Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(40): 12442-12451, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39316758

RESUMO

Hydrogels have shown promise as quasi-solid-state electrolytes for flexible supercapacitors but face challenges such as poor self-repair, unstable electrode adhesion, limited temperature range, and flammability. Herein, an all-round green hydrogel electrolyte (silk nanofibers (SNFs)/peach gum polysaccharide (PGP)/borax/glycerol (SPBG)-ZnSO4) addresses these issues through dynamic cross-linking of peach gum polysaccharide and silk nanofibers with borax, integrating varieties of key property including high water retention, broad temperature tolerance (-20 to 90 °C), excellent self-adhesion (60.7 kPa for carbon cloth electrodes), satisfactory flame retardancy (limited oxygen index of 51%), low-temperature self-healing (-20 °C), and good ionic conductivity (7.68 mS cm-1). The resulting supercapacitor exhibits excellent cycling stability with 98.2% capacitance retention after 40,000 long cycles at 25 °C. The specific capacitance retention remains above 90% even after 15,000 cycles at high/low temperatures (50 °C/-20 °C). Furthermore, the flexible supercapacitor demonstrates stable performance under mechanical stimuli (180° bending and perforation), highlighting the potential of biomass hydrogels in flexible energy storage devices.

2.
Small ; 20(33): e2400369, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38558327

RESUMO

Hydrogel electrolyte can endow supercapacitors with excellent flexibility, which has developed rapidly in recent years. However, the water-rich structures of hydrogel electrolyte are easy to freeze at subfreezing and dry at high temperatures, which will affect its energy storage characteristics. The low energy density of micro supercapacitors also hinders their development. Herein, a strategy is proposed to reduce the free water activity in the hydrogel to improve the operating voltage and the energy density of the device, which is achieved through the synergistic effect of the hydrogel skeleton, N, N'-dimethylformamide (DMF), NaClO4 and water. High concentrations of DMF and NaClO4 are introduced into sodium alginate/polyacrylamide (SA/PAAM) hydrogel through solvent exchange to obtain SA/PAAM/DMF/NaClO4 hydrogel electrolyte, which exhibited a high ionic conductivity of 82.1 mS cm-1, a high breaking strength of 563.2 kPa, and a wide voltage stability window of 3.5 V. The supercapacitor devices are assembled by the process of direct adhesion of the hydrogel electrolyte and  laser induced graphene (LIG). The micro-supercapacitor exhibited an operating voltage of 2.0 V, with a specific capacitance of 2.41 mF cm-2 and a high energy density of 1.34 µWh cm-2, and it also exhibit a high cycle stability, good flexibility, and integration performance.

3.
Small ; 20(30): e2312116, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38446107

RESUMO

Flexible zinc-ion batteries have garnered significant attention in the realm of wearable technology. However, the instability of hydrogel electrolytes in a wide-temperature range and uncontrollable side reactions of the Zn electrode have become the main problems for practical applications. Herein, N,N-dimethylformamide (DMF) to design a binary solvent (H2O-DMF) is introduced and combined it with polyacrylamide (PAM) and ZnSO4 to synthesize a hydrogel electrolyte (denoted as PZD). The synergistic effect of DMF and PAM not only guides Zn2+ deposition on Zn(002) crystal plane and isolates H2O from the Zn anode, but also breaks the hydrogen bonding network between water to improve the wide-temperature range stability of hydrogel electrolytes. Consequently, the symmetric cell utilizing PZD can stably cycle over 5600 h at 0.5 mA cm- 2@0.5 mAh cm-2. Furthermore, the Zn//PZD//MnO2 full cell exhibits favorable wide-temperature range adaptability (for 16000 cycles at 3 A g-1 under 25 °C, 750 cycles with 98 mAh g-1 at 0.1 A g-1 under -20 °C) and outstanding mechanical properties (for lighting up the LEDs under conditions of pressure, bending, cutting, and puncture). This work proposes a useful modification for designing a high-performance hydrogel electrolyte, which provides a reference for investigating the practical flexible aqueous batteries.

4.
Macromol Rapid Commun ; : e2400404, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083305

RESUMO

Mechanically robust and ionically conductive hydrogels poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonate-lithium)/TiO2/SiO2 (P(AM-co-AMPSLi)/TiO2/SiO2) with inorganic hybrid crosslinking are fabricated through dual in situ sol-gel reaction of vinyltriethoxysilane (VTES) and tetrabutyl titanate (TBOT), and in situ radical copolymerization of acrylamide (AM), 2-acrylamide-2-methylpropanesulfonate-lithium (AMPSLi), and vinyl-SiO2. Due to the introduction of the sulfonic acid groups and Li+ by the reaction of AMPS with Li2CO3, the conductivity of the ionic hydrogel can reach 0.19 S m-1. Vinyl-SiO2 and nano-TiO2 are used in this hybrid hydrogel as both multifunctional hybrid crosslinkers and fillers. The hybrid hydrogels demonstrate high tensile strength (0.11-0.33 MPa) and elongation at break (98-1867%), ultrahigh compression strength (0.28-1.36 MPa), certain fatigue resistance, self-healing, and self-adhesive properties, which are due to covalent bonds between TiO2 and SiO2, as well as P(AM-co-AMPSLi) chains and SiO2, and noncovalent bonds between TiO2 and P(AM-co-AMPSLi) chains, as well as the organic frameworks. Furthermore, the specific capacitance, energy density, and power density of the supercapacitors based on ionic hybrid hydrogel electrolytes are 2.88 F g-1, 0.09 Wh kg-1, and 3.07 kW kg-1 at a current density of 0.05 A g-1, respectively. Consequently, the ionic hybrid hydrogels show great promise as flexible energy storage devices.

5.
Angew Chem Int Ed Engl ; 63(44): e202409160, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39113640

RESUMO

Flexible and high-performance aqueous zinc-ion batteries (ZIBs), coupled with low cost and safe, are considered as one of the most promising energy storage candidates for wearable electronics. Hydrogel electrolytes present a compelling alternative to liquid electrolytes due to their remarkable flexibility and clear advantages in mitigating parasitic side reactions. However, hydrogel electrolytes suffer from poor mechanical properties and interfacial chemistry, which limits them to suppressed performance levels in flexible ZIBs, especially under harsh mechanical strains. Herein, a bio-inspired multifunctional hydrogel electrolyte network (polyacrylamide (PAM)/trehalose) with improved mechanical and adhesive properties was developed via a simple trehalose network-repairing strategy to stabilize the interfacial chemistry for dendrite-free and long-life flexible ZIBs. As a result, the trehalose-modified PAM hydrogel exhibits a superior strength and stretchability up to 100 kPa and 5338 %, respectively, as well as strong adhesive properties to various substrates. Also, the PAM/trehalose hydrogel electrolyte provides superior anti-corrosion capability for Zn anode and regulates Zn nucleation/growth, resulting in achieving a high Coulombic efficiency of 98.8 %, and long-term stability over 2400 h. Importantly, the flexible Zn//MnO2 pouch cell exhibits excellent cycling performance under different bending conditions, which offers a great potential in flexible energy-related applications and beyond.

6.
Angew Chem Int Ed Engl ; : e202415251, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383296

RESUMO

The aqueous zinc-ion batteries (AZIB) have emerged as a promising technology in the realm of electrochemical energy storage. Despite its potential advantages in terms of safety, cost-effectiveness, and inherent safety, AZIB faces significant challenges. Issues attributed to unsupported thermodynamics and non-uniform potential distribution and deposition, present formidable obstacles that necessitate resolution. To tackle these challenges, a novel strategy adapting hybrid organic-inorganic in-situ derived solid-to-hydrogel electrolyte interface (StHEI) has been developed from coordination reactions and self-respiratory process, establishing uniform diffusion channels by ion bridges and accelerating ion transport. Self-respiratory pattern of StHEI realized through in-situ inorganic component conversion further prolongs the protecting duration, which effectively mitigates corrosion and passivation but enhance the mechanical properties of the StHEI measured through Young's modulus. This novel StHEI promotes well-distributed potential lines within the Helmholtz regions. Zn2+ are finally induced to deposit and nucleate in a compact, fine, and uniform manner. Asymmetrical batteries assembled with the modified Zn electrode and bare Zn exhibit exceptional stability over 3000 h (1 mA cm-2- 0.5 mAh cm-2). The asymmetrical Cu//Zn cell achieved an outstanding average Coulombic efficiency (CE) of 99.6% over 1200 cycles.

7.
Angew Chem Int Ed Engl ; 63(22): e202403504, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38563637

RESUMO

The rechargeable aqueous Zn||MnO2 chemistry has been extensively explored, but its electrochemical reaction mechanisms, especially in the context of MnO2/Mn2+ conversion and Zn2+/H+ intercalation chemistry, remain not fully understood. Here, we designed an amphiphilic hydrogel electrolyte, which distinguished the MnO2/Mn2+ conversion, Zn2+ intercalation, and H+ intercalation and conversion processes at three distinct discharge plateaus of an aqueous Zn||MnO2 battery. The amphiphilic hydrogel electrolyte is featured with an extended electrochemical stability window up to 3.0 V, high ionic conductivity, Zn2+-selective ion tunnels, and hydrophobic associations with cathode materials. This specifically designed electrolyte allows the MnO2/Mn2+ conversion reaction at a discharge plateau of 1.75 V. More interesting, the discharge plateaus of ~1.33 V, previously assigned as the co-intercalation of Zn2+ and H+ ions in the MnO2 cathode, are specified as the exclusive intercalation of Zn2+ ions, leading to an ultra-flat voltage plateau. Furthermore, with a distinct three-step electrochemical energy storage process, a high areal capacity of 1.8 mAh cm-2 and high specific energy of 0.858 Wh cm-2, even at a low MnO2 loading mass of 0.5 mg cm-2 are achieved. To our knowledge, this is the first report to fully distinguish different mechanisms at different potentials in aqueous Zn||MnO2 batteries.

8.
Angew Chem Int Ed Engl ; 63(9): e202317457, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38169125

RESUMO

Quasi-solid zinc-ion batteries using hydrogel electrolytes show great potential in energy storage devices owing to their intrinsic safety, fewer side reactions and wide electrochemical windows. However, the dendrite issues on the zinc anodes cannot be fundamentally eliminated and the intrinsic anode-electrolyte interfacial interspace is rarely investigated. Here, we design a dynamically healable gelatin-based hydrogel electrolyte with a highly reversible sol-gel transition, which can construct a conformal electrode-electrolyte interface and further evolve into a stable solid-solid interface by in situ solidification. The unique helical gelatin chain structure provides a uniform channel for zinc ion transport by the bridging effect of sulfate groups. As a consequence, the dynamically healable interface enables dendrite-free zinc anodes and repeatedly repairs the anode-electrolyte interfacial interspaces by the reversible sol-gel transition of gelatin electrolyte to retain long-lasting protection for sustainable zinc-ion batteries.

9.
Angew Chem Int Ed Engl ; 63(11): e202318928, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38189767

RESUMO

The Zn//V2 O5 system not only faces the incontrollable growth of zinc (Zn) dendrites, but also withstands the cross-talk effect of by-products produced from the cathode side to the Zn anode, inducing interelectrode talk and aggravating battery failure. To tackle these issues, we construct a rapid Zn2+ -conducting hydrogel electrolyte (R-ZSO) to achieve Zn deposition modulation and side reaction inhibition in Zn//V2 O5 full cells. The polymer matrix and BN exhibit a robust anchoring effect on SO4 2- , accelerating Zn2+ migration and enabling dense Zn deposition behavior. Therefore, the Zn//Zn symmetric cells based on the R-ZSO electrolyte can operate stably for more than 1500 h, which is six times higher than that of cells employing the blank electrolyte. More importantly, the R-ZSO hydrogel electrolyte effectively decouples the cross-talk effects, thus breaking the infinite loop of side reactions. As a result, the Zn//V2 O5 cells using this modified hydrogel electrolyte demonstrate stable operation over 1,000 cycles, with a capacity loss rate of only 0.028 % per cycle. Our study provides a promising gel chemistry, which offers a valuable guide for the construction of high-performance and multifunctional aqueous Zn-ion batteries.

10.
Mikrochim Acta ; 190(4): 123, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36892601

RESUMO

A flexible electrochemiluminescence (ECL) hydrogel sensor exhibiting good self-healing was constructed. A transparent self-healing oxidized sodium alginate/hydrazide polyethylene glycol (OSA/PEG-DH) hydrogel was prepared by crosslinking dynamic covalent acylhydrazone bond. The introduction of 4-amino-DL-phenylalanine, a catalyst with good biocompatibility, allows rapid gelation and self-healing of hydrogel under mild conditions. Using the hydrogel as the sensing substrate, the ionic liquid (IL) 2-hydroxy-N,N,N-trimethylethanaminium chloride and the luminescent reagent N-(aminobutyl)-N-(ethylisoluminol) (ABEI) were simultaneously immobilized in the OSA/PEG-DH hydrogel to obtain the ABEI/IL/OSA/PEG-DH hydrogel. The ABEI/IL/OSA/PEG-DH hydrogel can be directly used as a semi-solid electrolyte for constructing a flexible ECL hydrogel sensor for the detection of H2O2, which acted as a coreactant of ABEI. The prepared flexible ECL sensor showed good self-healing performance, can restore ECL signal intensity within 20 min after physical damage, and showed high accuracy in the analysis of complex serum samples. This research shed new light on the development of flexible ECL sensor for bioanalytical applications.

11.
Nano Lett ; 22(1): 196-202, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935386

RESUMO

Biofuel cells with good biocompatibility are promising to be used as the power source for flexible and wearable bioelectronics. We here report a type of highly flexible and stretchable biofuel cells, which are enabled by textile electrodes of graphene/carbon nanotubes (G/CNTs) composite and polymer hydrogel electrolyte. The CNT array covalently grown from a graphene layer not only can be served as a conducting substrate to immobilize enzyme molecules but also can provide efficient charge transport channels between the enzyme and graphene electrode. As a result, the developed biofuel cells deliver a high open-circuit voltage of 0.65 V and output power density of 64.2 µW cm-2, which are much higher than previously reported results. Benefiting from the unique textile structure of electrodes and the polymer hydrogel electrolyte, the biofuel cells exhibit high retention of power density after 400 bending cycles and even stretched to a high strain of 60%.


Assuntos
Fontes de Energia Bioelétrica , Nanotubos de Carbono , Eletrodos , Eletrólitos , Hidrogéis , Nanotubos de Carbono/química , Polímeros , Têxteis
12.
Angew Chem Int Ed Engl ; 62(13): e202217833, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36720709

RESUMO

Zinc (Zn) metal anode suffers from uncontrollable Zn dendrites and parasitic side reactions at the interface, which restrict the practical application of aqueous rechargeable zinc batteries (ARZBs). Herein, an amphoteric cellulose-based double-network is introduced as hydrogel electrolyte to overcome these obstacles. On one hand, the amphoteric groups build anion/cation transport channels to regulate electro-deposition behavior on Zn (002) crystal plane enabled by homogenizing Zn2+ ions flux. On the other hand, the strong bonding between negatively charged carboxyl groups and Zn2+ ions promote the desolvation process of [Zn(H2 O)6 ]2+ to eliminate side reactions. Based on the above two functions, the hydrogel electrolyte enables an ultra-stable cycling with a cumulative capacity of 7 Ah cm-2 at 20 mA cm-2 /20 mAh cm-2 for Zn||Zn cell. This work provides significant concepts for developing hydrogel electrolytes to realize stable anode for high-performance ARZBs.

13.
Angew Chem Int Ed Engl ; 62(42): e202310970, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37644643

RESUMO

The large-scale applicability of Zn-metal anodes is severely impeded by the issues such as the dendrite growth, complicated hydrogen evolution, and uncontrollable passivation reaction. Herein, a negatively charged carboxylated double-network hydrogel electrolyte (Gelatin/Sodium alginate-acetate, denoted as Gel/SA-acetate) has been developed to stabilize the interfacial electrochemistry, which restructures a type of Zn2+ ion solvent sheath optimized via a chain-liquid synergistic effect. New hydrogen bonds are reconstructed with water molecules by the zincophilic functional groups, and directional migration of hydrated Zn2+ ions is therefore induced. Concomitantly, the robust chemical bonding of such hydrogel layers to the Zn slab exhibits a desirable anti-catalytic effect, thereby greatly diminishing the water activity and eliminating side reactions. Subsequently, a symmetric cell using the Gel/SA-acetate electrolyte demonstrates a reversible plating/stripping performance for 1580 h, and an asymmetric cell reaches a state-of-the-art runtime of 5600 h with a high average Coulombic efficiency of 99.9 %. The resultant zinc ion hybrid capacitors deliver exceptional properties including the capacity retention of 98.5 % over 15000 cycles, energy density of 236.8 Wh kg-1 , and high mechanical adaptability. This work is expected to pave a new avenue for the development of novel hydrogel electrolytes towards safe and stable Zn anodes.

14.
Angew Chem Int Ed Engl ; 62(1): e202215060, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344437

RESUMO

Advanced aqueous batteries are promising for next generation flexible devices owing to the high safety, yet still requiring better cycling stability and high capacities in wide temperature range. Herein, a polymeric acid hydrogel electrolyte (PAGE) with 3 M Zn(ClO4 )2 was fabricated for high performance Zn/polyaniline (PANI) batteries. With PAGE, even at -35 °C the Zn/Zn symmetrical battery can keep stable for more than 1 500 h under 2 mA cm-2 , and the Zn/PANI battery can provide ultra-high stable specific capacity of 79.6 mAh g-1 for more than 70 000 cycles at 15 A g-1 . This can be mainly ascribed to the -SO3 - H+ function group in PAGE. It can generate constant protons and guide the (002) plane formation to accelerate the PANI redox reaction kinetics, increase the specific capacity, and suppress the side reaction and dendrites. This proton-supplying strategy by polymeric acid hydrogel may further propel the development of high performance aqueous batteries.

15.
Angew Chem Int Ed Engl ; 61(44): e202210567, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36093885

RESUMO

As a key component of batteries, the electrolyte determines the ion transport and interface chemistry of the cathode and anode. In this work, we develop a dual-network structured hydrogel electrolyte composed of polyacrylamide (PAM), sodium alginate (SA) and potassium iodide (KI) for solid-state zinc-air/iodide hybrid batteries. The assembled hybrid battery shows excellent renewability and a long cycling life of 110 h with a high energy efficiency of 80 %. The ion-crosslinked dual-network structure endows the material with improved mechanical strength and increased ionic conductivity. More importantly, the introduction of iodine species not only offers more favorable cathodic kinetics of iodide/iodate redox than oxygen electrocatalysis but also regulates the solvation structure of zinc ions to ensure better interface stability. This work provides significant concepts for developing novel solid-state electrolytes to realize high-performance energy devices and technologies.

16.
Nano Lett ; 20(3): 1907-1914, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083881

RESUMO

All-temperature flexible supercapacitors have not been realized because of challenges from conventional hydrogel electrolytes. Large amounts of water in hydrogel electrolytes inevitably freeze and restrict ion transport at subzero temperatures, and their structures are unstable under high temperature. Here, all-temperature flexible supercapacitors are reported based on an antifreezing and thermally stable montmorillonite/poly(vinyl alcohol) (MMT/PVA) hydrogel electrolyte. MMT materials enhance the thermal stability of the hydrogel, and their lamellar structures facilitate ion conduction due to formation of oriented conductive pathways. The aqueous electrolyte with a freezing point below -50 °C is employed by simply introducing dimethyl sulfoxide. The electrolyte exhibits high ionic conductivity of 0.17 × 10-4 and 0.76 × 10-4 S cm-1 under -50 and 90 °C, respectively. The supercapacitor delivers high capacities under a wide temperature range from -50 to 90 °C and displays excellent cycling stability over 10000 cycles. Because of the hydrogel electrolyte's superior mechanical properties, the device gives stable energy capacity under flexible conditions.

17.
Angew Chem Int Ed Engl ; 60(2): 990-997, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969140

RESUMO

Zinc ion hybrid capacitors (ZIHCs) are promising energy storage devices for emerging flexible electronics, but they still suffer from trade-off in energy density and cycling life. Herein, we show that such a dilemma can be well-addressed by deploying ZnCl2 based electrolytes. Combining experimental studies and density functional theory (DFT) calculations, for the first time, we demonstrate an intriguing chloride ion (Cl- ) facilitated desolvation mechanism in hydrated [ZnCl]+ (H2 O)n-1 (with n=1-6) clusters. Based on this mechanism, a water-in-salt type hydrogel electrolyte filled with ZnCl2 was developed to concurrently improve the energy storage capacity of porous carbon materials and the reversibility of Zn metal electrode. The resulting ZIHCs deliver a battery-level energy density up to 217 Wh kg-1 at a power density of 450 W kg-1 , an unprecedented cycling life of 100 000 cycles, together with excellent low-temperature adaptability and mechanical flexibility.

18.
Small ; 14(14): e1704497, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29484807

RESUMO

The development of integrated high-performance supercapacitors with all-in-one configuration, excellent flexibility and autonomously intrinsic self-healability, and without the extra healable film layers, is still tremendously challenging. Compared to the sandwich-like laminated structures of supercapacitors with augmented interfacial contact resistance, the flexible healable integrated supercapacitor with all-in-one structure could theoretically improve their interfacial contact resistance and energy densities, simplify the tedious device assembly process, prolong the lifetime, and avoid the displacement and delamination of multilayered configurations under deformations. Herein, a flexible healable all-in-one configured supercapacitor with excellent flexibility and reliable self-healing ability by avoiding the extra healable film substrates and the postassembled sandwich-like laminated structures is developed. The healable all-in-one configured supercapacitor is prepared from in situ polymerization and deposition of nanocomposites electrode materials onto the two-sided faces of the self-healing hydrogel electrolyte separator. The self-healing hydrogel film is obtained from the physically crosslinked hydrogel with enormous hydrogen bonds, which can endow the healable capability through dynamic hydrogen bonding. The assembled all-in-one configured supercapacitor exhibits enhanced capacitive performance, good cycling stability, reliable self-healing capability, and excellent flexibility. It holds broad prospects for obtaining various flexible healable all-in-one configured supercapacitors for working as portable energy storage devices in wearable electronics.

19.
Int J Biol Macromol ; 277(Pt 2): 134356, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089551

RESUMO

With the rapid advancement of flexible, portable devices, hydrogel electrolytes have gained considerable attention as potential replacements for conventional liquid electrolytes. A hydrogel electrolyte was synthesised by cross-linking acrylic acid (AA), acrylamide (AM), carboxymethyl cellulose (CMC), and zinc sulphate (ZnSO4). The formation of hydrogen bonds and chelate interactions between the P(AA-co-AM) polymer, CMC, and ZnSO4 created a robust network, enhancing the mechanical properties of the hydrogel electrolytes. Notably, the hydrogel electrolyte containing 0.6 % CMC demonstrated superior mechanical strength (compression strength of 1.22 MPa, tensile stress of 230 kPa, tensile strain of 424 %, adhesion strength of 1.98 MPa on wood). Additionally, the CMC/P(AA-co-AM) hydrogels exhibited commendable electrical performance (38 mS/cm) and a high gauge factor (2.9), enabling the precise detection of physiological activity signals through resistance measurements. The unique network structure of the hydrogel electrolyte also ensured a stable bonding interface between the electrode and the electrolyte. After 2000 charge-discharge cycles, the supercapacitor maintained good capacitance characteristics, with a capacitance retention rate of 71.21 % and a stable Coulombic efficiency of 98.85 %, demonstrating excellent cyclic stability. This study introduces a novel methodology for fabricating multifunctional all-solid-state supercapacitors and suggests that the hydrogel can significantly advance the development of wearable energy storage devices.


Assuntos
Capacitância Elétrica , Eletrólitos , Hidrogéis , Dispositivos Eletrônicos Vestíveis , Eletrólitos/química , Hidrogéis/química , Técnicas Eletroquímicas/métodos , Eletrodos , Carboximetilcelulose Sódica/química
20.
ACS Biomater Sci Eng ; 10(8): 5390-5398, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991039

RESUMO

Within the context of seeking eco-friendly and readily available materials for energy storage, there is a pressing demand for energy storage solutions that employ environmentally sustainable, high-performance, and adaptable constituents. Specifically, such materials are essential for use in wearable technology, smart sensors, and implantable medical devices, whereas, more broadly, their use plays a pivotal role in shaping their efficiency and ecological footprint. Here, we demonstrate an entirely biopolymer-based supercapacitor with a remarkable performance, achieving a capacitance greater than 0.2 F cm-2 at a charge-discharge current of 10 mA cm-2 with 94% capacitance retention after 20,000 cycles. The supercapacitor is composed of three distinct silk fibroin (SF) composite materials, namely, photo-cross-linkable SF (Sil-MA) hydrogel, SF-polydopamine (SF-PDA), and SF bioplastic, to create a gel electrolyte, electrode binder, and encapsulation, respectively. Together, these elements form a mechanically and electrochemically robust skeleton for biofriendly energy storage devices. Moreover, these biomaterial-based supercapacitor devices show stretchability, flexibility, and compressibility while maintaining their electrochemical performance. The biomaterials and fabrication techniques presented can serve as a foundation for investigating various aqueous electrochemical energy storage systems, especially for emerging applications in wearable electronics and environmentally friendly material systems.


Assuntos
Capacitância Elétrica , Fibroínas , Hidrogéis , Fibroínas/química , Hidrogéis/química , Polímeros/química , Dispositivos Eletrônicos Vestíveis , Materiais Biocompatíveis/química , Bombyx/química , Eletrodos , Indóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA