Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2302624120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37205712

RESUMO

Human islet primary cilia are vital glucose-regulating organelles whose structure remains uncharacterized. Scanning electron microscopy (SEM) is a useful technique for studying the surface morphology of membrane projections like cilia, but conventional sample preparation does not reveal the submembrane axonemal structure, which holds key implications for ciliary function. To overcome this challenge, we combined SEM with membrane-extraction techniques to examine primary cilia in native human islets. Our data show well-preserved cilia subdomains which demonstrate both expected and unexpected ultrastructural motifs. Morphometric features were quantified when possible, including axonemal length and diameter, microtubule conformations, and chirality. We further describe a ciliary ring, a structure that may be a specialization in human islets. Key findings are correlated with fluorescence microscopy and interpreted in the context of cilia function as a cellular sensor and communications locus in pancreatic islets.


Assuntos
Cílios , Ilhotas Pancreáticas , Humanos , Microscopia Eletrônica de Varredura , Cílios/fisiologia , Microscopia de Fluorescência , Microtúbulos
2.
Diabetologia ; 67(1): 124-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924378

RESUMO

AIMS/HYPOTHESIS: Inflammation induces beta cell dysfunction and demise but underlying molecular mechanisms remain unclear. The apolipoprotein L (APOL) family of genes has been associated with innate immunity and apoptosis in non-pancreatic cell types, but also with metabolic syndrome and type 2 diabetes mellitus. Here, we hypothesised that APOL genes play a role in inflammation-induced beta cell damage. METHODS: We used single-cell transcriptomics datasets of primary human pancreatic islet cells to study the expression of APOL genes upon specific stress conditions. Validation of the findings was carried out in EndoC-ßH1 cells and primary human islets. Finally, we performed loss- and gain-of-function experiments to investigate the role of APOL genes in beta cells. RESULTS: APOL genes are expressed in primary human beta cells and APOL1, 2 and 6 are strongly upregulated upon inflammation via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. APOL1 overexpression increases endoplasmic reticulum stress while APOL1 knockdown prevents cytokine-induced beta cell death and interferon-associated response. Furthermore, we found that APOL genes are upregulated in beta cells from donors with type 2 diabetes compared with donors without diabetes mellitus. CONCLUSIONS/INTERPRETATION: APOLs are novel regulators of islet inflammation and may contribute to beta cell damage during the development of diabetes. DATA AVAILABILITY: scRNAseq data generated by our laboratory and used in this study are available in the Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/ ), accession number GSE218316.


Assuntos
Apolipoproteína L1 , Inflamação , Células Secretoras de Insulina , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia
3.
Diabetologia ; 66(4): 709-723, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36459178

RESUMO

AIMS/HYPOTHESIS: The rapid remission of type 2 diabetes by a diet very low in energy correlates with a marked improvement in glucose-stimulated insulin secretion (GSIS), emphasising the role of beta cell dysfunction in the early stages of the disease. In search of novel mechanisms of beta cell dysfunction after long-term exposure to mild to severe glucotoxic conditions, we extensively characterised the alterations in insulin secretion and upstream coupling events in human islets cultured for 1-3 weeks at ~5, 8, 10 or 20 mmol/l glucose and subsequently stimulated by an acute stepwise increase in glucose concentration. METHODS: Human islets from 49 non-diabetic donors (ND-islets) and six type 2 diabetic donors (T2D-islets) were obtained from five isolation centres. After shipment, the islets were precultured for 3-7 days in RPMI medium containing ~5 mmol/l glucose and 10% (vol/vol) heat-inactivated FBS with selective islet picking at each medium renewal. Islets were then cultured for 1-3 weeks in RPMI containing ~5, 8, 10 or 20 mmol/l glucose before measurement of insulin secretion during culture, islet insulin and DNA content, beta cell apoptosis and cytosolic and mitochondrial glutathione redox state, and assessment of dynamic insulin secretion and upstream coupling events during acute stepwise stimulation with glucose [NAD(P)H autofluorescence, ATP/(ATP+ADP) ratio, electrical activity, cytosolic Ca2+ concentration ([Ca2+]c)]. RESULTS: Culture of ND-islets for 1-3 weeks at 8, 10 or 20 vs 5 mmol/l glucose did not significantly increase beta cell apoptosis or oxidative stress but decreased insulin content in a concentration-dependent manner and increased beta cell sensitivity to subsequent acute stimulation with glucose. Islet glucose responsiveness was higher after culture at 8 or 10 vs 5 mmol/l glucose and markedly reduced after culture at 20 vs 5 mmol/l glucose. In addition, the [Ca2+]c and insulin secretion responses to acute stepwise stimulation with glucose were no longer sigmoid but bell-shaped, with maximal stimulation at 5 or 10 mmol/l glucose and rapid sustained inhibition above that concentration. Such paradoxical inhibition was, however, no longer observed when islets were acutely depolarised by 30 mmol/l extracellular K+. The glucotoxic alterations of beta cell function were fully reversible after culture at 5 mmol/l glucose and were mimicked by pharmacological activation of glucokinase during culture at 5 mmol/l glucose. Similar results to those seen in ND-islets were obtained in T2D-islets, except that their rate of insulin secretion during culture at 8 and 20 mmol/l glucose was lower, their cytosolic glutathione oxidation increased after culture at 8 and 20 mmol/l glucose, and the alterations in GSIS and upstream coupling events were greater after culture at 8 mmol/l glucose. CONCLUSIONS/INTERPRETATION: Prolonged culture of human islets under moderate to severe glucotoxic conditions markedly increased their glucose sensitivity and revealed a bell-shaped acute glucose response curve for changes in [Ca2+]c and insulin secretion, with maximal stimulation at 5 or 10 mmol/l glucose and rapid inhibition above that concentration. This novel glucotoxic alteration may contribute to beta cell dysfunction in type 2 diabetes independently from a detectable increase in beta cell apoptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Glucose/metabolismo , Secreção de Insulina , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glutationa/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas
4.
Diabetologia ; 66(5): 884-896, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36884057

RESUMO

AIMS/HYPOTHESIS: Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets. METHODS: Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis. Antisera were generated to detect insulin variants in human pancreatic tissue using immunohistochemistry, electron microscopy and single-cell western blot to confirm the expression of insulin variants. Cytotoxic T lymphocyte (CTL) activation was determined by MIP-1ß release. RESULTS: We identified an alternatively spliced INS product. This variant encodes the complete insulin signal peptide and B chain and an alternative C-terminus that largely overlaps with a previously identified defective ribosomal product of INS. Immunohistochemical analysis revealed that the translation product of this INS-derived splice transcript was detectable in somatostatin-producing delta cells but not in beta cells; this was confirmed by light and electron microscopy. Expression of this alternatively spliced INS product activated preproinsulin-specific CTLs in vitro. The exclusive presence of this alternatively spliced INS product in delta cells may be explained by its clearance from beta cells by insulin-degrading enzyme capturing its insulin B chain fragment and a lack of insulin-degrading enzyme expression in delta cells. CONCLUSIONS/INTERPRETATION: Our data demonstrate that delta cells can express an INS product derived from alternative splicing, containing both the diabetogenic insulin signal peptide and B chain, in their secretory granules. We propose that this alternative INS product may play a role in islet autoimmunity and pathology, as well as endocrine or paracrine function or islet development and endocrine destiny, and transdifferentiation between endocrine cells. INS promoter activity is not confined to beta cells and should be used with care when assigning beta cell identity and selectivity. DATA AVAILABILITY: The full EM dataset is available via www.nanotomy.org (for review: http://www.nanotomy.org/OA/Tienhoven2021SUB/6126-368/ ). Single-cell RNA-seq data was made available by Segerstolpe et al [13] and can be found at https://sandberglab.se/pancreas . The RNA and protein sequence of INS-splice was uploaded to GenBank (BankIt2546444 INS-splice OM489474).


Assuntos
Insulisina , Ilhotas Pancreáticas , Humanos , Células Secretoras de Somatostatina/metabolismo , Insulisina/metabolismo , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA , Sinais Direcionadores de Proteínas
5.
Diabetes Obes Metab ; 25(12): 3757-3765, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37694762

RESUMO

AIM: To elucidate how proinsulin synthesis and insulin was affected by metformin under conditions of nutrient overstimulation. MATERIALS AND METHODS: Isolated human pancreatic islets from seven donors were cultured at 5.5 mmol/L glucose and 0.5 mmol/L palmitate for 12, 24 or 72 h. Metformin (25 µmol/L) was introduced after initial 12 h with palmitate. Proinsulin and insulin were measured. Expression of prohormone convertase 1/3 (PC1/3) and carboxypeptidase E (CPE), was determined by western blot. Adolescents with obesity, treated with metformin and with normal glucose tolerance (n = 5), prediabetes (n = 14), or type 2 diabetes (T2DM; n = 7) were included. Fasting proinsulin, insulin, glucose, 2-h glucose and glycated haemoglobin were measured. Proinsulin/insulin ratio (PI/I) was calculated. RESULTS: In human islets, palmitate treatment for 12 and 24 h increased proinsulin and insulin proportionally. After 72 h, proinsulin but not insulin continued to increase which was coupled with reduced expression of PC1/3 and CPE. Metformin normalized expression of PC1/3 and CPE, and proinsulin and insulin secretion. In adolescents with obesity, before treatment, fasting proinsulin and insulin concentrations were higher in subjects with T2DM than with normal glucose tolerance. PI/I was reduced after metformin treatment in subjects with T2DM as well as in subjects with prediabetes, coupled with reduced 2-h glucose and glycated haemoglobin. CONCLUSIONS: Metformin normalized proinsulin and insulin secretion after prolonged nutrient-overstimulation, coupled with normalization of the converting enzymes, in isolated islets. In adolescents with obesity, metformin treatment was associated with improved PI/I, which was coupled with improved glycaemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Metformina , Obesidade Infantil , Estado Pré-Diabético , Adolescente , Humanos , Insulina/metabolismo , Proinsulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Palmitatos/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/metabolismo , Hemoglobinas Glicadas , Obesidade Infantil/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina Regular Humana , Carboxipeptidase H , Glucose/metabolismo
6.
Semin Cell Dev Biol ; 103: 14-19, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32081627

RESUMO

The islet of Langerhans contains at least five types of endocrine cells producing distinct hormones. In response to nutrient or neuronal stimulation, islet endocrine cells release biochemicals including peptide hormones to regulate metabolism and to control glucose homeostasis. It is now recognized that malfunction of islet cells, notably insufficient insulin release of ß-cells and hypersecretion of glucagon from α-cells, represents a causal event leading to hyperglycemia and frank diabetes, a disease that is increasing at an alarming rate to reach an epidemic level worldwide. Understanding the mechanisms regulating stimulus-secretion coupling and investigating how islet ß-cells maintain a robust secretory activity are important topics in islet biology and diabetes research. To facilitate such studies, a number of biological systems and assay platforms have been developed for the functional analysis of islet cells. These technologies have enabled detailed analyses of individual islets at the cellular level, either in vitro, in situ, or in vivo.


Assuntos
Diabetes Mellitus/metabolismo , Técnicas In Vitro/métodos , Dosimetria in Vivo/métodos , Ilhotas Pancreáticas/metabolismo , Humanos
7.
Diabet Med ; 39(12): e14974, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36260369

RESUMO

BACKGROUND: G protein-coupled receptors (GPCRs) play crucial roles in regulating islet function, with Gαs- and Gαq-coupled receptors being linked to the stimulation of insulin secretion. We have quantified the mRNA expression of 384 non-olfactory GPCRs in islets isolated from lean and obese organ donors to determine alterations in islet GPCR mRNA expression in obesity. METHODS: RT-qPCR was used to quantify GPCR mRNAs relative to five reference genes (ACTB, GAPDH, PPIA, TBP, and TFRC) in human islets isolated from lean (BMI = 22.6 ± 0.5) and obese (BMI = 32.0 ± 0.8) donors. RESULTS: Overall, 197 and 256 GPCR mRNAs were detected above trace level in islets from lean and obese donors, respectively, with 191 GPCR mRNAs being common to the lean and obese groups. 40.9% (n = 157) and 27.1% (n = 104) of the mRNAs were expressed at trace level whilst 7.8% and 6.3% were absent in islets from lean and obese donors, respectively. Hundred and seventeen GPCR mRNAs were upregulated at least twofold in islets from obese donors, and there was >twofold downregulation of 21 GPCR mRNAs. Of particular interest, several receptors signalling via Gαs or Gαq showed significant mRNA upregulation in islets from obese donors (fold increase: PTH2R: 54.0 ± 14.6; MC2R: 34.3 ± 11.5; RXFP1: 8.5 ± 2.1; HTR2B: 6.0 ± 2.0; GPR110: 3.9 ± 1.2; PROKR2: 3.9 ± 0.7). CONCLUSIONS: Under conditions of obesity, human islets showed significant alterations in mRNAs encoding numerous GPCRs. The increased expression of Gαs- and Gαq-coupled receptors that have not previously been investigated in ß-cells opens up possibilities of novel therapeutic candidates that may lead to the potentiation of insulin secretion and/or ß-cell mass to regulate glucose homeostasis.


Assuntos
Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/metabolismo , Secreção de Insulina , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Insulina/metabolismo
8.
Immun Ageing ; 18(1): 8, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622333

RESUMO

BACKGROUND: The resident immune population of pancreatic islets has roles in islet development, beta cell physiology, and the pathology of diabetes. These roles have largely been attributed to islet macrophages, comprising 90% of islet immune cells (in the absence of islet autoimmunity), and, in the case of type 1 diabetes, to infiltrating autoreactive T cells. In adipose, tissue-resident and recruited T and B cells have been implicated in the development of insulin resistance during diet-induced obesity and ageing, but whether this is paralleled in the pancreatic islets is not known. Here, we investigated the non-macrophage component of resident islet immune cells in islets isolated from C57BL/6 J male mice during ageing (3 to 24 months of age) and following similar weight gain achieved by 12 weeks of 60% high fat diet. Immune cells were also examined by flow cytometry in cadaveric non-diabetic human islets. RESULTS: Immune cells comprised 2.7 ± 1.3% of total islet cells in non-diabetic mouse islets, and 2.3 ± 1.7% of total islet cells in non-diabetic human islets. In 3-month old mice on standard diet, B and T cells each comprised approximately 2-4% of the total islet immune cell compartment, and approximately 0.1% of total islet cells. A similar amount of T cells were present in non-diabetic human islets. The majority of islet T cells expressed the αß T cell receptor, and were comprised of CD8-positive, CD4-positive, and regulatory T cells, with a minor population of γδ T cells. Interestingly, the number of islet T cells increased linearly (R2 = 0.9902) with age from 0.10 ± 0.05% (3 months) to 0.38 ± 0.11% (24 months) of islet cells. This increase was uncoupled from body weight, and was not phenocopied by a degree similar weight gain induced by high fat diet in mice. CONCLUSIONS: This study reveals that T cells are a part of the normal islet immune population in mouse and human islets, and accumulate in islets during ageing in a body weight-independent manner. Though comprising only a small subset of the immune cells within islets, islet T cells may play a role in the physiology of islet ageing.

9.
Diabetologia ; 63(12): 2628-2640, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32960311

RESUMO

AIMS/HYPOTHESIS: In islets from individuals with type 2 diabetes and in islets exposed to chronic elevated glucose, mitochondrial energy metabolism is impaired. Here, we studied early metabolic changes and mitochondrial adaptations in human beta cells during chronic glucose stress. METHODS: Respiration and cytosolic ATP changes were measured in human islet cell clusters after culture for 4 days in 11.1 mmol/l glucose. Metabolomics was applied to analyse intracellular metabolite changes as a result of glucose stress conditions. Alterations in beta cell function were followed using insulin secretion assays or cytosolic calcium signalling after expression of the calcium probe YC3.6 specifically in beta cells of islet clusters. RESULTS: At early stages of glucose stress, mitochondrial energy metabolism was augmented in contrast to the previously described mitochondrial dysfunction in beta cells from islets of diabetic donors. Following chronic glucose stress, mitochondrial respiration increased (by 52.4%, p < 0.001) and, as a consequence, the cytosolic ATP/ADP ratio in resting human pancreatic islet cells was elevated (by 27.8%, p < 0.05). Because of mitochondrial overactivation in the resting state, nutrient-induced beta cell activation was reduced. In addition, chronic glucose stress caused metabolic adaptations that resulted in the accumulation of intermediates of the glycolytic pathway, the pentose phosphate pathway and the TCA cycle; the most strongly augmented metabolite was glycerol 3-phosphate. The changes in metabolites observed are likely to be due to the inability of mitochondria to cope with continuous nutrient oversupply. To protect beta cells from chronic glucose stress, we inhibited mitochondrial pyruvate transport. Metabolite concentrations were partially normalised and the mitochondrial respiratory response to nutrients was markedly improved. Furthermore, stimulus-secretion coupling as assessed by cytosolic calcium signalling, was restored. CONCLUSION/INTERPRETATION: We propose that metabolic changes and associated mitochondrial overactivation are early adaptations to glucose stress, and may reflect what happens as a result of poor blood glucose control. Inhibition of mitochondrial pyruvate transport reduces mitochondrial nutrient overload and allows beta cells to recover from chronic glucose stress. Graphical abstract.


Assuntos
Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Humanos , Metabolômica/métodos
10.
Diabetologia ; 63(7): 1355-1367, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32350565

RESUMO

AIMS/HYPOTHESIS: Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D2 (PGD2) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known. In this study, we investigate GPR44 inhibition by using a selective GPR44 antagonist (AZ8154) in human islets both in vitro and in vivo in diabetic mice transplanted with human islets. METHODS: Human islets were exposed to PGD2 or proinflammatory cytokines in vitro to investigate the effect of GPR44 inhibition on islet survival rate. In addition, the molecular mechanisms of GPR44 inhibition were investigated in human islets exposed to high concentrations of glucose (HG) and to IL-1ß. For the in vivo part of the study, human islets were transplanted under the kidney capsule of immunodeficient diabetic mice and treated with 6, 60 or 100 mg/kg per day of a GPR44 antagonist starting from the transplantation day until day 4 (short-term study) or day 17 (long-term study) post transplantation. IVGTT was performed on mice at day 10 and day 15 post transplantation. After termination of the study, metabolic variables, circulating human proinflammatory cytokines, and hepatocyte growth factor (HGF) were analysed in the grafted human islets. RESULTS: PGD2 or proinflammatory cytokines induced apoptosis in human islets whereas GPR44 inhibition reversed this effect. GPR44 inhibition antagonised the reduction in glucose-stimulated insulin secretion induced by HG and IL-1ß in human islets. This was accompanied by activation of the Akt-glycogen synthase kinase 3ß signalling pathway together with phosphorylation and inactivation of forkhead box O-1and upregulation of pancreatic and duodenal homeobox-1 and HGF. Administration of the GPR44 antagonist for up to 17 days to diabetic mice transplanted with a marginal number of human islets resulted in reduced fasting blood glucose and lower glucose excursions during IVGTT. Improved glucose regulation was supported by increased human C-peptide levels compared with the vehicle group at day 4 and throughout the treatment period. GPR44 inhibition reduced plasma levels of TNF-α and growth-regulated oncogene-α/chemokine (C-X-C motif) ligand 1 and increased the levels of HGF in human islets. CONCLUSIONS/INTERPRETATION: Inhibition of GPR44 in human islets has the potential to improve islet function and survival rate under inflammatory and hyperglycaemic stress. This may have implications for better survival rate of islets following transplantation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/metabolismo , Fatores de Transcrição/metabolismo , Apoptose/fisiologia , Western Blotting , Morte Celular/fisiologia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina/fisiologia , Prostaglandina D2 , Reação em Cadeia da Polimerase em Tempo Real
11.
Adv Exp Med Biol ; 1131: 271-279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646514

RESUMO

Calcium signaling regulates secretion of hormones and many other cellular processes in the islets of Langerhans. The three subtypes of the inositol 1,4,5-trisphosphate receptors (IP3Rs), inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), 1,4,5-trisphosphate receptor type 2 (IP3R2), 1,4,5-trisphosphate receptor type 3 (IP3R3), and the three subtypes of the ryanodine receptors (RyRs), ryanodine receptor 1 (RyR1), ryanodine receptor 2 (RyR2) and ryanodine receptor 3 (RyR3) are the main intracellular Ca2+-release channels. The identity and the relative levels of expression of these channels in the alpha-cells, and the beta-cells of the human islets of Langerhans are unknown. We have analyzed the RNA sequencing data obtained from highly purified human alpha-cells and beta-cells for quantitatively identifying the mRNA of the intracellular Ca2+-release channels in these cells. We found that among the three IP3Rs the IP3R3 is the most abundantly expressed one in the beta-cells, whereas IP3R1 is the most abundantly expressed one in the alpha-cells. In addition to the IP3R3, beta-cells also expressed the IP3R2, at a lower level. Among the RyRs, the RyR2 was the most abundantly expressed one in the beta-cells, whereas the RyR1 was the most abundantly expressed one in the alpha-cells. Information on the relative abundance of the different intracellular Ca2+-release channels in the human alpha-cells and the beta-cells may help the understanding of their roles in the generation of Ca2+ signals and many other related cellular processes in these cells.


Assuntos
Regulação da Expressão Gênica , Receptores de Inositol 1,4,5-Trifosfato , Canal de Liberação de Cálcio do Receptor de Rianodina , Sinalização do Cálcio , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
12.
Diabetologia ; 62(8): 1329-1336, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31161346

RESUMO

Understanding the molecular mechanisms behind beta cell dysfunction is essential for the development of effective and specific approaches for diabetes care and prevention. Physiological human beta cell models are needed for this work. We review the possibilities and limitations of currently available human beta cell models and how they can be dramatically enhanced using genome-editing technologies. In addition to the gold standard, primary isolated islets, other models now include immortalised human beta cell lines and pluripotent stem cell-derived islet-like cells. The scarcity of human primary islet samples limits their use, but valuable gene expression and functional data from large collections of human islets have been made available to the scientific community. The possibilities for studying beta cell physiology using immortalised human beta cell lines and stem cell-derived islets are rapidly evolving. However, the functional immaturity of these cells is still a significant limitation. CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) has enabled precise engineering of specific genetic variants, targeted transcriptional modulation and genome-wide genetic screening. These approaches can now be exploited to gain understanding of the mechanisms behind coding and non-coding diabetes-associated genetic variants, allowing more precise evaluation of their contribution to diabetes pathogenesis. Despite all the progress, genome editing in primary pancreatic islets remains difficult to achieve, an important limitation requiring further technological development.


Assuntos
Diabetes Mellitus/genética , Diabetes Mellitus/terapia , Edição de Genes , Genoma Humano , Células Secretoras de Insulina/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Edição de Genes/tendências , Inativação Gênica , Variação Genética , Genótipo , Humanos , Células-Tronco Pluripotentes , Polimorfismo de Nucleotídeo Único , Risco
14.
Am J Physiol Endocrinol Metab ; 315(4): E634-E637, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989852

RESUMO

Inappropriate insulin secretion from ß-cells is considered as an early sign of impaired glucose tolerance and type 2 diabetes (T2D). Glucokinase (GCK) is an important enzyme that regulates glucose metabolism and ensures that the normal circulating glucose concentrations are maintained. GCK expression is induced by glucose and regulated via transcription factors and regulatory proteins. Recently, microRNA-206 (miR-206) was reported to regulate GCK and alter glucose tolerance in normal and high-fat diet-fed mice. Although the study findings have implications for human diabetes, studies in human islets are lacking. Here, we analyze human islets from individuals without or with T2D, using TaqMan-based real-time qPCR at the tissue (isolated islet) level as well as at single cell resolution, to assess the relationship between miR-206 and GCK expression in normal and T2D human islets. Our data suggest that, unlike mouse islets, human islets do not exhibit any correlation between miR-206 and GCK transcripts. These data implicate the need for further studies aimed toward exploring its potential role(s) in human islets.


Assuntos
Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Ilhotas Pancreáticas/metabolismo , MicroRNAs/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Célula Única
15.
FASEB J ; 31(3): 1028-1045, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27927723

RESUMO

Mitochondria play a central role in pancreatic ß-cell nutrient sensing by coupling their metabolism to plasma membrane excitability and insulin granule exocytosis. Whether non-nutrient secretagogues stimulate mitochondria as part of the molecular mechanism to promote insulin secretion is not known. Here, we show that PKC signaling, which is employed by many non-nutrient secretagogues, augments mitochondrial respiration in INS-1E (rat insulinoma cell line clone 1E) and human pancreatic ß cells. The phorbol ester, phorbol 12-myristate 13-acetate, accelerates mitochondrial respiration at both resting and stimulatory glucose concentrations. A range of inhibitors of novel PKC isoforms prevent phorbol ester-induced respiration. Respiratory response was blocked by oligomycin that demonstrated PKC-dependent acceleration of mitochondrial ATP synthesis. Enhanced respiration was observed even when glycolysis was bypassed or fatty acid transport was blocked, which suggested that PKC regulates mitochondrial processes rather than upstream catabolic fluxes. A phosphoproteome study of phorbol ester-stimulated INS-1E cells maintained under resting (2.5 mM) glucose revealed a large number of phosphorylation sites that were altered during short-term activation of PKC signaling. The data set was enriched for proteins that are involved in gene expression, cytoskeleton remodeling, secretory vesicle transport, and exocytosis. Interactome analysis identified PKC, C-Raf, and ERK1/2 as the central phosphointeraction cluster. Prevention of ERK1/2 signaling by using a MEK1 inhibitor caused a marked decreased in phorbol 12-myristate 13-acetate-induced mitochondrial respiration. ERK1/2 signaling module therefore links PKC activation to downstream mitochondrial activation. We conclude that non-nutrient secretagogues act, in part, via PKC and downstream ERK1/2 signaling to stimulate mitochondrial energy production to compensate for energy expenditure that is linked to ß-cell activation.-Santo-Domingo, J., Chareyron, I., Dayon, L., Galindo, A. N., Cominetti, O., Giménez, M. P. G., De Marchi, U., Canto, C., Kussmann, M., Wiederkehr, A. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic ß cells.


Assuntos
Exocitose , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Proteína Quinase C/metabolismo , Explosão Respiratória , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Glucose/metabolismo , Humanos , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oligomicinas/farmacologia , Proteínas Proto-Oncogênicas c-raf/metabolismo
16.
Diabetes Obes Metab ; 20(8): 1859-1867, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29569324

RESUMO

AIMS: Our current understanding of the pathogenesis of type 1 diabetes (T1D) arose, in large part, from studies using the non-obese diabetic (NOD) mouse model. In the present study, we chose a human-focused method to investigate T1D disease mechanisms and potential targets for therapeutic intervention by directly analysing human donor pancreatic islets from individuals with T1D. MATERIALS AND METHODS: We obtained islets from a young individual with T1D for 3 years and from an older individual with T1D for 27 years and performed unbiased functional genomic analysis by high-depth RNA sequencing; the T1D islets were compared with islets isolated from 3 non-diabetic donors. RESULTS: The islets procured from these T1D donors represent a unique opportunity to identify gene expression changes in islets after significantly different disease duration. Data analysis identified several inflammatory pathways up-regulated in short-duration disease, which notably included many components of innate immunity. As proof of concept for translation, one of the pathways, governed by IL-23(p19), was selected for further study in NOD mice because of ongoing human trials of biologics against this target for different indications. A mouse monoclonal antibody directed against IL-23(p19) when administered to NOD mice resulted in a significant reduction in incidence of diabetes. CONCLUSION: While the sample size for this study is small, our data demonstrate that the direct analysis of human islets provides a greater understanding of human disease. These data, together with the analysis of an expanded cohort to be obtained by future collaborative efforts, might result in the identification of promising novel targets for translation into effective therapeutic interventions for human T1D, with the added benefit of repurposing known biologicals for use in different indications.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Regulação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo , Adulto , Animais , Anticorpos Monoclonais/uso terapêutico , Cadáver , Criança , Análise por Conglomerados , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/prevenção & controle , Progressão da Doença , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Subunidade p19 da Interleucina-23/antagonistas & inibidores , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos Endogâmicos NOD , Estudo de Prova de Conceito , Doadores de Tecidos
17.
J Pineal Res ; 65(1): e12480, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29464840

RESUMO

Recent investigations of our group established that melatonin modulates hormone secretion of pancreatic islets via melatonin receptor types MT1 and MT2. Expression of MT1 and MT2 has been shown in mouse, rat, and human pancreatic islets as well as in the ß-, α-, and δ-cell lines INS-1, αTC1.9, and QGP-1. In view of these earlier investigations, this study was performed to analyze in detail the distribution and density of melatonin receptors on the main islet cell types in human pancreatic tissue obtained from nondiabetic and type 2 diabetic patients. Immunohistochemical analysis established the presence of MT1 and MT2 in ß-, α-, and δ-cells, but notably, with differences in receptor density. In general, the lowest MT1 and MT2 receptor density was measured in α-cells compared to the 2 other cell types. In type 2 diabetic islets, MT1 and MT2 receptor density was increased in δ-cells compared to normoglycemic controls. In human islets in batch culture of a nondiabetic donor, an increase of somatostatin secretion was observed under melatonin treatment while in islets of a type 2 diabetic donor, an inhibitory influence could be observed, especially in the presence of 5.5 mmol/L glucose. These data suggest the following: i) cell-type-specific density of MT1 and MT2 receptors in human pancreatic islets, which should be considered in context of the hormone secretion of islets, ii) the influence of diabetes on density of MT1 and MT2 as well as iii) the differential impact of melatonin on somatostatin secretion of nondiabetic and type 2 diabetic islets.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Receptores de Melatonina/metabolismo , Idoso , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Radioimunoensaio , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo
18.
Exp Cell Res ; 357(2): 170-180, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28527697

RESUMO

Chloramphenicol and several other antibiotics targeting bacterial ribosomes inhibit mitochondrial protein translation. Inhibition of mitochondrial protein synthesis leads to mitonuclear protein imbalance and reduced respiratory rates as confirmed here in HeLa and PC12 cells. Unexpectedly, respiration in INS-1E insulinoma cells and primary human islets was unaltered in the presence of chloramphenicol. Resting respiratory rates and glucose stimulated acceleration of respiration were also not lowered when a range of antibiotics including, thiamphenicol, streptomycin, gentamycin and doxycycline known to interfere with bacterial protein synthesis were tested. However, chloramphenicol efficiently reduced mitochondrial protein synthesis in INS-1E cells, lowering expression of the mtDNA encoded COX1 subunit of the respiratory chain but not the nuclear encoded ATP-synthase subunit ATP5A. Despite a marked reduction of the essential respiratory chain subunit COX1, normal respiratory rates were maintained in INS-1E cells. ATP-synthase dependent respiration was even elevated in chloramphenicol treated INS-1E cells. Consistent with these findings, glucose-dependent calcium signaling reflecting metabolism-secretion coupling in beta-cells, was augmented. We conclude that antibiotics targeting mitochondria are able to cause mitonuclear protein imbalance in insulin secreting cells. We hypothesize that in contrast to other cell types, compensatory mechanisms are sufficiently strong to maintain normal respiratory rates and surprisingly even result in augmented ATP-synthase dependent respiration and calcium signaling following glucose stimulation. The result suggests that in insulin secreting cells only lowering COX1 below a threshold level may result in a measurable impairment of respiration. When focusing on mitochondrial function, care should be taken when including antibiotics targeting translation for long-term cell culture as depending on the sensitivity of the cell type analyzed, respiration, mitonuclear protein imbalance or down-stream signaling may be altered.


Assuntos
Antibacterianos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulinoma/tratamento farmacológico , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Consumo de Oxigênio/fisiologia , Células PC12 , Neoplasias Pancreáticas/metabolismo , Ratos , Respiração/efeitos dos fármacos
19.
Nanomedicine ; 14(7): 2191-2203, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30016718

RESUMO

To improve the efficiency of pancreatic islet transplantation, we performed in-vitro and in-vivo experiments with isolated human pancreatic islets coated by multi-layer nano-encapsulation using differently charged polymers [chitosan and poly(sodium styrene sulfonate)] to obtain up to 9 layers. The islet coating (thickness: 104.2 ±â€¯4.2 nm) was uniform, with ≥ 90% cell viability and well preserved beta- and alpha-cell ultrastructure. Nano-encapsulated islets maintained physiological glucose-stimulated insulin secretion by both static incubation and perifusion studies. Notably, palmitate- or cytokine-induced toxicity was significantly reduced in nano-coated islets. Xenotransplantation of nano-encapsulated islets under the kidney capsule of streptozotocin-induced C57Bl/6J diabetic mice allowed long term normal or near normal glycemia, associated with minimal infiltration of immune cell into the grafts, well preserved islet morphology and signs of re-vascularization. In summary, the multi-layer nano-encapsulation approach described in the present study provides a promising tool to effectively protect human islets both in-vitro andin-vivo conditions.


Assuntos
Materiais Revestidos Biocompatíveis/química , Diabetes Mellitus Experimental/prevenção & controle , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Nanoestruturas/administração & dosagem , Animais , Glicemia/análise , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Transplante Heterólogo
20.
Cell Tissue Bank ; 19(1): 77-85, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28916910

RESUMO

Islet transplantation has made major progress to treat patients with type 1 diabetes. Islet mass and quality are critically important to ensure successful transplantation. Currently, islet status is evaluated using insulin secretion, oxygen consumption rate, or adenosine triphosphate (ATP) measurement. These parameters are evaluated independently and do not effectively predict islet status post-transplant. Therefore, assessing human pancreatic islets by encompassing ATP, DNA, insulin, and protein content from a single tissue sample would serve as a better predictor for islet status. In this study, a single step procedure for extracting ATP, DNA, insulin, and protein content from human pancreatic islets was described and the biomolecule contents were quantified. Additionally, different mathematical calculations integrating total ATP, DNA, insulin, and protein content were randomly tested under various conditions to predict islet status. The results demonstrated that the ATP assay was efficient and the biomolecules were effectively quantified. Furthermore, the mathematical formula we developed could be optimized to predict islet status. In conclusion, our results indicate a proof-of-concept that a simple logarithmic formula can predict overall islet status for various conditions when total islet ATP, DNA, insulin, and protein content are simultaneously assessed from a single tissue sample.


Assuntos
Trifosfato de Adenosina/análise , DNA/análise , Insulina/análise , Ilhotas Pancreáticas/química , Algoritmos , Humanos , Transplante das Ilhotas Pancreáticas , Modelos Biológicos , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA