Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 142(3): 108514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38905920

RESUMO

Phenylketonuria (PKU) is a genetic disorder caused by variations in the phenylalanine hydroxylase (PAH) gene. Among the 3369 reported PAH variants, 33.7% are missense alterations. Unfortunately, 30% of these missense variants are classified as variants of unknown significance (VUS), posing challenges for genetic risk assessment. In our study, we focused on analyzing 836 missense PAH variants following the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines specified by ClinGen PAH Variant Curation Expert Panel (VCEP) criteria. We utilized and compared variant annotator tools like Franklin and Varsome, conducted 3D structural analysis of PAH, and examined active and regulatory site hotspots. In addition, we assessed potential splicing effect of apparent missense variants. By evaluating phenotype data from 22962 PKU patients, our aim was to reassess the pathogenicity of missense variants. Our comprehensive approach successfully reclassified 309 VUSs out of 836 missense variants as likely pathogenic or pathogenic (37%), upgraded 370 likely pathogenic variants to pathogenic, and reclassified one previously considered likely benign variant as likely pathogenic. Phenotypic information was available for 636 missense variants, with 441 undergoing 3D structural analysis and active site hotspot identification for 180 variants. After our analysis, only 6% of missense variants were classified as VUSs, and three of them (c.23A>C/p.Asn8Thr, c.59_60delinsCC/p.Gln20Pro, and c.278A >T/p.Asn93Ile) may be influenced by abnormal splicing. Moreover, a pathogenic variant (c.168G>T/p.Glu56Asp) was identified to have a risk exceeding 98% for modifications of the consensus splice site, with high scores indicating a donor loss of 0.94. The integration of ACMG/AMP guidelines with in silico structural analysis and phenotypic data significantly reduced the number of missense VUSs, providing a strong basis for genetic counseling and emphasizing the importance of metabolic phenotype information in variant curation. This study also sheds light on the current landscape of PAH variants.


Assuntos
Mutação de Sentido Incorreto , Fenótipo , Fenilalanina Hidroxilase , Fenilcetonúrias , Humanos , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/química , Fenilcetonúrias/genética , Fenilcetonúrias/patologia , Simulação por Computador
2.
Hum Hered ; 88(1): 8-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36646061

RESUMO

BACKGROUND: Hyperphenylalaninemia (HPA) is an autosomal recessive disorder that results from a deficiency in the phenylalanine hydroxylase enzyme (PAH) or from a flaw in the genes that are responsible for the biosynthesis or regeneration of the cofactor tetrahydrobiopterin (BH4), including GCH1, SR, QDPR, PTS, and PCD. Identification of disease-causing variants in these genes can help physicians and clinical geneticists in differential diagnosis, appropriate prescription drugs, and saving time and cost. This study attempted to identify these genes' most prevalent disease-causing variants in Iranian HPA patients. SUMMARY: This study was performed under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Before it started, the flow work and inclusion/exclusion criteria were published as a protocol in PROSPERO (CRD42021273705). We conducted a comprehensive search on December 10, 2022, on international online databases, including Web of Science, Scopus, EMBASE, Science Direct, PubMed/Medline, Google Scholar, SID, ISC, and Magiran search engine, to find pertinent publications. Some studies were chosen based on inclusion and exclusion criteria. Altogether, 1,243 Iranian patients from 13 articles were considered. In total, we identified 129 distinct disease-causing variants in PAH (20 novel variants), 29 in QDPR (17 novel variants), 15 in PTS (seven novel variants), and one novel variant in PCD. Twenty disease-causing variants for PAH, 18 for QDPR, and 8 for PTS are included in the genes' proposed genetic diagnostic panels. These panels include more than 75% of the documented disease-causing variants in the Iranian population. KEY MESSAGES: The findings of this research illustrated the spectrum of disease-causing variants in the PAH, QDPR, PTS, and PCD genes identified in Iranian HPA patients. Common disease-causing variants of these genes may be chosen as a preliminary diagnostic panel for early diagnosis and lowering therapy costs.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Humanos , Fenilalanina Hidroxilase/genética , Irã (Geográfico) , Mutação , Fenilcetonúrias/genética , Fenilcetonúrias/diagnóstico
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731816

RESUMO

This study, conducted in the Republic of North Ossetia-Alania (RNOA), aimed to explore the genetic landscape of hyperphenylalaninemia (HPA) and phenylketonuria (PKU) in the Ossetian population using data from newborn screening (NBS). Through comprehensive molecular genetic analysis of 29 patients with HPA from diverse ethnic backgrounds, two major genetic variants in the PAH gene, P281L and P211T, were identified, constituting 50% of all detected pathogenic alleles in Ossetian patients. Remarkably, these variants exhibited an exceptionally high frequency in the Ossetian population, surpassing global prevalence rates. This study unveiled a notable prevalence of mild forms of HPA (78%), underscoring the importance of genetic counseling for carriers of pathogenic variants in the PAH gene. Moreover, the findings emphasized the necessity for ongoing monitoring of patients with mild forms, as they may lack significant symptoms for diagnosis, potentially impacting offspring. Overall, this research offers valuable insights into the genetic landscape of HPA and PKU in the Ossetian population.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Humanos , Fenilcetonúrias/genética , Fenilcetonúrias/epidemiologia , Feminino , Fenilalanina Hidroxilase/genética , Masculino , Recém-Nascido , Triagem Neonatal , Alelos , Frequência do Gene
4.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32668217

RESUMO

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Assuntos
Predisposição Genética para Doença/genética , Fenilcetonúrias/epidemiologia , Fenilcetonúrias/genética , Alelos , Biopterinas/análogos & derivados , Biopterinas/genética , Europa (Continente) , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Genótipo , Homozigoto , Humanos , Mutação/genética , Fenótipo , Fenilalanina/sangue , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/sangue
5.
Genet Med ; 25(9): 100358, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470789

RESUMO

PURPOSE: Elevated serum phenylalanine (Phe) levels due to biallelic pathogenic variants in phenylalanine hydroxylase (PAH) may cause neurodevelopmental disorders or birth defects from maternal phenylketonuria. New Phe reduction treatments have been approved in the last decade, but uncertainty on the optimal lifespan goal Phe levels for patients with PAH deficiency remains. METHODS: We searched Medline and Embase for evidence of treatment concerning PAH deficiency up to September 28, 2021. Risk of bias was evaluated based on study design. Random-effects meta-analyses were performed to compare IQ, gestational outcomes, and offspring outcomes based on Phe ≤ 360 µmol/L vs > 360 µmol/L and reported as odds ratio and 95% CI. Remaining results were narratively synthesized. RESULTS: A total of 350 studies were included. Risk of bias was moderate. Lower Phe was consistently associated with better outcomes. Achieving Phe ≤ 360 µmol/L before conception substantially lowered the risk of negative effect to offspring in pregnant individuals (odds ratio = 0.07, 95% CI = 0.04-0.14; P < .0001). Adverse events due to pharmacologic treatment were common, but medication reduced Phe levels, enabling dietary liberalization. CONCLUSIONS: Reduction of Phe levels to ≤360 µmol/L through diet or medication represents effective interventions to treat PAH deficiency.


Assuntos
Genética Médica , Fenilalanina Hidroxilase , Fenilcetonúria Materna , Fenilcetonúrias , Gravidez , Feminino , Humanos , Estados Unidos , Fenilalanina , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/genética , Fenilalanina Hidroxilase/genética , Genômica
6.
Mol Genet Metab ; 139(1): 107583, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37105048

RESUMO

Classic phenylketonuria (PKU) is caused by defective activity of phenylalanine hydroxylase (PAH), the enzyme that coverts phenylalanine (Phe) to tyrosine. Toxic accumulation of phenylalanine and its metabolites, left untreated, affects brain development and function depending on the timing of exposure to elevated levels. The specific mechanisms of Phe-induced brain damage are not completely understood, but they correlate to phenylalanine levels and on the stage of brain growth. During fetal life, high levels of phenylalanine such as those seen in maternal PKU can result in microcephaly, neuronal loss and corpus callosum hypoplasia. Elevated phenylalanine levels during the first few years of life can cause acquired microcephaly, severe cognitive impairment and epilepsy, likely due to the impairment of synaptogenesis. During late childhood, elevated phenylalanine can cause alterations in neurological functioning, leading to ADHD, speech delay and mild IQ reduction. In adolescents and adults, executive function and mood are affected, with some of the abnormalities reversed by better control of phenylalanine levels. Altered brain myelination can be present at this stage. In this article, we review the current knowledge about the consequences of high phenylalanine levels in PKU patients and animal models through different stages of brain development and its effect on cognitive, behavioural and neuropsychological function.


Assuntos
Microcefalia , Fenilalanina Hidroxilase , Fenilcetonúria Materna , Fenilcetonúrias , Feminino , Gravidez , Animais , Criança , Humanos , Fenilcetonúrias/psicologia , Encéfalo , Fenilalanina
7.
Cell Biol Toxicol ; 39(5): 2295-2310, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35449354

RESUMO

Phenylalanine hydroxylase (PAH) is the key enzyme in phenylalanine metabolism, deficiency of which is associated with the most common metabolic phenotype of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). A bulk of PKU disease-associated missense mutations in the PAH gene have been studied, and the consequence of each PAH variant vary immensely. Prior research established that PKU-associated variants possess defects in protein folding with reduced cellular stability leading to rapid degradation. However, recent evidence revealed that PAH tetramers exist as a mixture of resting state and activated state whose transition depends upon the phenylalanine concentration and certain PAH variants that fail to modulate the structural equilibrium are associated with PKU disease. Collectively, these findings framed our understanding of the complex genotype-phenotype correlation in PKU. In the current study, we substantiate a link between PAH protein stability and its degradation by the ubiquitin-mediated proteasomal degradation system. Here, we provide an evidence that PAH protein undergoes ubiquitination and proteasomal degradation, which can be reversed by deubiquitinating enzymes (DUBs). We identified USP19 as a novel DUB that regulates PAH protein stability. We found that ectopic expression of USP19 increased PAH protein level, whereas depletion of USP19 promoted PAH protein degradation. Our study indicates that USP19 interacts with PAH and prevents polyubiquitination of PAH subsequently extending the half-life of PAH protein. Finally, the increase in the level of PAH protein by the deubiquitinating activity of USP19 resulted in enhanced metabolic function of PAH. In summary, our study identifies the role of USP19 in regulating PAH protein stability and promotes its metabolic activity. Graphical highlights 1. E3 ligase Cdh1 promotes PAH protein degradation leading to insufficient cellular amount of PAH causing PKU. 2. A balance between E3 ligase and DUB is important to regulate the proteostasis of PAH. 3. USP19 deubiquitinates and stabilizes PAH further protecting it from rapid degradation. 4. USP19 increases the enzymatic activity of PAH, thus maintaining normal Phe levels.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Humanos , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/genética , Ubiquitina-Proteína Ligases/metabolismo , Estabilidade Proteica , Fenilalanina/metabolismo , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo
8.
Neurol Sci ; 44(6): 2167-2172, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897462

RESUMO

BACKGROUND: Restless legs syndrome (RLS) is characterized by an unpleasant or painful sensation generally localized to lower limbs and relieved by movement. Its pathogenesis is hypothesized to involve the dopaminergic system, also in the light of the response of RLS to ex adiuvantibus treatment with dopamine agonists. DNAJC12 deficiency is a recently identified inherited metabolic disease coupling hyperphenylalaninemia to deficient dopaminergic and serotoninergic neurotransmission, due to the combined impairment of the three aromatic amino acids' (i.e., phenylalanine, tyrosine, and tryptophan) hydroxylases. DNAJC12 deficiency was reported in 43 patients so far, presenting with wide spectrum of clinical symptoms. CASE PRESENTATION RESULTS: Here, we report RLS as a novel clinical manifestation of DNAJC12 deficiency, occurring in two adults while on treatment with L-dopa at longitudinal follow-up. The adjunct of low-dose pramipexole was effective in both patients to treat RLS. Besides, this treatment also allowed an improvement of dopaminergic homeostasis, as evidenced by clinical amelioration and stabilization of a peripheral short prolactin profile (a tool to indirectly evaluate dopaminergic homeostasis). DISCUSSION: Besides including RLS as a new treatable clinical manifestation of DNAJC12, these observations may suggest the opportunity of a selective screening for DNAJC12 deficiency in patients with idiopathic RLS.


Assuntos
Síndrome das Pernas Inquietas , Adulto , Humanos , Dopamina , Agonistas de Dopamina/efeitos adversos , Levodopa/uso terapêutico , Pramipexol/uso terapêutico , Síndrome das Pernas Inquietas/complicações , Síndrome das Pernas Inquietas/tratamento farmacológico
9.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 683-692, 2023 Dec 16.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38105685

RESUMO

OBJECTIVES: To analyze the results of neonatal screening for congenital hypothyroidism (CH) and hyperphenylalaninemia (HPA) in Zhejiang province from 1999 to 2022. METHODS: A total of 11 922 318 newborns were screened from September 1999 and December 2022 in Zhejiang province. The blood thyroid stimulating hormone (TSH) levels were measured by a fluorescence method and blood phenylalanine (Phe) levels were measured by fluorescence method or tandem mass spectrometry. TSH≥9 µIU/mL was considered positive for CH, while Phe>120 µmol/L and/or Phe/Tyr ratio>2.0 were considered positive for HPA. The positive newborns in screening were recalled, and the gene variations were detected by high-throughput sequencing and MassARRAY tests. RESULTS: The overall neonatal screening rate during 1999-2022 was 89.41% (11 922 318/13 333 929) and the screening rate was increased from 6.46% in 1999 to 100.0% in 2022. A total of 8924 cases of CH were diagnosed among screened newborns with an incidence rate of 1/1336. A total of 563 cases of HPA were diagnosed, including 508 cases of classic phenylketonuria (cPKU) and 55 cases of tetrahydrobiopterin deficiency (BH4D), with an incidence rate of 1/21 176. Ninety-seven out of 8924 cases of CH underwent genetic analysis. Gene mutations were detected in 9 CH related genes, the highest frequency mutations were found in DUOX2 gene (69.0%) with c.3329G>A (p.R1110Q) (18.2%) and c.1588A>T (p.K530X) (17.3%) as the hotspot mutations. There were 81 PAH gene variants detected in a total of 250 cases of cPKU, and c728G>A (p.R243Q) (24.4%), c.721C>T (p.R241C) (15.0%) were the hotspot mutations. Meanwhile 7 novel variants in PAH gene were detected: c.107C>A (p.S36*), c.137G>T (p.G46V), c.148A>G(p.K50E), c.285C>T (p.I95I), c.843-10delTTCC, exon4-7del and c.1066-2A>G. There were 12 PTS gene variants detected in 36 cases of BH4D, and c.259C>T (p.P87S) (31.9%) was the hotspot mutation. CONCLUSIONS: The incident of CH has increased from 1999 to 2022 in Zhejiang province, and it is higher than that of national and global levels; while the incidence of HPA is similar to the national average. DUOX2 gene variation is the most common in CH patients; c.728G>A (p.R243Q) is the hotspot mutation in cPKU patients, while c.259C>T (p.P87S) is the hotspot mutation in BH4D patients.


Assuntos
Hipotireoidismo Congênito , Fenilcetonúrias , Humanos , Recém-Nascido , Triagem Neonatal , Oxidases Duais , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/epidemiologia , Hipotireoidismo Congênito/genética , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/epidemiologia , Fenilcetonúrias/genética , Tireotropina
10.
J Neurochem ; 161(2): 129-145, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35233765

RESUMO

Increasing evidence suggests the involvement of peripheral amino acid metabolism in the pathophysiology of neuropsychiatric disorders, whereas the molecular mechanisms are largely unknown. Tetrahydrobiopterin (BH4) is a cofactor for enzymes that catalyze phenylalanine metabolism, monoamine synthesis, nitric oxide production, and lipid metabolism. BH4 is synthesized from guanosine triphosphate and regenerated by quinonoid dihydropteridine reductase (QDPR), which catalyzes the reduction of quinonoid dihydrobiopterin. We analyzed Qdpr-/- mice to elucidate the physiological significance of the regeneration of BH4. We found that the Qdpr-/- mice exhibited mild hyperphenylalaninemia and monoamine deficiency in the brain, despite the presence of substantial amounts of BH4 in the liver and brain. Hyperphenylalaninemia was ameliorated by exogenously administered BH4, and dietary phenylalanine restriction was effective for restoring the decreased monoamine contents in the brain of the Qdpr-/- mice, suggesting that monoamine deficiency was caused by the secondary effect of hyperphenylalaninemia. Immunohistochemical analysis showed that QDPR was primarily distributed in oligodendrocytes but hardly detectable in monoaminergic neurons in the brain. Finally, we performed a behavioral assessment using a test battery. The Qdpr-/- mice exhibited enhanced fear responses after electrical foot shock. Taken together, our data suggest that the perturbation of BH4 metabolism should affect brain monoamine levels through alterations in peripheral amino acid metabolism, and might contribute to the development of anxiety-related psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15398.


Assuntos
Biopterinas , Fenilcetonúrias , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Di-Hidropteridina Redutase , Medo , Humanos , Camundongos , Fenilalanina , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo
11.
Mol Genet Metab ; 135(3): 171-178, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101330

RESUMO

More than 1280 variants in the phenylalanine hydroxylase (PAH) gene are responsible for a broad spectrum of phenylketonuria (PKU) phenotypes. While the genotype-phenotype correlation is reaching 88%, for some inconsistent phenotypes with the same genotype additional factors like tetrahydrobiopterin (BH4), the PAH co-chaperone DNAJC12, phosphorylation of the PAH residues or epigenetic factors may play an important role. Very recently an additional player, the long non-coding RNA (lncRNA) transcript HULC, was described to regulate PAH activity and enhance residual enzyme activity of some PAH variants (e.g., the most common p.R408W) by using HULC mimics. In this review we present an overview of the lncRNA function and in particular the interplay of the HUCL transcript with the PAH and discuss potential applications for the future treatment of some PKU patients.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , RNA Longo não Codificante , Humanos , Mutação , Fenótipo , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Fenilcetonúrias/terapia , RNA Longo não Codificante/genética
12.
Mol Genet Metab ; 136(2): 132-144, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35562278

RESUMO

Phenylketonuria (PKU) is a common genetic metabolic disorder that causes phenylalanine accumulation in the blood. The most serious symptoms are related to the brain, as intellectual disability, seizure, and microcephaly are commonly found in poorly treated PKU patients and the babies of maternal PKU. However, the mechanism of hyperphenylalaninemia on human neurodevelopment is still unclear. Here we utilized human induced pluripotent stem cell (iPSC)-derived cerebral organoids to investigate the neurotoxicity of hyperphenylalaninemia. Cerebral organoids at days 40 or 100 were treated with different concentrations of phenylalanine for 5 days. After phenylalanine treatments, the cerebral organoids displayed alterations in organoid size, induction of apoptosis, and depletion of neural progenitor cells. However, phenylalanine did not have an impact on neurons and glia, including astrocytes, immature oligodendrocytes, and mature oligodendrocytes. Remarkably, a reduction in the thickness of the cortical rosettes and a decrease in myelination at the intermediate zone were inspected with the elevated phenylalanine concentrations. RNA-seq of phenylalanine-treated organoids revealed that gene sets related to apoptosis, p53 signaling pathway, and TNF signaling pathway via NF-kB were enriched in upregulated genes, while those related to cell cycle and amino acid metabolism were enriched in downregulated genes. In addition, there were several microcephaly disease genes, such as ASPM, LMNB1, and CENPE, ranked at the top of the downregulated genes. These findings indicate that phenylalanine exposure may contribute to microcephaly, abnormal cortical expansion, and myelination lesions in the developing human brain.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microcefalia , Fenilcetonúria Materna , Fenilcetonúrias , Feminino , Humanos , Microcefalia/genética , Organoides/patologia , Fenilalanina , Fenilcetonúrias/diagnóstico , Gravidez
13.
Mol Genet Metab ; 136(1): 46-64, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339387

RESUMO

Existing phenylalanine hydroxylase (PAH)-deficient mice strains are useful models of untreated or late-treated human phenylketonuria (PKU), as most contemporary therapies can only be initiated after weaning and the pups have already suffered irreversible consequences of chronic hyperphenylalaninemia (HPA) during early brain development. Therefore, we sought to evaluate whether enzyme substitution therapy with pegvaliase initiated near birth and administered repetitively to C57Bl/6-Pahenu2/enu2 mice would prevent HPA-related behavioral and cognitive deficits and form a model for early-treated PKU. The main results of three reported experiments are: 1) lifelong weekly pegvaliase treatment prevented the cognitive deficits associated with HPA in contrast to persisting deficits in mice treated with pegvaliase only as adults. 2) Cognitive deficits reappear in mice treated with weekly pegvaliase from birth but in which pegvaliase is discontinued at 3 months age. 3) Twice weekly pegvaliase injection also prevented cognitive deficits but again cognitive deficits emerged in early-treated animals following discontinuation of pegvaliase treatment during adulthood, particularly in females. In all studies, pegvaliase treatment was associated with complete correction of brain monoamine neurotransmitter content and with improved overall growth of the mice as measured by body weight. Mean total brain weight however remained low in all PAH deficient mice regardless of treatment. Application of enzyme substitution therapy with pegvaliase, initiated near birth and continued into adulthood, to PAH-deficient Pahenu2/enu2 mice models contemporary early-treated human PKU. This model will be useful for exploring the differential pathophysiologic effects of HPA at different developmental stages of the murine brain.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Adulto , Animais , Cognição , Dieta , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina , Fenilalanina Amônia-Liase , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/tratamento farmacológico , Proteínas Recombinantes
14.
BMC Neurol ; 22(1): 409, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333673

RESUMO

BACKGROUND: Orthostatic tremor (OT) is a type of postural tremor of the lower extremities that has not been described in either phenylketonuria (PKU) or hyperphenylalaninemia (HPA). Because little is known about the clinical features and therapeutic responses of OT in mild HPA, we describe a mild HPA patient who presented with OT as an initial symptom. CASE PRESENTATION: A 22-year-old male was admitted for bilateral leg tremor while standing, with symptom onset eight months prior. One month before admission, the tremor disappeared in the left leg but persisted in the right leg. Electromyography recorded from the right gastrocnemius revealed a 6-8 Hz tremor, which appeared when the patient was standing and disappeared when he was resting or walking. Blood screening showed a phenylalanine/tyrosine ratio of 2.06 and a phenylalanine level of 140 µmol/L. Urine metabolic screening was negative. Whole-exome sequencing confirmed the presence of a compound heterozygous mutation, c.158G > A and c.728G > A, in phenylalanine hydroxylase (PAH) gene. After three months of levodopa/benserazide tablets (250 mg, tid) and a low-phenylalanine diet treatment, the tremor disappeared. CONCLUSIONS: Young-onset mild HPA is a relatively rare autosomal recessive metabolic disease, and slow OT is a rare clinical feature. Metabolic screening and genetic testing are the keys to early diagnosis and treatment. For adolescents and young adults, appropriate medication and long-term dietary therapy remain important treatments. This case expanded the disease spectrum of slow OT.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Masculino , Adolescente , Humanos , Adulto Jovem , Adulto , Tremor/diagnóstico , Tremor/etiologia , Tremor/tratamento farmacológico , Fenilcetonúrias/complicações , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/genética , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/uso terapêutico , Fenilalanina/uso terapêutico , Eletromiografia
15.
Neurol Sci ; 43(9): 5593-5603, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35729439

RESUMO

BACKGROUND: This systematic review study aims to evaluate the cognitive function of patients with mild hyperphenylalaninemia (mHPA) without treatment. METHODS: A systematic literature search was done from the 1st of May to the 30th of July in 2021 on published studies. The search strategy was ((hyperphenylalaninemia) OR (phenylketonuria) AND (cognition)). We use PubMed, Scopus, and the Web of Science databases. Studies which reported their findings regarding the cognitive function of patients with mHPA (screening serum phenylalanine > 120 and < 600 µmol/L) were included and reviewed. RESULTS: From initially retrieved 2805 studies, finally, 15 studies (10 on untreated patients with Phe levels below 360 µmol/L, 7 on untreated patients with Phe levels between 360 and 600 µmol/L, four 120-600 µmol/L) were selected. Most of the studies used the Wechsler Intelligence Scale for IQ evaluation, two (2/15) of them used the Stanford-Binet test and two used both tests. Four studies have reported a worse cognitive outcome compared to the control group, and in one study, relative defects in attention and working memory were reported. Other studies have reported normal IQ levels and no significant cognitive defects. CONCLUSION: It is suggested that Phe levels between 120 and 360 µmol/L are generally safe. Some studies showed that untreated patients with higher levels might show some degrees of cognitive impairment. In conclusion, current knowledge is insufficient to state that treatment is not required for HPA patients to preserve their cognitive status, especially in patients with Phe levels of 360-600 µmol/L. Further studies with a larger sample size and standardized cognitive function evaluation tools are needed.


Assuntos
Fenilcetonúrias , Atenção/fisiologia , Cognição , Humanos , Memória de Curto Prazo , Fenilalanina , Fenilcetonúrias/complicações
16.
Metab Brain Dis ; 37(3): 743-760, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997870

RESUMO

BACKGROUND: Disorders of tetrahydrobiopterin metabolism represent a rare group of inherited neurotransmitter disorders that manifests mainly in infancy or childhood with developmental delay, neuroregression, epilepsy, movement disorders, and autonomic symptoms. METHODOLOGY: A retrospective review of genetically confirmed cases of disorders of tetrahydrobiopterin metabolism over a period of three years (Jan 2018 to Jan 2021) was performed across two paediatric neurology centres from South India. RESULTS: A total of nine patients(M:F=4:5) fulfilled the eligibility criteria. The genetic variants detected include homozygous mutations in the QDPR(n=6), GCH1(n=2), and PTS(n=1) genes. The median age at onset of symptoms was 6-months(range 3-78 months), while that at diagnosis was 15-months (8-120 months), resulting in a median delay in diagnosis of 9-months. The main clinical manifestations included neuroregression (89%), developmental delay(78%), dystonia(78%) and seizures(55%). Management strategies included a phenylalanine restricted diet, levodopa/carbidopa, 5-Hydroxytryphtophan, and folinic acid. Only, Patient-2 afforded and received BH4 supplementation at a sub-optimal dose later in the disease course. We had a median duration of follow up of 15 months (range 2-48 months). Though the biochemical response has been marked; except for patients with GTPCH deficiency, only mild clinical improvement was noted with regards to developmental milestones, seizures, or dystonia in others. CONCLUSION: Tetrahydrobiopterin deficiencies represent a rare yet potentially treatable cause for non-phenylketonuria hyperphenylalaninemia with better outcomes when treated early in life. Screening for disorders of biopterin metabolism in patients with hyperphenylalaninemia prevents delayed diagnosis. This study expands the genotype-phenotype spectrum of patients with disorders of tetrahydrobiopterin metabolism from South India.


Assuntos
Distonia , Fenilcetonúrias , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Biopterinas/uso terapêutico , Criança , Pré-Escolar , Distonia/genética , Feminino , Humanos , Lactente , Masculino , Fenilalanina , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/genética
17.
Pediatr Int ; 64(1): e14939, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34331785

RESUMO

BACKGROUND: The aim of this study was to assess the long-term safety and efficacy of sapropterin in a real-world setting in Japanese patients with tetrahydrobiopterin (BH4)-responsive phenylketonuria. METHODS: This post-marketing surveillance study enrolled all of the patients in Japan with confirmed BH4-responsive PKU who were administrated sapropterin between July 2008 and October 2017. Patients were observed at least every 3 months during follow up, with key data collected on treatment exposure/duration, effectiveness according to physician's judgement, serum phenylalanine levels, and adverse events. RESULTS: Of 87 enrolled patients, 85 patients (male, 42.4%; outpatients, 96.5%) were included in the safety and efficacy analysis sets. Treatment started at age <4 years in 43 (50.6%) patients and the most common starting daily dose was 5-10 mg/kg (n = 41, 48.2%) with the overall duration of treatment between 0.2 and 17.2 years. Serum phenylalanine levels, according to loading tests, reduced from a baseline level of 9.66 mg/dL (range 0.48-36.80 mg/dL) by >30% in 84 patients. Treatment was deemed effective in 79 of 85 patients (92.9%, 95% confidence interval: 85.3-97.4). One patient (1.2%) experienced an adverse drug reaction (alanine aminotransferase increased) 50 days after the start of administration, which resolved without complications with continued treatment. CONCLUSIONS: Sapropterin appears well tolerated and highly effective in Japanese patients treated in a real-world setting, including those who start treatment at age <4 years and pregnant women.


Assuntos
Fenilalanina , Fenilcetonúrias , Biopterinas/análogos & derivados , Pré-Escolar , Feminino , Humanos , Japão , Masculino , Fenilcetonúrias/tratamento farmacológico , Gravidez , Vigilância de Produtos Comercializados
18.
Mol Genet Metab ; 133(2): 123-136, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33903016

RESUMO

Tetrahydrobiopterin (BH4) deficiency is caused by genetic variants in the three genes involved in de novo cofactor biosynthesis, GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), sepiapterin reductase (SR/SPR), and the two genes involved in cofactor recycling, carbinolamine-4α-dehydratase (PCD/PCBD1) and dihydropteridine reductase (DHPR/QDPR). Dysfunction in BH4 metabolism leads to reduced cofactor levels and may result in systemic hyperphenylalaninemia and/or neurological sequelae due to secondary deficiency in monoamine neurotransmitters in the central nervous system. More than 1100 patients with BH4 deficiency and 800 different allelic variants distributed throughout the individual genes are tabulated in database of pediatric neurotransmitter disorders PNDdb. Here we provide an update on the molecular-genetic analysis and structural considerations of these variants, including the clinical courses of the genotypes. From a total of 324 alleles, 11 are associated with the autosomal recessive form of GTPCH deficiency presenting with hyperphenylalaninemia (HPA) and neurotransmitter deficiency, 295 GCH1 variant alleles are detected in the dominant form of L-dopa-responsive dystonia (DRD or Segawa disease) while phenotypes of 18 alleles remained undefined. Autosomal recessive variants observed in the PTS (199 variants), PCBD1 (32 variants), and QDPR (141 variants) genes lead to HPA concomitant with central monoamine neurotransmitter deficiency, while SPR deficiency (104 variants) presents without hyperphenylalaninemia. The clinical impact of reported variants is essential for genetic counseling and important for development of precision medicine.


Assuntos
Oxirredutases do Álcool/genética , GTP Cicloidrolase/genética , Fenilcetonúrias/genética , Fósforo-Oxigênio Liases/genética , Biopterinas/análogos & derivados , Biopterinas/genética , Biopterinas/metabolismo , Di-Hidropteridina Redutase/genética , Distonia/genética , Distonia/metabolismo , Distonia/patologia , Predisposição Genética para Doença , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Proteínas Associadas aos Microtúbulos/genética , Fenilcetonúrias/classificação , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Transtornos Psicomotores/genética , Transtornos Psicomotores/metabolismo , Transtornos Psicomotores/patologia
19.
Metab Brain Dis ; 36(6): 1405-1410, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34014443

RESUMO

In addition to tetrahydrobiopterin deficiencies and phenylalanine hydroxylase deficiency (phenylketonuria) due to PAH variants, the deficiency of the co-chaperone protein DNAJC12 was identified in 2017 as a novel cause of inherited hyperphenylalaninemia, revealing the genetic etiology in previously unresolved cases. In this study, we aimed to investigate DNAJC12 deficiency in non-tetrahydrobiopterin-deficient persistent hyperphenylalaninemia cases without biallelic PAH variants in a single pediatric metabolic center. It was determined retrospectively that 471 patients with non-tetrahydrobiopterin deficiency-hyperphenylalaninemia had undergone PAH gene sequencing and 451 patients had biallelic variants in PAH. DNAJC12 sequencing was performed in the remaining 20 patients, identifying a previously reported homozygous splice-site variant (c.158-2A > T) in one patient with axial hypotonia and developmental delay, and a novel, homozygous c.404del (p.Arg135Lysfs*21) frameshift variant in an asymptomatic patient. In segregation analysis, the asymptomatic patient's both parents were also found to be homozygous for this variant and hyperphenylalaninemic. The parents may have had academic difficulties but intellectual disability could not be confirmed due to lack of cooperation. The symptomatic patient significantly benefited from treatment with sapropterin dihydrochloride and neurotransmitter precursors. DNAJC12 deficiency might be responsible for approximately 10% or more of cases with unexplained hyperphenylalaninemia. The phenotypic spectrum is broad, ranging from early infantile hypotonia to incidental diagnosis in adulthood. Similar to tetrahydrobiopterin deficiencies, early diagnosis and treatment with sapropterin dihydrochloride and neurotransmitter precursors can be beneficial, supporting the analysis of DNACJ12 gene in patients with unexplained hyperphenylalaninemia.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Proteínas de Choque Térmico HSP40/deficiência , Fenilalanina/sangue , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Biopterinas/análogos & derivados , Biopterinas/uso terapêutico , Criança , Deficiências do Desenvolvimento/genética , Feminino , Variação Genética , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Hipotonia Muscular/genética , Neurotransmissores/uso terapêutico , Fenilalanina Hidroxilase/genética , Isoformas de Proteínas/genética
20.
Pediatr Int ; 63(1): 8-12, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33423362

RESUMO

IMPORTANCE: Sapropterin hydrochloride, a natural coenzyme (6R-tetrahydrobiopterin) of phenylalanine hydroxylase, was first approved as a treatment for tetrahydrobiopterin deficiency in 1992 in Japan, and was then approved as a treatment for a tetrahydrobiopterin-responsive hyperphenylalaninemia in 2007 and 2008, in the USA and Japan, respectively. Guidelines are required on the proper use of sapropterin hydrochloride for tetrahydrobiopterin-responsive hyperphenylalaninemia. OBSERVATIONS: It is recommended that tetrahydrobiopterin-responsive hyperphenylalaninemia should be diagnosed in all cases of hyperphenylalaninemia, including phenylketonuria, by tetrahydrobiopterin administration tests rather than by phenotype or blood phenylalanine levels. CONCLUSIONS AND RELEVANCE: If tetrahydrobiopterin-responsive hyperphenylalaninemia is diagnosed, all ages can be treated with sapropterin hydrochloride. Although there are reports that sapropterin hydrochloride is effective and safe for the prevention of maternal phenylketonuria, further investigation is required.


Assuntos
Biopterinas/análogos & derivados , Fenilcetonúrias , Biopterinas/uso terapêutico , Feminino , Humanos , Japão , Fenótipo , Fenilalanina , Fenilalanina Hidroxilase , Fenilcetonúria Materna/prevenção & controle , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/terapia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA