, due to the fact that the hippocampus is one of the main brain region to be severely affected in trisomy 21 (the best known genetic cause of intellectual disability), a particular attention was paid to the expression of chromosome 21 (chr21) genes. Data were downloaded from microarray databases, processed, and analyzed using TRAM software. Among the main findings, the most over-expressed loci in the hippocampus are the expressed sequence tag cluster Hs.732685 and the member of the calmodulin gene family CALM2. The tubulin folding cofactor B (TBCB) gene is the best gene at behaving like a housekeeping gene. The hippocampus vs. the whole brain differential transcriptome map shows the over-expression of LINC00114, a long non-coding RNA mapped on chr21. The hippocampus transcriptome map was validated in vitro by assaying gene expression through several magnitude orders by "Real-Time" reverse transcription polymerase chain reaction (RT-PCR). The highly significant agreement between in silico and experimental data suggested that our transcriptome map may be a useful quantitative reference benchmark for gene expression studies related to human hippocampus. Furthermore, our analysis yielded biological insights about those genes that have an intrinsic over-/under-expression in the hippocampus.


Assuntos
Hipocampo/metabolismo , Transcriptoma , Bases de Dados Factuais , Feminino , Expressão Gênica , Humanos , Masculino , Análise em Microsséries/métodos , Reação em Cadeia da Polimerase , Caracteres Sexuais , Software
5.
Neurobiol Dis ; 58: 92-101, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643842

RESUMO

In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimer's disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS.


Assuntos
Colina/administração & dosagem , Síndrome de Down/patologia , Hipocampo/patologia , Deficiências da Aprendizagem/prevenção & controle , Neurogênese/genética , Fenômenos Fisiológicos da Nutrição Pré-Natal/efeitos dos fármacos , Percepção Espacial/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal/genética , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Síndrome de Down/complicações , Síndrome de Down/genética , Feminino , Deficiências da Aprendizagem/etiologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/fisiologia , Neuropeptídeos/metabolismo , Gravidez/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal
6.
Mol Genet Metab ; 110(3): 371-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23920041

RESUMO

BACKGROUND AND AIMS: Down syndrome is caused by trisomy of all or part of human chromosome 21. Individuals with Down syndrome present some metabolic abnormalities involving lipoproteins, notably lower high-density lipoprotein levels associated with altered lecithin:cholesterol acyltransferase activity and apolipoprotein A-I levels. DYRK1A is a kinase overexpressed in Down syndrome that can activate the STAT3 pathway, which is involved in lecithin:cholesterol acyltransferase expression. Therefore, we characterized the role of DYRK1A overexpression on lecithin:cholesterol acyltransferase activity and expression in mouse models. METHODS: Effects of Dyrk1a overexpression were examined in mice overexpressing Dyrk1a by ELISA, chemical analyses and Western blotting. RESULTS: Overexpression of DYRK1A decreased plasma lecithin:cholesterol acyltransferase activity and hepatic STAT3 activation, which was associated with activation of SHP2, a tyrosine phosphatase. Although hepatic apolipoprotein E and D levels were increased in mice overexpressing DYRK1A, decreased plasma lecithin:cholesterol acyltransferase activity was associated with decreased hepatic and plasma apolipoprotein A-I levels. High-density lipoprotein-cholesterol levels were also decreased in plasma despite similar total cholesterol and non-high-density lipoprotein-cholesterol levels. CONCLUSIONS: We identified the role of DYRK1A overexpression on altered lipoprotein metabolism.


Assuntos
Apolipoproteína A-I/sangue , Expressão Gênica , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Apolipoproteínas D/metabolismo , Apolipoproteínas E/metabolismo , HDL-Colesterol/sangue , Ativação Enzimática , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Quinases Dyrk
7.
Mol Genet Genomic Med ; 7(8): e797, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31237416

RESUMO

BACKGROUND: Down syndrome (DS) is characterized by the presence of an extra full or partial human chromosome 21 (Hsa21). An invaluable model to define genotype-phenotype correlations in DS is the study of the extremely rare cases of partial (segmental) trisomy 21 (PT21), the duplication of only a delimited region of Hsa21 associated or not to DS. A systematic retrospective reanalysis of 125 PT21 cases described up to 2015 allowed the creation of the most comprehensive PT21 map and the identification of a 34-kb highly restricted DS critical region (HR-DSCR) as the minimal region whose duplication is shared by all PT21 subjects diagnosed with DS. We reanalyzed at higher resolution three cases previously published and we accurately searched for any new PT21 reports in order to verify whether HR-DSCR limits could prospectively be confirmed and possibly refined. METHODS: Hsa21 partial duplications of three PT21 subjects were refined by adding array-based comparative genomic hybridization data. Seven newly described PT21 cases fulfilling stringent cytogenetic and clinical criteria have been incorporated into the PT21 integrated map. RESULTS: The PT21 map now integrates fine structure of Hsa21 sequence intervals of 132 subjects onto a common framework fully consistent with the presence of a duplicated HR-DSCR, on distal 21q22.13 sub-band, only in DS subjects and not in non-DS individuals. No documented exception to the HR-DSCR model was found. CONCLUSIONS: The findings presented here further support the association of the HR-DSCR with the diagnosis of DS, representing an unbiased validation of the original model. Further studies are needed to identify and characterize genetic determinants presumably located in the HR-DSCR and functionally associated to the critical manifestations of DS.


Assuntos
Cromossomos Humanos Par 21 , Síndrome de Down/genética , Trissomia/genética , Adolescente , Adulto , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Biologia Computacional , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Estudos Retrospectivos
8.
Front Genet ; 9: 125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740474

RESUMO

Down syndrome (DS) is due to the presence of an extra full or partial chromosome 21 (Hsa21). The identification of genes contributing to DS pathogenesis could be the key to any rational therapy of the associated intellectual disability. We aim at generating quantitative transcriptome maps in DS integrating all gene expression profile datasets available for any cell type or tissue, to obtain a complete model of the transcriptome in terms of both expression values for each gene and segmental trend of gene expression along each chromosome. We used the TRAM (Transcriptome Mapper) software for this meta-analysis, comparing transcript expression levels and profiles between DS and normal brain, lymphoblastoid cell lines, blood cells, fibroblasts, thymus and induced pluripotent stem cells, respectively. TRAM combined, normalized, and integrated datasets from different sources and across diverse experimental platforms. The main output was a linear expression value that may be used as a reference for each of up to 37,181 mapped transcripts analyzed, related to both known genes and expression sequence tag (EST) clusters. An independent example in vitro validation of fibroblast transcriptome map data was performed through "Real-Time" reverse transcription polymerase chain reaction showing an excellent correlation coefficient (r = 0.93, p < 0.0001) with data obtained in silico. The availability of linear expression values for each gene allowed the testing of the gene dosage hypothesis of the expected 3:2 DS/normal ratio for Hsa21 as well as other human genes in DS, in addition to listing genes differentially expressed with statistical significance. Although a fraction of Hsa21 genes escapes dosage effects, Hsa21 genes are selectively over-expressed in DS samples compared to genes from other chromosomes, reflecting a decisive role in the pathogenesis of the syndrome. Finally, the analysis of chromosomal segments reveals a high prevalence of Hsa21 over-expressed segments over the other genomic regions, suggesting, in particular, a specific region on Hsa21 that appears to be frequently over-expressed (21q22). Our complete datasets are released as a new framework to investigate transcription in DS for individual genes as well as chromosomal segments in different cell types and tissues.

9.
Gene ; 530(2): 278-86, 2013 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-23933415

RESUMO

Given the important roles of miRNAs in post-transcriptional regulation and its implications for the development of immune tissues and cells, characterization of miRNAs promotes us to uncover the molecular mechanisms underlying the pathway of trisomic chromosome 21 that disrupts the disomic genes expression and immunological defects related to Down syndrome (DS). In the present study, we analyzed global changes and chromosome distribution characteristics of miRNAs expression in lymphocytes from children with trisomy 21 by means of the Illumina high-throughput sequencing technology. Two small libraries were constructed using pool RNA of normal and DS children. The results have been further validated by stem-loop quantitative RT-PCR. Comparison between DS and normal profiles revealed that most of identified miRNAs were expressed at similar levels. The chromosome 21 that contributes to the abundantly expressed miRNAs was small, and not all Hsa21-derived miRNAs were over-expressed with ratios significantly ≥ 1.5 in Down syndrome children lymphocytes. Based on the deep sequencing technology, 108 novel candidate miRNAs have been identified, and 2 of them were derived from human chromosome 21. For the 114 significantly differentially expressed miRNAs, function annotation of target genes indicated that a set of highly abundantly and significantly differentially expressed miRNAs were involved in hematopoietic or lymphoid organ development, thymus development, and T/B cell differentiation and activation. Our results indicated that these abnormally expressed miRNAs might be associated with the mechanisms that trisomy 21 results in dysregulation of disomic genes and involved in the immunological defects seen in DS.


Assuntos
Linfócitos B/metabolismo , Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , MicroRNAs/genética , Linfócitos T/metabolismo , Linfócitos B/imunologia , Linfócitos B/patologia , Sequência de Bases , Estudos de Casos e Controles , Diferenciação Celular , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 21/imunologia , Síndrome de Down/imunologia , Síndrome de Down/patologia , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata/genética , MicroRNAs/imunologia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Linfócitos T/imunologia , Linfócitos T/patologia
10.
Gene ; 532(1): 1-12, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23246696

RESUMO

MicroRNAs (miRNAs), a family of small nonprotein-coding RNAs, play a critical role in posttranscriptional gene regulation by acting as adaptors for the miRNA-induced silencing complex to inhibit gene expression by targeting mRNAs for translational repression and/or cleavage. miR-155-5p and miR-155-3p are processed from the B-cell Integration Cluster (BIC) gene (now designated, MIR155 host gene or MIR155HG). MiR-155-5p is highly expressed in both activated B- and T-cells and in monocytes/macrophages. MiR-155-5p is one of the best characterized miRNAs and recent data indicate that miR-155-5p plays a critical role in various physiological and pathological processes such as hematopoietic lineage differentiation, immunity, inflammation, viral infections, cancer, cardiovascular disease, and Down syndrome. In this review we summarize the mechanisms by which MIR155HG expression can be regulated. Given that the pathologies mediated by miR-155-5p result from the over-expression of this miRNA it may be possible to therapeutically attenuate miR-155-5p levels in the treatment of several pathological processes.


Assuntos
Doenças Cardiovasculares/genética , Regulação da Expressão Gênica , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Animais , Linfócitos B/fisiologia , Diferenciação Celular/genética , Síndrome de Down/genética , Feminino , Humanos , Macrófagos/fisiologia , Família Multigênica , NF-kappa B/genética , NF-kappa B/metabolismo , Linfócitos T/fisiologia , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA