Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1859(4): 612-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921499

RESUMO

BACKGROUND: N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent and an environmental carcinogen, causes DNA lesions and even carcinomas. DNA damage responses induced by MNNG activate various DNA repair genes and related signaling pathways. The present study aimed to investigate the regulatory mechanisms of human RR small subunit M2 (hRRM2) in response to MNNG. RESULTS: In this study, we demonstrated that the RRM2 gene was transactivated by MNNG exposure more strongly than the other small subunit, p53R2. The upregulated RRM2 translocated to the nucleus for DNA repair. Further study showed that E2F3 transactivated RRM2 expression by directly binding to its promoter after MNNG exposure. The transactivation was enhanced by the upregulation of NFY, which bound to the RRM2 promoter adjacent to the E2F3 binding site and interacted with E2F3. In response to MNNG treatment, E2F3 accumulated mainly through its phosphorylation at S124 and was dependent on ATR-CHK1 signaling. In comparison, p53R2 played a relatively weaker role in the MNNG-induced DNA damage response, and its transcription was regulated by the ATR-CHK2-E2F1/p53 pathway. CONCLUSIONS: We suggest that MNNG-stimulated ATR/CHK1 signaling stabilizes E2F3 by S124 phosphorylation, and then E2F3 together with NFY co-transactivate RRM2 expression for DNA repair. GENERAL SIGNIFICANCE: We propose a new mechanism for RRM2 regulation to maintain genome stability in response to environmental chemical carcinogens.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fator de Transcrição E2F3/metabolismo , Proteínas Quinases/metabolismo , Ribonucleosídeo Difosfato Redutase/biossíntese , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fator de Ligação a CCAAT/biossíntese , Carcinógenos/toxicidade , Quinase 1 do Ponto de Checagem , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Fator de Transcrição E2F3/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Instabilidade Genômica , Humanos , Metilnitronitrosoguanidina/toxicidade , Fosforilação , Proteínas Quinases/genética , Ribonucleosídeo Difosfato Redutase/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
2.
Biochem Pharmacol ; 103: 118-28, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26774458

RESUMO

Chronic hepatitis B virus (HBV) infection is a key factor for hepatocellular carcinoma worldwide. Ribonucleotide reductase (RR) regulates the deoxyribonucleoside triphosphates biosynthesis and serves as a target for anti-cancer therapy. Here, we demonstrate that RR is essential for HBV replication and the viral covalently-closed-circular DNA (cccDNA) synthesis in host liver cells. By performing computer-assisted virtual screening against the crystal structure of RR small subunit M2 (RRM2), osalmid, was identified as a potential RRM2-targeting compound. Osalmid was shown to be 10-fold more active in inhibiting RR activity than hydroxyurea, and significantly inhibited HBV DNA and cccDNA synthesis in HepG2.2.15 cells. In contrast, hydroxyurea and the RR large subunit (RRM1)-inhibitory drug gemcitabine showed little selective activity against HBV replication. In addition, osalmid also was shown to possess potent activity against a 3TC-resistant HBV strain, suggesting utility in treating drug-resistant HBV infections. Interestingly, osalmid showed synergistic effects with lamivudine (3TC) in vitro and in vivo without significant toxicity, and was shown to inhibit RR activity in vivo, thus verifying its in vivo function. Furthermore, 4-cyclopropyl-2-fluoro-N-(4-hydroxyphenyl) benzamide (YZ51), a novel derivative of osalmid, showed higher efficacy than osalmid with more potent RR inhibitory activity. These results suggest that RRM2 might be targeted for HBV inhibition, and the RRM2-targeting compound osalmid and its derivative YZ51 could be a novel class of anti-HBV candidates with potential use for hepatitis B and HBV-related HCC treatment.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Fígado/virologia , Ribonucleosídeo Difosfato Redutase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Replicação do DNA , DNA Circular/biossíntese , DNA Viral/biossíntese , Farmacorresistência Viral , Sinergismo Farmacológico , Genoma Viral , Vírus da Hepatite B/fisiologia , Humanos , Hidroxiureia/farmacologia , Lamivudina/farmacologia , Camundongos , Mutação , Salicilanilidas/farmacologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA