Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.239
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 42(21): e113499, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37728254

RESUMO

The occurrence of plant disease is determined by interactions among host, pathogen, and environment. Air humidity shapes various aspects of plant physiology and high humidity has long been known to promote numerous phyllosphere diseases. However, the molecular basis of how high humidity interferes with plant immunity to favor disease has remained elusive. Here we show that high humidity is associated with an "immuno-compromised" status in Arabidopsis plants. Furthermore, accumulation and signaling of salicylic acid (SA), an important defense hormone, are significantly inhibited under high humidity. NPR1, an SA receptor and central transcriptional co-activator of SA-responsive genes, is less ubiquitinated and displays a lower promoter binding affinity under high humidity. The cellular ubiquitination machinery, particularly the Cullin 3-based E3 ubiquitin ligase mediating NPR1 protein ubiquitination, is downregulated under high humidity. Importantly, under low humidity the Cullin 3a/b mutant plants phenocopy the low SA gene expression and disease susceptibility that is normally observed under high humidity. Our study uncovers a mechanism by which high humidity dampens a major plant defense pathway and provides new insights into the long-observed air humidity influence on diseases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Umidade , Proteínas Culina/genética , Proteínas Culina/metabolismo , Arabidopsis/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Proc Natl Acad Sci U S A ; 121(1): e2302480120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147646

RESUMO

Arid and semi-arid regions of the world are particularly vulnerable to greenhouse gas-driven hydroclimate change. Climate models are our primary tool for projecting the future hydroclimate that society in these regions must adapt to, but here, we present a concerning discrepancy between observed and model-based historical hydroclimate trends. Over the arid/semi-arid regions of the world, the predominant signal in all model simulations is an increase in atmospheric water vapor, on average, over the last four decades, in association with the increased water vapor-holding capacity of a warmer atmosphere. In observations, this increase in atmospheric water vapor has not happened, suggesting that the availability of moisture to satisfy the increased atmospheric demand is lower in reality than in models in arid/semi-arid regions. This discrepancy is most clear in locations that are arid/semi-arid year round, but it is also apparent in more humid regions during the most arid months of the year. It indicates a major gap in our understanding and modeling capabilities which could have severe implications for hydroclimate projections, including fire hazard, moving forward.

3.
Proc Natl Acad Sci U S A ; 121(12): e2315940121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489384

RESUMO

Water microdroplets (7 to 11 µm average diameter, depending on flow rate) are sprayed in a closed chamber at ambient temperature, whose relative humidity (RH) is controlled. The resulting concentration of ROS (reactive oxygen species) formed in the microdroplets, measured by the amount of hydrogen peroxide (H2O2), is determined by nuclear magnetic resonance (NMR) and by spectrofluorimetric assays after the droplets are collected. The results are found to agree closely with one another. In addition, hydrated hydroxyl radical cations (•OH-H3O+) are recorded from the droplets using mass spectrometry and superoxide radical anions (•O2-) and hydroxyl radicals (•OH) by electron paramagnetic resonance spectroscopy. As the RH varies from 15 to 95%, the concentration of H2O2 shows a marked rise by a factor of about 3.5 in going from 15 to 50%, then levels off. By replacing the H2O of the sprayed water with deuterium oxide (D2O) but keeping the gas surrounding droplets with H2O, mass spectrometric analysis of the hydrated hydroxyl radical cations demonstrates that the water in the air plays a dominant role in producing H2O2 and other ROS, which accounts for the variation with RH. As RH increases, the droplet evaporation rate decreases. These two facts help us understand why viruses in droplets both survive better at low RH values, as found in indoor air in the wintertime, and are disinfected more effectively at higher RH values, as found in indoor air in the summertime, thus explaining the recognized seasonality of airborne viral infections.

4.
Plant J ; 117(3): 653-668, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997486

RESUMO

Air humidity significantly impacts plant physiology. However, the upstream elements that mediate humidity sensing and adaptive responses in plants remain largely unexplored. In this study, we define high humidity-induced cellular features of Arabidopsis plants and take a quantitative phosphoproteomics approach to obtain a high humidity-responsive landscape of membrane proteins, which we reason are likely the early checkpoints of humidity signaling. We found that a brief high humidity exposure (i.e., 0.5 h) is sufficient to trigger extensive changes in membrane protein abundance and phosphorylation. Enrichment analysis of differentially regulated proteins reveals high humidity-sensitive processes such as 'transmembrane transport', 'response to abscisic acid', and 'stomatal movement'. We further performed a targeted screen of mutants, in which high humidity-responsive pathways/proteins are disabled, to uncover genes mediating high humidity sensitivity. Interestingly, ethylene pathway mutants (i.e., ein2 and ein3eil1) display a range of altered responses, including hyponasty, reactive oxygen species level, and responsive gene expression, to high humidity. Furthermore, we observed a rapid induction of ethylene biosynthesis genes and ethylene evolution after high humidity treatment. Our study sheds light on the potential early signaling events in humidity perception, a fundamental but understudied question in plant biology, and reveals ethylene as a key modulator of high humidity responses in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Umidade , Etilenos/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant J ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072887

RESUMO

Stomatal pores in plant leaves mediate CO2 uptake for photosynthesis and water loss via transpiration. Altered stomatal density can affect plant photosynthetic capacity, water use efficiency, and growth, potentially providing either benefits or drawbacks depending on the environment. Here we explore, at different air humidity regimes, gas exchange, stomatal anatomy, and growth of Arabidopsis lines designed to combine increased stomatal density (epf1, epf2) with high stomatal sensitivity (ht1-2, cyp707a1/a3). We show that the stomatal density and sensitivity traits combine as expected: higher stomatal density increases stomatal conductance, whereas the effect is smaller in the high stomatal sensitivity mutant backgrounds than in the epf1epf2 double mutant. Growth under low air humidity increases plant stomatal ratio with relatively more stomata allocated to the adaxial epidermis. Low relative air humidity and high stomatal density both independently impair plant growth. Higher evaporative demand did not punish increased stomatal density, nor did inherently low stomatal conductance provide any protection against low relative humidity. We propose that the detrimental effects of high stomatal density on plant growth at a young age are related to the cost of producing stomata; future experiments need to test if high stomatal densities might pay off in later life stages.

6.
Annu Rev Phys Chem ; 75(1): 257-281, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382569

RESUMO

The phase state of aerosol particles can impact numerous atmospheric processes, including new particle growth, heterogeneous chemistry, cloud condensation nucleus formation, and ice nucleation. In this article, the phase transitions of inorganic, organic, and organic/inorganic aerosol particles are discussed, with particular focus on liquid-liquid phase separation (LLPS). The physical chemistry that determines whether LLPS occurs, at what relative humidity it occurs, and the resultant particle morphology is explained using both theoretical and experimental methods. The known impacts of LLPS on aerosol processes in the atmosphere are discussed. Finally, potential evidence for LLPS from field and chamber studies is presented. By understanding the physical chemistry of the phase transitions of aerosol particles, we will acquire a better understanding of aerosol processes, which in turn impact human health and climate.

7.
Nano Lett ; 24(11): 3476-3483, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445608

RESUMO

Experiments have demonstrated that mild humidity can enhance the stability of the CsPbBr3 perovskite, though the underlying mechanism remains unclear. Utilizing ab initio molecular dynamics, ring polymer molecular dynamics, and non-adiabatic molecular dynamics, our study reveals that nuclear quantum effects (NQEs) play a crucial role in stabilizing the lattice rigidity of the perovskite while simultaneously shortening the charge carrier lifetime. NQEs reduce the extent of geometric disorder and the number of atomic fluctuations, diminish the extent of hole localization, and thereby improve the electron-hole overlap and non-adiabatic coupling. Concurrently, these effects significantly suppress phonon modes and slow decoherence. As a result, these factors collectively accelerate charge recombination by a factor of 1.42 compared to that in scenarios excluding NQEs. The resulting sub-10 ns recombination time scales align remarkably well with experimental findings. This research offers novel insight into how moisture resistance impacts the stability and charge carrier lifetime in all-inorganic perovskites.

8.
Clin Infect Dis ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158989

RESUMO

PURPOSE: To identify weather variables associated with pathogens contributing to infectious conjunctivitis globally. METHODS: Sample collection and pathogen identification from patients with acute infectious conjunctivitis was performed from 2017 to 2023. We linked pathogens identified from 13 sites across 8 countries with publicly available weather data by geographic coordinates. Mixed effects logistic regression analysis was performed to estimate the associations between temperature, precipitation, and relative humidity exposures, and the prevalence of infection types (RNA virus, DNA virus, bacteria, and fungus). RESULTS: 498 cases from the United States, India, Nepal, Thailand, Burkina Faso, Niger, Vietnam, and Israel were included in the analysis. 8-day average precipitation (mm) was associated with increased odds of RNA virus infection (odds ratio (OR)=1.47, 95% confidence interval (CI): 1.12 to 1.93, P=0.01) and decreased odds of DNA infection (OR=0.62, 95% CI: 0.46 to 0.82, P<0.001). Relative humidity (%) was associated with increased odds of RNA virus infections (OR=2.64, 95% CI: 1.51 to 4.61, P<0.001), and fungal infections (OR=2.35, 95% CI: 1.19 to 4.66, P=0.01), but decreased odds of DNA virus (OR=0.58, 95%CI: 0.37 to 0.90, P=0.02) and bacterial infections (OR=0.42, 95% CI: 0.25 to 0.71, P<0.001). Temperature (°C) was not associated with ocular infections for any pathogen type. CONCLUSIONS: This study suggests that weather factors affect pathogens differently. Particularly, humidity and precipitation were predictors for pathogens contributing to conjunctivitis worldwide. Additional work is needed to clarify the effects of shifts in weather and environmental factors on ocular infectious diseases.

9.
Int J Cancer ; 155(4): 646-653, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598851

RESUMO

Nasopharyngeal carcinoma (NPC) has a unique geographic distribution. It is unknown whether meteorological factors are related to the incidence of NPC. To investigate the effect of ambient temperature, relative humidity (RH), and absolute humidity (AH) on the incidence of NPC, we collected the incidence rate of NPC in 2016 and meteorological data from 2006 to 2016 from 484 cities and counties across 31 provinces in China. Generalized additive models with quasi-Poisson regression and generalized linear models with natural cubic splines were employed respectively to elucidate the nonlinear relationships and specify the partial linear relationships. Subgroup and interactive analysis were also conducted. Temperature (R2 = 0.68, p < .001), RH (R2 = 0.47, p < .001), and AH (R2 = 0.70, p < .001) exhibited nonlinear correlations with NPC incidence rate. The risk of NPC incidence increased by 20.3% (95% confidence intervals [CI]: [18.9%, 21.7%]) per 1°C increase in temperature, by 6.3% (95% CI: [5.3%, 7.2%]) per 1% increase in RH, and by 32.2% (95% CI: [30.7%, 33.7%]) per 1 g/m3 increase in AH, between their the 25th and the 99th percentiles. In addition, the combination of low temperature and low RH was also related to increased risk (relative risk: 1.60, 95% CI: [1.18, 2.17]). Males and eastern or rural populations tended to be more vulnerable. In summary, this study suggests that ambient temperature, RH, and particularly AH are associated with the risk of NPC incidence.


Assuntos
Umidade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Temperatura , Humanos , China/epidemiologia , Masculino , Incidência , Carcinoma Nasofaríngeo/epidemiologia , Carcinoma Nasofaríngeo/etiologia , Feminino , Neoplasias Nasofaríngeas/epidemiologia , Neoplasias Nasofaríngeas/etiologia , Pessoa de Meia-Idade , Fatores de Risco , Adulto
10.
Biochem Biophys Res Commun ; 733: 150681, 2024 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276695

RESUMO

The environment has long been considered a crucial factor influencing the onset and progression of pulmonary diseases. Environmental therapy is also a practical treatment approach for many conditions. While research has explored the effects of factors like air pressure and oxygen concentration on pulmonary arterial hypertension (PAH), the impact of air humidity on PAH has not been investigated. In this study, we examined the role of different air humidity levels in a mouse model of PAH by controlling relative humidity. We induced PAH in mice using 10 % hypoxia, which led to significant thickening of the pulmonary vasculature, elevated right ventricular systolic pressure, and an increased right ventricular hypertrophy index (RVHI). However, when exposed to an environment with 80-95 % relative humidity, there was a marked reduction in the extent of pulmonary vascular remodeling, decreased vascular thickening, and lower RVHI, effectively preserving right heart function. Notably, changes in the Bmpr2/Tgf-ß signaling pathway were significant and may play a pivotal role in this protective effect. In summary, our findings indicate that high relative humidity confers a protective effect on hypoxia-induced PAH in mice, providing novel insights into potential treatments for PAH.


Assuntos
Umidade , Hipóxia , Camundongos Endogâmicos C57BL , Animais , Hipóxia/complicações , Hipóxia/fisiopatologia , Camundongos , Masculino , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Remodelação Vascular , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Modelos Animais de Doenças , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/etiologia
11.
BMC Plant Biol ; 24(1): 903, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350005

RESUMO

BACKGROUND: During the cold season, low temperature (LT) and high relative humidity (HRH) are significant environmental factors in greenhouses and plastic tunnels, often hindering plant growth and development. The chlorophyll (Chl) biosynthesis inhibitory mechanisms under LT and HRH stress are still widely unclear. To understand how cucumbers seedlings respond to LT and HRH stress, we investigated the impact of these stressors on Chl biosynthesis. RESULTS: Our results revealed that individual LT, HRH and combined LT + HRH stress conditions affected chlorophyll a, b, total chlorophyll and carotenoid content, reducing the levels of these pigments. The levels of Chlorophyll precursors were also markedly reduced under LT and HRH stresses, with the greatest reduction observed in cucumber seedlings exposed to LT + HRH conditions (9/5℃, 95%HRH). The activities of glutamate-1-semialdehyde transaminase (GSA-AT), ALA dehydratase (ALAD), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were increased under individual LT, HRH, conditions but decreased by combination of LT + HRH stress condition. In addition, Chl biosynthesis related genes (except PBG) were upregulated by the HRH stress but were significantly downregulated under the LT + HRH stress condition in cucumber seedlings. Furthermore, the content of phenols, flavonoids and phenolic acids (cinnamic acid and caffeic acid) were significantly surged under LT + HRH treatment over the control. Histochemical observation showed higher O2- and H2O2 content in cucumber leaves during the LT and HRH stress. CONCLUSION: The results indicate that LT + HRH stress significantly impairs chlorophyll biosynthesis in cucumber seedlings by drastically reducing pigment accumulation, altering enzyme activity and gene expression. Additionally, LT + HRH stress induces oxidative damage, which further exacerbates the decline in chlorophyll content and affects overall cucumber metabolism.


Assuntos
Clorofila , Temperatura Baixa , Cucumis sativus , Umidade , Cucumis sativus/metabolismo , Cucumis sativus/genética , Clorofila/metabolismo , Plântula/metabolismo , Plântula/genética , Metabolismo Secundário , Regulação da Expressão Gênica de Plantas
12.
Small ; 20(10): e2306463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37899294

RESUMO

Flexible humidity sensors have received more and more attention in people's lives, and the problems of gas permeability and power supply issues of the device have long been areas in need of improvement. In this work, inspired by the high air permeability of daily wear clothing and galvanic batteries, a self-powered humidity sensor with high air permeability and fast response is designed. A nylon fabric/GO net (as a humidity sensitive layer and solid electrolyte) is obtained by spraying technique. This structure enables the sensor to have fast response/recovery (0.78 s/0.93 s, calculated at 90% of the final value), ultra-high response (0.83 V) and excellent stability (over 150 cycles) at 35 °C. Such sensors are useful for health monitoring, such as non-contact monitoring of human respiratory rate before and after exercise, and monitoring a level of humidity in the palms, arms, and fingers. This research provides an idea for developing a flexible wearable humidity sensor that is both breathable and self-powered and can also be mass-produced similar to wearable clothing.


Assuntos
Fontes de Energia Elétrica , Nylons , Humanos , Umidade , Permeabilidade
13.
Small ; 20(29): e2310465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366001

RESUMO

The modification of metal oxides with noble metals is one of the most effective means of improving gas-sensing performance of chemiresistors, but it is often accompanied by unintended side effects such as sensor resistance increases up to unmeasurable levels. Herein, a carbonization-oxidation method is demonstrated using ultrasonic spray pyrolysis technique to realize platinum (Pt) single atom (SA) substitutional doping into SnO2 (named PtSA-SnO2). The substitutional doping strategy can obviously enhance gas-sensing properties, and meanwhile decrease sensor resistance by two orders of magnitude (decreased from ≈850 to ≈2 MΩ), which are attributed to the tuning of band gap and fermi-level position, efficient single atom catalysis, and the raising of adsorption capability of formaldehyde, as validated by the state-of-the-art characterizations, such as spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in situ diffuse reflectance infrared Fourier transformed spectra (in situ DRIFT), CO temperature-programmed reduction (CO-TPR), and theoretical calculations. As a proof of concept, the developed PtSA-SnO2 sensor shows humidity-independent (30-70% relative humidity) gas-sensing performance in the selective detection of formaldehyde with high response, distinguishable selectivity (8< Sformaldehyde/Sinterferant <14), and ultra-low detection limit (10 ppb). This work presents a generalized and facile method to design high-performance metal oxides for chemical sensing of volatile organic compounds (VOCs).

14.
Small ; : e2407591, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412127

RESUMO

Understanding the degradation mechanisms of Pt-alloy catalysts is crucial for enhancing their durability. This study investigates the impact of relative humidity on Pt and Pt3Co catalysts using potential-cycling-based accelerated stress tests. Two conditions are investigated: 100% relative humidity on both sides, and a gradient with 30% at the anode and over 100% at the cathode. Pt3Co demonstrates sensitivity, with 77% performance loss and reductions in electrocatalyst surface area. Results demonstrate a 30% decrease in potential loss for Pt catalysts and a 77% increase for Pt3Co catalysts, indicating significant performance degradation in high humidity conditions, with Pt3Co exhibiting greater sensitivity. Measurements of electrochemically active surface area reinforce these findings. Resistance analysis using electrochemical impedance spectroscopy using equivalent circuit modeling reveals a threefold increase in Pt3Co MEAs' cathode charge transfer resistance and mass transport resistance during accelerated stress tests. Local current distribution analysis highlights differences between Pt catalyst and Pt3Co, with the latter displaying dealloying effects. Small-angle X-ray scattering reveals changes in particle and cluster sizes, indicating structural changes. Scanning electron microscopy highlights catalyst and membrane thickness variations, suggesting heterogeneity in Pt3Co. Under humidity gradients, Ostwald ripening plays a significant role in altering the catalyst's Pt3Co structure and subsequently impacting its performance.

15.
Small ; 20(36): e2401846, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38686690

RESUMO

Triboelectric nanogenerators (TENGs) are sustainable energy resources for powering electronic devices from miniature to large-scale applications. However, their output performance and stability can deteriorate significantly when TENGs are exposed to moisture or humidity caused by the ambient environment or human physiological activities. This review provides an overview of the recent research advancements in enhancing the humidity resistance of TENGs. Various approaches have been reviewed including encapsulation techniques, surface modification of triboelectric materials to augment hydrophobicity or superhydrophobicity, the creation of fibrous architectures for effective moisture dissipation, leveraging water assistance for TENG performance enhancement, and other strategies like charge excitation. These research efforts contribute to the improvement of environmental adaptability and lead to expanded practical TENG applications both as energy harvesters and self-powered sensors. The efficacy of these strategies and future challenges are also discussed to facilitate the continued development of resilient TENGs in high humidity environments.

16.
Small ; 20(33): e2400482, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38534165

RESUMO

Humidity-responsive materials hold broad application prospects in sensing, energy production, and other fields. Particularly, humidity-sensitive, flexibility, and water resistance are pivotal factors in the development of optimized humidity-responsive materials. In this study, hydrophobic linear polyurethane and hydrophilic 4-vinylphenylboronic acid (4-VPBA) form a semi-intercross cross-linking network. This copolymer of polyurethane exhibits excellent humidity-sensitive, mechanical properties, and water resistance. Its maximum tensile strength and maximum elongation can reach 40.56 MPa and 543.47%, respectively. After being immersed in water at various temperatures for 15 days, it exhibited a swelling ratio of only 3.28% in water at 5 °C and 9.58% in water at 70 °C. While the presence of 4-VPBA network imparts humidity-sensitive, reversible, and multidirectional bending abilities, under the stimulus of water vapor, it can bend 43° within 1.4 s. The demonstrated material surpasses current bidirectional humidity actuators in actuating ability. Based on these characteristics, automatically opening waterproof umbrellas and windows, as well as bionic-arms, crawling robots, and self-propelled boats, are successfully developed.

17.
Small ; 20(12): e2307960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946615

RESUMO

The quality of two-step processed perovskites is significantly influenced by the distribution of organic amine salts. Especially, modulating the distribution of organic amine salts remains a grand challenge for sequential vapor-deposited perovskites due to the blocking effect of bottom compact PbI2. Herein, an ultrahigh humidity treatment strategy is developed to facilitate the diffusion of formamidinium iodide (FAI) from the top surface to the buried bottom interface on the sequential vapor-deposited bilayer structure. Both experimental and theoretical investigations elucidate the mechanism that moisture helps to i) create FAI diffusion channels by inducing a phase transition from α- to δ-phase in the perovskite, and ii) enhance the diffusivity of FAI by forming hydrogen bonds. This ultrahigh humidity treatment strategy enables the formation of a desired homogeneous and high-quality α-phase after annealing. As a result, a champion efficiency of 22.0% is achieved and 97.5% of its initial performance is maintained after aging for 1050 h under ambient air with a relative humidity of up to 80%. This FAI diffusion strategy provides new insights into the reproducible, scalable, and high-performance sequential vapor-deposited perovskite solar cells.

18.
Small ; 20(24): e2307439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213007

RESUMO

Neuroprosthetics and brain-machine interfaces are immensely beneficial for people with neurological disabilities, and the future generation of neural repair systems will utilize neuromorphic devices for the advantages of energy efficiency and real-time performance abilities. Conventional synaptic devices are not compatible to work in such conditions. The cerebrospinal fluid (CSF) in the central part of the nervous system is composed of 99% water. Therefore, artificial synaptic devices, which are the fundamental component of neuromorphic devices, should resemble biological nerves while being biocompatible, and functional in high-humidity environments with higher functional stability for real-time applications in the human body. In this work, artificial synaptic devices are fabricated based on gelatin-PEDOT: PSS composite as an active material to work more effectively in a highly humid environment (≈90% relative humidity). These devices successfully mimic various synaptic properties by the continuous variation of conductance, like, excitatory/inhibitory post-synaptic current(EPSC/IPSC), paired-pulse facilitation/depression(PPF/PPD), spike-voltage dependent plasticity (SVDP), spike-duration dependent plasticity (SDDP), and spike-rate dependent plasticity (SRDP) in environments at a relative humidity levels of ≈90%.


Assuntos
Umidade , Animais , Sinapses/fisiologia , Humanos , Plasticidade Neuronal/fisiologia , Proteínas/química
19.
Small ; 20(23): e2309831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38133510

RESUMO

Non-invasive breath testing has gained increasing importance for early disease screening, spurring research into cheap sensors for detecting trace biomarkers such as ammonia. However, real-life deployment of ammonia sensors remains hindered by susceptibility to humidity-induced interference. The SnTe/SnSe heterojunction-based chemiresistive-type sensor demonstrates an excellent response/recovery to different concentrations of ammonia from 0.1 to 100 ppm at room temperature. The improved sensing properties of the heterojunctions-based sensors compared to single-phased SnTe or SnSe can be attributed to the stronger NH3 adsorptions, more Te vacancies, and hydrophobic surface induced by the formed SnTe/SnSe heterojunctions. The sensing mechanisms are investigated in detail by using in situ techniques such as diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), Kelvin probe, and a.c. impedance spectroscopy together with the Density-Function-Theory calculations. The formed heterojunctions boost the overall charge transfer efficiency between the ammonia and the sensing materials, thus leading to the desirable sensing features as well, with excellent resistance to ambient humidities.

20.
Small ; 20(44): e2403842, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38966890

RESUMO

Constructing versatile metal nanoclusters (NCs) assemblies through noncovalent weak interactions between inter-ligands is a long-standing challenge in interfacial chemistry, while compelling interfacial hydrogen-bond-driven metal NCs assemblies remain unexplored so far. Here, the study reports an amination-ligand o-phenylenediamine-coordinated copper NCs (CuNCs), demonstrating the impact of interfacial hydrogen-bonds (IHBs) motifs on the luminescent behaviors of metal NCs as the alteration of protic solvent. Experimental results supported by theoretical calculation unveil that the flexibility of interfacial ligand and the distance of cuprophilic CuI···CuI interaction between intra-/inter-NCs can be tailored by manipulating the cooperation between the diverse IHBs motifs reconstruction, therewith the IHBs-modulated fundamental structure-property relationships are established. Importantly, by utilizing the IHBs-mediated optical polychromatism of aminated CuNCs, portable visualization of humidity sensing test-strips with fast response is successfully manufactured. This work not only provides further insights into exploring the interfacial chemistry of NCs based on inter-ligands hydrogen-bond interactions, but also offers a new opportunity to expand the practical application for optical sensing of metal NCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA