Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266945

RESUMO

Navigating our physical environment requires changing directions and turning. Despite its ecological importance, we do not have a unified theoretical account of non-straight-line human movement. Here, we present a unified optimality criterion that predicts disparate non-straight-line walking phenomena, with straight-line walking as a special case. We first characterized the metabolic cost of turning, deriving the cost landscape as a function of turning radius and rate. We then generalized this cost landscape to arbitrarily complex trajectories, allowing the velocity direction to deviate from body orientation (holonomic walking). We used this generalized optimality criterion to mathematically predict movement patterns in multiple contexts of varying complexity: walking on prescribed paths, turning in place, navigating an angled corridor, navigating freely with end-point constraints, walking through doors, and navigating around obstacles. In these tasks, humans moved at speeds and paths predicted by our optimality criterion, slowing down to turn and never using sharp turns. We show that the shortest path between two points is, counterintuitively, often not energy-optimal, and, indeed, humans do not use the shortest path in such cases. Thus, we have obtained a unified theoretical account that predicts human walking paths and speeds in diverse contexts. Our model focuses on walking in healthy adults; future work could generalize this model to other human populations, other animals, and other locomotor tasks.


Assuntos
Metabolismo Energético/fisiologia , Locomoção/fisiologia , Adulto , Humanos , Modelos Biológicos , Orientação Espacial/fisiologia , Caminhada/fisiologia
2.
Sensors (Basel) ; 24(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793876

RESUMO

This study examined the efficacy of an optimized DeepLabCut (DLC) model in motion capture, with a particular focus on the sit-to-stand (STS) movement, which is crucial for assessing the functional capacity in elderly and postoperative patients. This research uniquely compared the performance of this optimized DLC model, which was trained using 'filtered' estimates from the widely used OpenPose (OP) model, thereby emphasizing computational effectiveness, motion-tracking precision, and enhanced stability in data capture. Utilizing a combination of smartphone-captured videos and specifically curated datasets, our methodological approach included data preparation, keypoint annotation, and extensive model training, with an emphasis on the flow of the optimized model. The findings demonstrate the superiority of the optimized DLC model in various aspects. It exhibited not only higher computational efficiency, with reduced processing times, but also greater precision and consistency in motion tracking thanks to the stability brought about by the meticulous selection of the OP data. This precision is vital for developing accurate biomechanical models for clinical interventions. Moreover, this study revealed that the optimized DLC maintained higher average confidence levels across datasets, indicating more reliable and accurate detection capabilities compared with standalone OP. The clinical relevance of these findings is profound. The optimized DLC model's efficiency and enhanced point estimation stability make it an invaluable tool in rehabilitation monitoring and patient assessments, potentially streamlining clinical workflows. This study suggests future research directions, including integrating the optimized DLC model with virtual reality environments for enhanced patient engagement and leveraging its improved data quality for predictive analytics in healthcare. Overall, the optimized DLC model emerged as a transformative tool for biomechanical analysis and physical rehabilitation, promising to enhance the quality of patient care and healthcare delivery efficiency.


Assuntos
Movimento , Redes Neurais de Computação , Humanos , Movimento/fisiologia , Fenômenos Biomecânicos/fisiologia , Masculino , Feminino , Smartphone , Adulto , Postura Sentada , Posição Ortostática , Captura de Movimento
3.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000986

RESUMO

The capability to record data in passive, image-based wearable sensors can simplify data readouts and eliminate the requirement for the integration of electronic components on the skin. Here, we developed a skin-strain-actuated microfluidic pump (SAMP) that utilizes asymmetric aspect ratio channels for the recording of human activity in the fluidic domain. An analytical model describing the SAMP's operation mechanism as a wearable microfluidic device was established. Fabrication of the SAMP was achieved using soft lithography from polydimethylsiloxane (PDMS). Benchtop experimental results and theoretical predictions were shown to be in good agreement. The SAMP was mounted on human skin and experiments conducted on volunteer subjects demonstrated the SAMP's capability to record human activity for hundreds of cycles in the fluidic domain through the observation of a stable liquid meniscus. Proof-of-concept experiments further revealed that the SAMP could quantify a single wrist activity repetition or distinguish between three different shoulder activities.


Assuntos
Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Dimetilpolisiloxanos/química , Microfluídica/métodos , Microfluídica/instrumentação , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
4.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475041

RESUMO

The choice of torque curve in lower-limb enhanced exoskeleton robots is a key problem in the control of lower-limb exoskeleton robots. As a human-machine coupled system, mapping from sensor data to joint torque is complex and non-linear, making it difficult to accurately model using mathematical tools. In this research study, the knee torque data of an exoskeleton robot climbing up stairs were obtained using an optical motion-capture system and three-dimensional force-measuring tables, and the inertial measurement unit (IMU) data of the lower limbs of the exoskeleton robot were simultaneously collected. Nonlinear approximations can be learned using machine learning methods. In this research study, a multivariate network model combining CNN and LSTM was used for nonlinear regression forecasting, and a knee joint torque-control model was obtained. Due to delays in mechanical transmission, communication, and the bottom controller, the actual torque curve will lag behind the theoretical curve. In order to compensate for these delays, different time shifts of the torque curve were carried out in the model-training stage to produce different control models. The above model was applied to a lightweight knee exoskeleton robot. The performance of the exoskeleton robot was evaluated using surface electromyography (sEMG) experiments, and the effects of different time-shifting parameters on the performance were compared. During testing, the sEMG activity of the rectus femoris (RF) decreased by 20.87%, while the sEMG activity of the vastus medialis (VM) increased by 17.45%. The experimental results verify the effectiveness of this control model in assisting knee joints in climbing up stairs.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Torque , Extremidade Inferior , Articulação do Joelho
5.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931584

RESUMO

Understanding human movement patterns is crucial for comprehending how a city functions. It is also important for city planners and policymakers to create more efficient plans and policies for urban areas. Traditionally, human movement patterns were analyzed using origin-destination surveys, travel diaries, and other methods. Now, these patterns can be identified from various geospatial big data sources, such as mobile phone data, floating car data, and location-based social media (LBSM) data. These extensive datasets primarily identify individual or collective human movement patterns. However, the impact of spatial scale on the analysis of human movement patterns from these large geospatial data sources has not been sufficiently studied. Changes in spatial scale can significantly affect the results when calculating human movement patterns from these data. In this study, we utilized Weibo datasets for three different cities in China including Beijing, Guangzhou, and Shanghai. We aimed to identify the effect of different spatial scales on individual human movement patterns as calculated from LBSM data. For our analysis, we employed two indicators as follows: an external activity space indicator, the radius of gyration (ROG), and an internal activity space indicator, entropy. These indicators were chosen based on previous studies demonstrating their efficiency in analyzing sparse datasets like LBSM data. Additionally, we used two different ranges of spatial scales-10-100 m and 100-3000 m-to illustrate changes in individual activity space at both fine and coarse spatial scales. Our results indicate that although the ROG values show an overall increasing trend and the entropy values show an overall decreasing trend with the increase in spatial scale size, different local factors influence the ROG and entropy values at both finer and coarser scales. These findings will help to comprehend the dynamics of human movement across different scales. Such insights are invaluable for enhancing overall urban mobility and optimizing transportation systems.


Assuntos
Mídias Sociais , Humanos , China , Cidades , Viagem , Movimento/fisiologia , Sistemas de Informação Geográfica
6.
Behav Res Methods ; 56(4): 4103-4129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504077

RESUMO

Human movement trajectories can reveal useful insights regarding the underlying mechanisms of human behaviors. Extracting information from movement trajectories, however, can be challenging because of their complex and dynamic nature. The current paper presents a Python toolkit developed to help users analyze and extract meaningful information from the trajectories of discrete rapid aiming movements executed by humans. This toolkit uses various open-source Python libraries, such as NumPy and SciPy, and offers a collection of common functionalities to analyze movement trajectory data. To ensure flexibility and ease of use, the toolkit offers two approaches: an automated approach that processes raw data and generates relevant measures automatically, and a manual approach that allows users to selectively use different functions based on their specific needs. A behavioral experiment based on the spatial cueing paradigm was conducted to illustrate how one can use this toolkit in practice. Readers are encouraged to access the publicly available data and relevant analysis scripts as an opportunity to learn about kinematic analysis for human movements.


Assuntos
Movimento , Software , Humanos , Movimento/fisiologia , Fenômenos Biomecânicos , Linguagens de Programação , Masculino
7.
Proc Biol Sci ; 290(2000): 20230200, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312546

RESUMO

Despite decades of evidence revealing a multitude of ways in which animals are adapted to minimize the energy cost of locomotion, little is known about how energy expenditure shapes adaptive gait over complex terrain. Here, we show that the principle of energy optimality in human locomotion can be generalized to complex task-level locomotor behaviours requiring advance decision-making and anticipatory control. Participants completed a forced-choice locomotor task requiring them to choose between discrete multi-step obstacle negotiation strategies to cross a 'hole' in the ground. By modelling and analysing mechanical energy cost of transport for preferred and non-preferred manoeuvres over a wide range of obstacle dimensions, we showed that strategy selection was predicted by relative energy cost integrated across the complete multi-step task. Vision-based remote sensing was sufficient to select the strategy associated with the lowest prospective energy cost in advance of obstacle encounter, demonstrating the capacity for energetic optimization of locomotor behaviour in the absence of online proprioceptive or chemosensory feedback mechanisms. We highlight the integrative hierarchic optimizations that are required to facilitate energetically efficient locomotion over complex terrain and propose a new behavioural level linking mechanics, remote sensing and cognition that can be leveraged to explore locomotor control and decision-making.


Assuntos
Cognição , Metabolismo Energético , Animais , Humanos , Estudos Prospectivos , Locomoção , Telemetria
8.
J Theor Biol ; 558: 111367, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36470467

RESUMO

This study explores infectious disease transmission through contact during daily trips between municipalities. We propose an extended susceptible-infectious-recovered model that considers daily movements on the spatial spread of infectious disease. The current model considers two types of movement: long-term movements such as migration and shorter activities completed within a day. We present analytical results using a next-generation matrix and numerical results using actual human flow data, focusing on the number of days it takes for an outbreak from each region to reach the entire area. Our results suggest that the likelihood of infection depends on the ratio of human flow to population rather than the population per se.


Assuntos
Doenças Transmissíveis , Surtos de Doenças , Humanos , Suscetibilidade a Doenças , Doenças Transmissíveis/epidemiologia
9.
Psychophysiology ; 60(4): e14221, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36416574

RESUMO

Bilateral sensorimotor coordination is required for everyday activities, such as walking and sitting down/standing up from a chair. Sensorimotor coordination functional neuroimaging (fMRI) paradigms (e.g., stepping, cycling) increase activity in the sensorimotor cortex, supplementary motor area, insula, and cerebellum. Although these paradigms are designed to assay coordination, performance measures are rarely collected simultaneously with fMRI. Therefore, we aimed to identify neural correlates of lower extremity coordination using a bilateral, in-phase, multi-joint coordination task with concurrent MRI-compatible 3D motion analysis. Seventeen female athletes (15.0 ± 1.4 years) completed a bilateral, multi-joint lower-extremity coordination task during brain fMRI. Interlimb coordination was quantified from kinematic data as the correlation between peak-to-peak knee flexion cycle time between legs. Standard preprocessing and whole-brain analyses for task-based fMRI were completed in FSL, controlling for total movement cycles and neuroanatomical differences, with interlimb coordination as a covariate of interest. A clusterwise multi-comparison correction was applied at z > 3.1 and p < .05. Less interlimb coordination during the task was associated with greater activation in the posterior cingulate and precuneus (zmax  = 6.41, p < .01) and the lateral occipital cortex (zmax  = 7.55, p = .02). The inability to maintain interlimb coordination alongside greater activity in attention- and sensory-related brain regions may indicate a failed compensatory neural strategy to execute the task. Alternatively, greater activity could be secondary to reduced afferent acuity that may be elevating central demand to maintain in-phase lower extremity motor coordination. Future research aiming to improve sensorimotor coordination should consider interventional approaches uniquely capable of promoting adaptive neuroplasticity to enhance motor control.


Assuntos
Extremidade Inferior , Córtex Sensório-Motor , Humanos , Feminino , Extremidade Inferior/diagnóstico por imagem , Perna (Membro)/fisiologia , Caminhada/fisiologia , Neuroimagem
10.
Pain Med ; 24(Suppl 1): S48-S60, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36315101

RESUMO

OBJECTIVE: Biomechanics represents the common final output through which all biopsychosocial constructs of back pain must pass, making it a rich target for phenotyping. To exploit this feature, several sites within the NIH Back Pain Consortium (BACPAC) have developed biomechanics measurement and phenotyping tools. The overall aims of this article were to: 1) provide a narrative review of biomechanics as a phenotyping tool; 2) describe the diverse array of tools and outcome measures that exist within BACPAC; and 3) highlight how leveraging these technologies with the other data collected within BACPAC could elucidate the relationship between biomechanics and other metrics used to characterize low back pain (LBP). METHODS: The narrative review highlights how biomechanical outcomes can discriminate between those with and without LBP, as well as among levels of severity of LBP. It also addresses how biomechanical outcomes track with functional improvements in LBP. Additionally, we present the clinical use case for biomechanical outcome measures that can be met via emerging technologies. RESULTS: To answer the need for measuring biomechanical performance, our "Results" section describes the spectrum of technologies that have been developed and are being used within BACPAC. CONCLUSION AND FUTURE DIRECTIONS: The outcome measures collected by these technologies will be an integral part of longitudinal and cross-sectional studies conducted in BACPAC. Linking these measures with other biopsychosocial data collected within BACPAC increases our potential to use biomechanics as a tool for understanding the mechanisms of LBP, phenotyping unique LBP subgroups, and matching these individuals with an appropriate treatment paradigm.


Assuntos
Dor Lombar , Humanos , Dor Lombar/diagnóstico , Estudos Transversais , Fenômenos Biomecânicos , Literatura de Revisão como Assunto
11.
J Sports Sci ; 41(1): 27-35, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37031454

RESUMO

This study aimed to increase understanding of the biomechanics and dynamics of the upper limbs during the contact phase of the round-off (RO) performed using three techniques. Twenty female gymnasts performed six successful RO trials in each condition: parallel, T-shape and reverse. Kinetic and kinematic data were collected for each trial. All analyses focused on the contact phase for each hand. Continuous joint profiles examined the dynamics of these tasks as well as the kinetic sequencing. In each case, joint angles, angular velocity, moments and powers at the wrist and elbow joint were reported. Difference between the contact phases of the techniques was examined using a one-way ANOVA SPM. The T-shape technique demonstrated negative power at the wrist during contact; however, the elbow joint compensated with a significantly greater positive power generation during the propulsive phase, suggesting a more effective technique compared to the reduced powers of the reverse and parallel. The order of the peak joint powers during the contact phase, the reverse technique, demonstrated a proximal to distal sequence, in contrast to the distal to proximal for the other techniques. These findings highlight the task-specific coordinative structures during this closed chained action.


Assuntos
Articulação do Cotovelo , Ginástica , Humanos , Feminino , Fenômenos Biomecânicos , Extremidade Superior , Mãos
12.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067721

RESUMO

New and promising variables are being developed to analyze performance and fatigue in trail running, such as mechanical power, metabolic power, metabolic cost of transport and mechanical efficiency. The aim of this study was to analyze the behavior of these variables during a real vertical kilometer field test. Fifteen trained trail runners, eleven men (from 22 to 38 years old) and four women (from 19 to 35 years old) performed a vertical kilometer with a length of 4.64 km and 835 m positive slope. During the entire race, the runners were equipped with portable gas analyzers (Cosmed K5) to assess their cardiorespiratory and metabolic responses breath by breath. Significant differences were found between top-level runners versus low-level runners in the mean values of the variables of mechanical power, metabolic power and velocity. A repeated-measures ANOVA showed significant differences between the sections, the incline and the interactions between all the analyzed variables, in addition to differences depending on the level of the runner. The variable of mechanical power can be statistically significantly predicted from metabolic power and vertical net metabolic COT. An algebraic expression was obtained to calculate the value of metabolic power. Integrating the variables of mechanical power, vertical velocity and metabolic power into phone apps and smartwatches is a new opportunity to improve performance monitoring in trail running.


Assuntos
Consumo de Oxigênio , Corrida , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Consumo de Oxigênio/fisiologia , Corrida/fisiologia , Metabolismo Energético , Fadiga , Fenômenos Biomecânicos
13.
Sensors (Basel) ; 23(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631813

RESUMO

Integrated Ultra-wideband (UWB) and Magnetic Inertial Measurement Unit (MIMU) sensor systems have been gaining popularity for pedestrian tracking and indoor localization applications, mainly due to their complementary error characteristics that can be exploited to achieve higher accuracies via a data fusion approach. These integrated sensor systems have the potential for improving the ambulatory 3D analysis of human movement (estimating 3D kinematics of body segments and joints) over systems using only on-body MIMUs. For this, high accuracy is required in the estimation of the relative positions of all on-body integrated UWB/MIMU sensor modules. So far, these integrated UWB/MIMU sensors have not been reported to have been applied for full-body ambulatory 3D analysis of human movement. Also, no review articles have been found that have analyzed and summarized the methods integrating UWB and MIMU sensors for on-body applications. Therefore, a comprehensive analysis of this technology is essential to identify its potential for application in 3D analysis of human movement. This article thus aims to provide such a comprehensive analysis through a structured technical review of the methods integrating UWB and MIMU sensors for accurate position estimation in the context of the application for 3D analysis of human movement. The methods used for integration are all summarized along with the accuracies that are reported in the reviewed articles. In addition, the gaps that are required to be addressed for making this system applicable for the 3D analysis of human movement are discussed.


Assuntos
Movimento , Pedestres , Humanos , Tecnologia
14.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067803

RESUMO

Human movement recognition is the use of perceptual technology to collect some of the limb or body movements presented. This practice involves the use of wireless signals, processing, and classification to identify some of the regular movements of the human body. It has a wide range of application prospects, including in intelligent pensions, remote health monitoring, and child supervision. Among the traditional human movement recognition methods, the widely used ones are video image-based recognition technology and Wi-Fi-based recognition technology. However, in some dim and imperfect weather environments, it is not easy to maintain a high performance and recognition rate for human movement recognition using video images. There is the problem of a low recognition degree for Wi-Fi recognition of human movement in the case of a complex environment. Most of the previous research on human movement recognition is based on LiDAR perception technology. LiDAR scanning using a three-dimensional static point cloud can only present the point cloud characteristics of static objects; it struggles to reflect all the characteristics of moving objects. In addition, due to its consideration of privacy and security issues, the dynamic millimeter-wave radar point cloud used in the previous study on the existing problems of human body movement recognition performance is better, with the recognition of human movement characteristics in non-line-of-sight situations as well as better protection of people's privacy. In this paper, we propose a human motion feature recognition system (PNHM) based on spatiotemporal information of the 3D point cloud of millimeter-wave radar, design a neural network based on the network PointNet++ in order to effectively recognize human motion features, and study four human motions based on the threshold method. The data set of the four movements of the human body at two angles in two experimental environments was constructed. This paper compares four standard mainstream 3D point cloud human action recognition models for the system. The experimental results show that the recognition accuracy of the human body's when walking upright can reach 94%, the recognition accuracy when moving from squatting to standing can reach 84%, that when moving from standing to sitting can reach 87%, and the recognition accuracy of falling can reach 93%.


Assuntos
Movimento , Radar , Criança , Humanos , Movimento (Física) , Postura , Acidentes por Quedas
15.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904730

RESUMO

Reliable biomechanical methods to assess interlimb coordination during the double-support phase in post-stroke subjects are needed for assessing movement dysfunction and related variability. The data obtained could provide a significant contribution for designing rehabilitation programs and for their monitorisation. The present study aimed to determine the minimum number of gait cycles needed to obtain adequate values of repeatability and temporal consistency of lower limb kinematic, kinetic, and electromyographic parameters during the double support of walking in people with and without stroke sequelae. Eleven post-stroke and thirteen healthy participants performed 20 gait trials at self-selected speed in two separate moments with an interval between 72 h and 7 days. The joint position, the external mechanical work on the centre of mass, and the surface electromyographic activity of the tibialis anterior, soleus, gastrocnemius medialis, rectus femoris, vastus medialis, biceps femoris, and gluteus maximus muscles were extracted for analysis. Both the contralesional and ipsilesional and dominant and non-dominant limbs of participants with and without stroke sequelae, respectively, were evaluated either in trailing or leading positions. The intraclass correlation coefficient was used for assessing intra-session and inter-session consistency analysis. For most of the kinematic and the kinetic variables studied in each session, two to three trials were required for both groups, limbs, and positions. The electromyographic variables presented higher variability, requiring, therefore, a number of trials ranging from 2 to >10. Globally, the number of trials required inter-session ranged from 1 to >10 for kinematic, from 1 to 9 for kinetic, and 1 to >10 for electromyographic variables. Thus, for the double support analysis, three gait trials were required in order to assess the kinematic and kinetic variables in cross-sectional studies, while for longitudinal studies, a higher number of trials (>10) were required for kinematic, kinetic, and electromyographic variables.


Assuntos
Extremidade Inferior , Acidente Vascular Cerebral , Humanos , Estudos Transversais , Caminhada/fisiologia , Marcha/fisiologia , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Progressão da Doença , Eletromiografia/métodos
16.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991886

RESUMO

Obesity has a critical impact on musculoskeletal systems, and excessive weight directly affects the ability of subjects to realize movements. It is important to monitor the activities of obese subjects, their functional limitations, and the overall risks related to specific motor tasks. From this perspective, this systematic review identified and summarized the main technologies specifically used to acquire and quantify movements in scientific studies involving obese subjects. The search for articles was carried out on electronic databases, i.e., PubMed, Scopus, and Web of Science. We included observational studies performed on adult obese subjects whenever reporting quantitative information concerning their movement. The articles must have been written in English, published after 2010, and concerned subjects who were primarily diagnosed with obesity, thus excluding confounding diseases. Marker-based optoelectronic stereophotogrammetric systems resulted to be the most adopted solution for movement analysis focused on obesity; indeed, wearable technologies based on magneto-inertial measurement units (MIMUs) were recently adopted for analyzing obese subjects. Further, these systems are usually integrated with force platforms, so as to have information about the ground reaction forces. However, few studies specifically reported the reliability and limitations of these approaches due to soft tissue artifacts and crosstalk, which turned out to be the most relevant problems to deal with in this context. In this perspective, in spite of their inherent limitations, medical imaging techniques-such as Magnetic Resonance Imaging (MRI) and biplane radiography-should be used to improve the accuracy of biomechanical evaluations in obese people, and to systematically validate less-invasive approaches.


Assuntos
Obesidade , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Reprodutibilidade dos Testes , Movimento , Imageamento por Ressonância Magnética
17.
Build Environ ; 241: 110486, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37287526

RESUMO

It is now widely recognised that aerosol transport is major vector for transmission of diseases such as COVID-19, and quantification of aerosol transport in the built environment is critical to risk analysis and management. Understanding the effects of door motion and human movement on the dispersion of virus-laden aerosols under pressure-equilibrium conditions is of great significance to the evaluation of infection risks and development of mitigation strategies. This study uses novel numerical simulation techniques to quantify the impact of these motions upon aerosol transport and provides valuable insights into the wake dynamics of swinging doors and human movement. The results show that the wake flow of an opening swinging door delays aerosol escape, while that of a person walking out entrains aerosol out of the room. Aerosol escape caused by door motion mainly happens during the closing sequence which pushes the aerosols out. Parametric studies show that while an increased door swinging speed or human movement speed can enhance air exchange across the doorway, the cumulative aerosol exchange across the doorway is not clearly affected by the speeds.

18.
Entropy (Basel) ; 25(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36832672

RESUMO

The goal of this paper is to highlight considerations and provide recommendations for analytical issues that arise when applying entropy methods, specifically Sample Entropy (SampEn), to temporally correlated stochastic datasets, which are representative of a broad range of biomechanical and physiological variables. To simulate a variety of processes encountered in biomechanical applications, autoregressive fractionally integrated moving averaged (ARFIMA) models were used to produce temporally correlated data spanning the fractional Gaussian noise/fractional Brownian motion model. We then applied ARFIMA modeling and SampEn to the datasets to quantify the temporal correlations and regularity of the simulated datasets. We demonstrate the use of ARFIMA modeling for estimating temporal correlation properties and classifying stochastic datasets as stationary or nonstationary. We then leverage ARFIMA modeling to improve the effectiveness of data cleaning procedures and mitigate the influence of outliers on SampEn estimates. We also emphasize the limitations of SampEn to distinguish among stochastic datasets and suggest the use of complementary measures to better characterize the dynamics of biomechanical variables. Finally, we demonstrate that parameter normalization is not an effective procedure for increasing the interoperability of SampEn estimates, at least not for entirely stochastic datasets.

19.
Entropy (Basel) ; 25(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37895535

RESUMO

Quantifying the dynamical features of discrete tasks is essential to understanding athletic performance for many sports that are not repetitive or cyclical. We compared three dynamical features of the (i) bow hand, (ii) drawing hand, and (iii) center of mass during a single bow-draw movement between professional and neophyte archers: dispersion (convex hull volume of their phase portraits), persistence (tendency to continue a trend as per Hurst exponents), and regularity (sample entropy). Although differences in the two groups are expected due to their differences in skill, our results demonstrate we can quantify these differences. The center of mass of professional athletes exhibits tighter movements compared to neophyte archers (6.3 < 11.2 convex hull volume), which are nevertheless less persistent (0.82 < 0.86 Hurst exponent) and less regular (0.035 > 0.025 sample entropy). In particular, the movements of the bow hand and center of mass differed more between groups in Hurst exponent analysis, and the drawing hand and center of mass were more different in sample entropy analysis. This suggests tighter neuromuscular control over the more fluid dynamics of the movement that exhibits more active corrections that are more individualized. Our work, therefore, provides proof of principle of how well-established dynamical analysis techniques can be used to quantify the nature and features of neuromuscular expertise for discrete movements in elite athletes.

20.
J Sport Rehabil ; 32(5): 513-523, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812918

RESUMO

CONTEXT: Aberrant movement patterns among individuals with concussion history have been reported during sport-related movement. However, the acute postconcussion kinematic and kinetic biomechanical movement patterns during a rapid acceleration-deceleration task have not been profiled and leaves their progressive trajectory unknown. Our study aimed to examine single-leg hop stabilization kinematics and kinetics between concussed and healthy-matched controls acutely (≤7 d) and when asymptomatic (≤72 h of symptom resolution). DESIGN: Prospective, cohort laboratory study. METHODS: Ten concussed (60% male; 19.2 [0.9] y; 178.7 [14.0] cm; 71.3 [18.0] kg) and 10 matched controls (60% male; 19.5 [1.2] y; 176.1 [12.6] cm; 71.0 [17.0] kg) completed the single-leg hop stabilization task under single and dual task (subtracting by 6's or 7's) at both time points. Participants stood on a 30-cm tall box set 50% of their height behind force plates while in an athletic stance. A synchronized light was illuminated randomly, queuing participants to initiate the movement as rapidly as possible. Participants then jumped forward, landed on their nondominant leg, and were instructed to reach and maintain stabilization as fast as possible upon ground contact. We used 2 (group) × 2 (time) mixed-model analyses of variance to compare single-leg hop stabilization outcomes separately during single and dual task. RESULTS: We observed a significant main group effect for single-task ankle plantarflexion moment, with greater normalized torque (mean difference = 0.03 N·m/body weight; P = .048, g = 1.18) for concussed individuals across time points. A significant interaction effect for single-task reaction time indicated that concussed individuals had slower performance acutely relative to asymptomatic (mean difference = 0.09 s; P = .015, g = 0.64), while control group performance was stable. No other main or interaction effects for single-leg hop stabilization task metrics were present during single and dual task (P ≥ .051). CONCLUSIONS: Greater ankle plantarflexion torque coupled with slower reaction time may indicate stiff, conservative single-leg hop stabilization performance acutely following concussion. Our findings shed preliminary light on the recovery trajectories of biomechanical alterations following concussion and provide specific kinematic and kinetic focal points for future research.


Assuntos
Concussão Encefálica , Perna (Membro) , Humanos , Masculino , Feminino , Estudos Prospectivos , Concussão Encefálica/diagnóstico , Extremidade Inferior , Tornozelo , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA