Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 204, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932403

RESUMO

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological malignancies globally, and the development of innovative, effective drugs against EC remains a key issue. Phytoestrogen kaempferol exhibits anti-cancer effects, but the action mechanisms are still unclear. METHOD: MTT assays, colony-forming assays, flow cytometry, scratch healing, and transwell assays were used to evaluate the proliferation, apoptosis, cell cycle, migration, and invasion of both ER-subtype EC cells. Xenograft experiments were used to assess the effects of kaempferol inhibition on tumor growth. Next-generation RNA sequencing was used to compare the gene expression levels in vehicle-treated versus kaempferol-treated Ishikawa and HEC-1-A cells. A network pharmacology and molecular docking technique were applied to identify the anti-cancer mechanism of kaempferol, including the building of target-pathway network. GO analysis and KEGG pathway enrichment analysis were used to identify cancer-related targets. Finally, the study validated the mRNA and protein expression using real-time quantitative PCR, western blotting, and immunohistochemical analysis. RESULTS: Kaempferol was found to suppress the proliferation, promote apoptosis, and limit the tumor-forming, scratch healing, invasion, and migration capacities of EC cells. Kaempferol inhibited tumor growth and promotes apoptosis in a human endometrial cancer xenograft mouse model. No significant toxicity of kaempferol was found in human monocytes and normal cell lines at non-cytotoxic concentrations. No adverse effects or significant changes in body weight or organ coefficients were observed in 3-7 weeks' kaempferol-treated animals. The RNA sequencing, network pharmacology, and molecular docking approaches identified the overall survival-related differentially expressed gene HSD17B1. Interestingly, kaempferol upregulated HSD17B1 expression and sensitivity in ER-negative EC cells. Kaempferol differentially regulated PPARG expression in EC cells of different ER subtypes, independent of its effect on ESR1. HSD17B1 and HSD17B1-associated genes, such as ESR1, ESRRA, PPARG, AKT1, and AKR1C1\2\3, were involved in several estrogen metabolism pathways, such as steroid binding, 17-beta-hydroxysteroid dehydrogenase (NADP+) activity, steroid hormone biosynthesis, and regulation of hormone levels. The molecular basis of the effects of kaempferol treatment was evaluated. CONCLUSIONS: Kaempferol is a novel therapeutic candidate for EC via HSD17B1-related estrogen metabolism pathways. These results provide new insights into the efficiency of the medical translation of phytoestrogens.


Assuntos
Neoplasias do Endométrio , Estradiol Desidrogenases , Quempferóis , Farmacologia em Rede , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Estrogênios/metabolismo , Quempferóis/farmacologia , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Esteroides/metabolismo , Estradiol Desidrogenases/metabolismo
2.
Histochem Cell Biol ; 154(2): 197-213, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32266459

RESUMO

Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and epithelial polarity molecule PAR3. Lipolysis-stimulated lipoprotein receptor (LSR) is an important molecule at tricellular contacts, and loss of LSR promotes cell migration and invasion via Yes-associated protein (YAP) in human endometrial cancer cells. In the present study, to find how ASPP2 suppression promotes malignancy in human endometrial cancer, we investigated its mechanisms including the relationship with LSR. In endometriosis and endometrial cancers (G1 and G2), ASPP2 was observed as well as PAR3 and LSR in the subapical region. ASPP2 decreased in G3 endometrial cancer compared to G1. In human endometrial cancer cell line Sawano, ASPP2 was colocalized with LSR and tricellulin at tricellular contacts and binding to PAR3, LSR, and tricellulin in the confluent state. ASPP2 suppression promoted cell migration and invasion, decreased LSR expression, and induced expression of phosphorylated YAP, claudin-1, -4, and -7 as effectively as the loss of LSR. Knockdown of YAP prevented the upregulation of pYAP, cell migration and invasion induced by the ASPP2 suppression. Treatment with a specific antibody against ASPP2 downregulated ASPP2 and LSR, affected F-actin at tricellular contacts, upregulated expression of pYAP and claudin-1, and induced cell migration and invasion via YAP. In normal human endometrial epithelial cells, ASPP2 was in part colocalized with LSR at tricellular contacts and knockdown of ASPP2 or LSR induced expression of claudin-1 and claudin-4. ASPP2 suppression promoted cell invasion and migration via LSR and YAP in human endometrial cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias do Endométrio/metabolismo , Receptores de Lipoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Movimento Celular , Células Cultivadas , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica , Receptores de Lipoproteínas/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
3.
Tissue Barriers ; 11(3): 2106113, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35883247

RESUMO

Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial barrier. LSR is highly expressed in well-differentiated endometrial endometrioid carcinoma (EEC), and its expression decreases during malignancy. Angubindin-1, a novel LSR ligand peptide, regulates tTJs without cytotoxicity, enhances paracellular permeability, and regulates epithelial barrier via c-Jun N-terminal kinase (JNK)/cofilin. In this study, we investigated the immune-modulatory roles of an anti-LSR antibody in the treatment of EEC in vitro compared to those of angubindin-1. We prepared an antibody against the extracellular N-terminal domain of human LSR (LSR-N-ab) and angubindin-1. EEC cell-line Sawano cells in 2D and 2.5D cultures were treated with 100 µg/ml LSR-N-ab or 2.5 µg/ml angubindin-1 with or without protein tyrosine kinase 2ß inhibitor PF431396 (PF43) and JNK inhibitor SP600125 (SP60) at 10 µM. Treatment with LSR-N-ab and angubindin-1 decreased LSR at the membranes of tTJs and the activity of phosphorylated LSR and phosphorylated cofilin in 2D culture. Treatment with LSR-N-ab and angubindin-1 decreased the epithelial barrier measured as TEER values in 2D culture and enhanced the epithelial permeability of FD-4 in 2.5D culture. Treatment with LSR-N-ab, but not angubindin-1, induced apoptosis in 2D culture. Pretreatment with PF43 and SP60 prevented all the changes induced by treatment with LSR-N-ab and angubindin-1. Treatment with LSR-N-ab and angubindin-1 enhanced the cell metabolism measured as the mitochondrial respiration levels in 2D culture. LSR-N-ab and angubindin-1 may be useful for therapy of human EEC via enhanced apoptosis or drug absorption.


Assuntos
Neoplasias do Endométrio , Células Epiteliais , Feminino , Humanos , Células Epiteliais/metabolismo , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Apoptose , Transdução de Sinais , Fatores de Despolimerização de Actina/metabolismo
4.
Artif Cells Nanomed Biotechnol ; 49(1): 500-510, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34151675

RESUMO

In this research, we formulated new chemotherapeutic copper nanoparticles (Cu NPs) containing Allium noeanum Reut. ex Regel leaf for treating human endometrial cancer. For investigating the antioxidant activitiy, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test was used. MTT test was used on normal (Human umbilical vein endothelial cells (HUVECs)) and human endometrial cancer (Ishikawa, HEC-1-A, HEC-1-B, and KLE) cell lines for comparing the anti-human endometrial cancer properties of Cu(NO3)2, A. noeanum leaf aqueous extract, and copper nanoparticles. Copper nanoparticles had high cell death and anti-human endometrial cancer effects against Ishikawa, HEC-1-A, HEC-1-B, and KLE cell lines. The IC50 of A. noeanum leaf aqueous extract and copper nanoparticles against HEC-1-B cell line were 548 and 331 µg/mL, respectively; against HEC-1-A cell line were 583 and 356 µg/mL, respectively; against KLE cell line were 609 and 411 µg/mL, respectively; and against Ishikawa cell line were 560 and 357 µg/mL, respectively. Among the above cell lines, the best result of anti-human endometrial cancer properties of copper nanoparticles was gained in the cell line of HEC-1-B. This study indicated excellent anti-human endometrial cancer potentials of copper nanoparticles containing A. noeanum in the in vitro condition.


Assuntos
Antioxidantes , Neoplasias do Endométrio , Allium , Cobre , Feminino , Humanos
5.
FEBS Lett ; 589(2): 207-14, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25528443

RESUMO

We aimed to ascertain the role of microRNAs (miRNAs) in regulating human endometrial cancer stem cells (HuECSCs). The expression level of miRNA-134 (miR-134), a member of the DLK1-DIO3 genomic imprinted miRNA cluster, differed significantly between HuECSCs and human endometrial cancer cells (HuECCs). miR-134 inhibited HuECSCs proliferation and migration by targeting protein O-glucosyltransferase 1 (POGLUT1) expression. Exogenous miR-134 overexpression downregulated POGLUT1 and Notch pathway proteins in HuECSCs in vitro. miR-134 overexpression affected the G2/M phase of HuECSCs and suppressed the growth of xenograft tumours formed. Thus, endogenous miR-134 regulation in HuECSCs may suppress tumourigenesis in human endometrial carcinoma.


Assuntos
Neoplasias do Endométrio/metabolismo , Glucosiltransferases/metabolismo , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Linhagem Celular , Proliferação de Células , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores Notch/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA