Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 372, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400774

RESUMO

BACKGROUND: Adaptation to complex, rapidly changing environments is crucial for evolutionary success of fungi. The heterotrimeric G-protein pathway belongs to the most important signaling cascades applied for this task. In Trichoderma reesei, enzyme production, growth and secondary metabolism are among the physiological traits influenced by the G-protein pathway in a light dependent manner. RESULTS: Here, we investigated the function of the SNX/H-type regulator of G-protein signaling (RGS) protein RGS4 of T. reesei. We show that RGS4 is involved in regulation of cellulase production, growth, asexual development and oxidative stress response in darkness as well as in osmotic stress response in the presence of sodium chloride, particularly in light. Transcriptome analysis revealed regulation of several ribosomal genes, six genes mutated in RutC30 as well as several genes encoding transcription factors and transporters. Importantly, RGS4 positively regulates the siderophore cluster responsible for fusarinine C biosynthesis in light. The respective deletion mutant shows altered growth on nutrient sources related to siderophore production such as ornithine or proline in a BIOLOG phenotype microarray assay. Additionally, growth on storage carbohydrates as well as several intermediates of the D-galactose and D-arabinose catabolic pathway is decreased, predominantly in light. CONCLUSIONS: We conclude that RGS4 mainly operates in light and targets plant cell wall degradation, siderophore production and storage compound metabolism in T. reesei.


Assuntos
Celulase , Trichoderma , Sideróforos/metabolismo , Trichoderma/metabolismo , Metabolismo Secundário , Carboidratos , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Celulase/genética , Celulase/metabolismo
2.
Mar Drugs ; 20(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35323512

RESUMO

Four new dimeric sorbicillinoids (1-3 and 5) and a new monomeric sorbicillinoid (4) as well as six known analogs (6-11) were purified from the fungal strain Hypocrea jecorina H8, which was obtained from mangrove sediment, and showed potent inhibitory activity against the tea pathogenic fungus Pestalotiopsis theae (P. theae). The planar structures of 1-5 were assigned by analyses of their UV, IR, HR-ESI-MS, and NMR spectroscopic data. All the compounds were evaluated for growth inhibition of tea pathogenic fungus P. theae. Compounds 5, 6, 8, 9, and 10 exhibited more potent inhibitory activities compared with the positive control hexaconazole with an ED50 of 24.25 ± 1.57 µg/mL. The ED50 values of compounds 5, 6, 8, 9, and 10 were 9.13 ± 1.25, 2.04 ± 1.24, 18.22 ± 1.29, 1.83 ± 1.37, and 4.68 ± 1.44 µg/mL, respectively. Additionally, the effects of these compounds on zebrafish embryo development were also evaluated. Except for compounds 5 and 8, which imparted toxic effects on zebrafish even at 0.625 µM, the other isolated compounds did not exhibit significant toxicity to zebrafish eggs, embryos, or larvae. Taken together, sorbicillinoid derivatives (6, 9, and 10) from H. jecorina H8 displayed low toxicity and high anti-tea pathogenic fungus potential.


Assuntos
Ascomicetos/efeitos dos fármacos , Agentes de Controle Biológico , Hypocreales/química , Policetídeos , Animais , Ascomicetos/crescimento & desenvolvimento , Agentes de Controle Biológico/química , Agentes de Controle Biológico/isolamento & purificação , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/toxicidade , Camellia sinensis/microbiologia , Embrião não Mamífero , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Policetídeos/toxicidade , Peixe-Zebra
3.
J Biol Chem ; 294(48): 18435-18450, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31501242

RESUMO

Fungi of the genus Trichoderma are a rich source of enzymes, such as cellulases and hemicellulases, that can degrade lignocellulosic biomass and are therefore of interest for biotechnological approaches seeking to optimize biofuel production. The essential transcription factor ACE3 is involved in cellulase production in Trichoderma reesei; however, the mechanism by which ACE3 regulates cellulase activities is unknown. Here, we discovered that the nominal ace3 sequence in the T. reesei genome available through the Joint Genome Institute is erroneously annotated. Moreover, we identified the complete ace3 sequence, the ACE3 Zn(II)2Cys6 domain, and the ACE3 DNA-binding sites containing a 5'-CGGAN(T/A)3-3' consensus. We found that in addition to its essential role in cellulase production, ace3 is required for lactose assimilation and metabolism in T. reesei Transcriptional profiling with RNA-Seq revealed that ace3 deletion down-regulates not only the bulk of the major cellulase, hemicellulase, and related transcription factor genes, but also reduces the expression of lactose metabolism-related genes. Additionally, we demonstrate that ACE3 binds the promoters of many cellulase genes, the cellulose response transporter gene crt1, and transcription factor-encoding genes, including xyr1 We also observed that XYR1 dimerizes to facilitate cellulase production and that ACE3 interacts with XYR1. Together, these findings uncover how two essential transcriptional activators mediate cellulase gene expression in T. reesei On the basis of these observations, we propose a model of how the interactions between ACE3, Crt1, and XYR1 control cellulase expression and lactose metabolism in T. reesei.


Assuntos
Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Lactose/metabolismo , Fatores de Transcrição/metabolismo , Trichoderma/metabolismo , Sítios de Ligação/genética , Celulase/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/genética , Trichoderma/enzimologia , Trichoderma/genética
4.
Fungal Genet Biol ; 136: 103315, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816399

RESUMO

Regulation of plant cell wall degradation is of utmost importance for understanding the carbon cycle in nature, but also to improve industrial processes aimed at enzyme production for next generation biofuels. Thereby, the transcription factor networks in different fungi show conservation as well as striking differences, particularly between Trichoderma reesei and Neurospora crassa. Here, we aimed to gain insight into the function of the transcription factors CLR1 and CLR2 in T. reesei, which are crucial for cellulase gene expression in N. crassa. We studied impacts on gene regulation with cellulose, xylan, pectin and chitin, growth on 95 different carbon sources as well as an involvement in regulation of secondary metabolism or development. We found that CLR1 is present in the genome of T. reesei and other Trichoderma spp., albeit with considerably lower homology compared to other ascomycetes. CLR1 and CLR2 regulate pectinase transcript levels upon growth on pectin, no major function was detected on chitin. CLR1 and CLR2 form a positive feedback cycle on xylan and were found to be responsible for balancing co-regulation of xylanase genes in light and darkness with distinct and in part opposite regulatory effects of up to 8fold difference. Our data suggest that CLR1 and CLR2 have evolved differently in T. reesei compared to other fungi. We propose a model in which their main function is in adjustment of regulation of xylanase gene expression to different light conditions and to balance transcript levels of genes involved in plant cell wall degradation according to their individual relevance for this process.


Assuntos
Endo-1,4-beta-Xilanases/genética , Hypocreales/genética , Luz , Poligalacturonase/genética , Fatores de Transcrição/genética , Parede Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos , Hypocreales/metabolismo , Hypocreales/efeitos da radiação , Mutação , Filogenia , Poligalacturonase/metabolismo , Metabolismo Secundário/genética , Fatores de Transcrição/metabolismo , Xilanos/metabolismo
5.
BMC Genomics ; 20(1): 211, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30866811

RESUMO

BACKGROUND: Filamentous fungi have evolved to succeed in nature by efficient growth and degradation of substrates, but also due to the production of secondary metabolites including mycotoxins. For Trichoderma reesei, as a biotechnological workhorse for homologous and heterologous protein production, secondary metabolite secretion is of particular importance for industrial application. Recent studies revealed an interconnected regulation of enzyme gene expression and carbon metabolism with secondary metabolism. RESULTS: Here, we investigated gene regulation by YPR2, one out of two transcription factors located within the SOR cluster of T. reesei, which is involved in biosynthesis of sorbicillinoids. Transcriptome analysis showed that YPR2 exerts its major function in constant darkness upon growth on cellulose. Targets (direct and indirect) of YPR2 overlap with induction specific genes as well as with targets of the carbon catabolite repressor CRE1 and a considerable proportion is regulated by photoreceptors as well. Functional category analysis revealed both effects on carbon metabolism and secondary metabolism. Further, we found indications for an involvement of YPR2 in regulation of siderophores. In agreement with transcriptome data, mass spectrometric analyses revealed a broad alteration in metabolite patterns in ∆ypr2. Additionally, YPR2 positively influenced alamethicin levels along with transcript levels of the alamethicin synthase tex1 and is essential for production of orsellinic acid in darkness. CONCLUSIONS: YPR2 is an important regulator balancing secondary metabolism with carbon metabolism in darkness and depending on the carbon source. The function of YPR2 reaches beyond the SOR cluster in which ypr2 is located and happens downstream of carbon catabolite repression mediated by CRE1.


Assuntos
Carbono/metabolismo , Proteínas Fúngicas/genética , Fatores de Transcrição/metabolismo , Trichoderma/metabolismo , Alameticina/metabolismo , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Espectrometria de Massas , Proteínas Repressoras/genética , Metabolismo Secundário , Trichoderma/genética
6.
J Biol Chem ; 292(46): 19099-19109, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28900033

RESUMO

For decades, the enzymes of the fungus Hypocrea jecorina have served as a model system for the breakdown of cellulose. Three-dimensional structures for almost all H. jecorina cellulose-degrading enzymes are available, except for HjLPMO9A, belonging to the AA9 family of lytic polysaccharide monooxygenases (LPMOs). These enzymes enhance the hydrolytic activity of cellulases and are essential for cost-efficient conversion of lignocellulosic biomass. Here, using structural and spectroscopic analyses, we found that native HjLPMO9A contains a catalytic domain and a family-1 carbohydrate-binding module (CBM1) connected via a linker sequence. A C terminally truncated variant of HjLPMO9A containing 21 residues of the predicted linker was expressed at levels sufficient for analysis. Here, using structural, spectroscopic, and biochemical analyses, we found that this truncated variant exhibited reduced binding to and activity on cellulose compared with the full-length enzyme. Importantly, a 0.95-Å resolution X-ray structure of truncated HjLPMO9A revealed that the linker forms an integral part of the catalytic domain structure, covering a hydrophobic patch on the catalytic AA9 module. We noted that the oxidized catalytic center contains a Cu(II) coordinated by two His ligands, one of which has a His-brace in which the His-1 terminal amine group also coordinates to a copper. The final equatorial position of the Cu(II) is occupied by a water-derived ligand. The spectroscopic characteristics of the truncated variant were not measurably different from those of full-length HjLPMO9A, indicating that the presence of the CBM1 module increases the affinity of HjLPMO9A for cellulose binding, but does not affect the active site.


Assuntos
Hypocrea/enzimologia , Oxigenases de Função Mista/química , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Celulose/metabolismo , Cristalografia por Raios X , Hypocrea/química , Hypocrea/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Polissacarídeos/metabolismo , Conformação Proteica , Alinhamento de Sequência
7.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916559

RESUMO

The filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostly QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.IMPORTANCETrichoderma reesei is a filamentous fungus with a high potential for secretion of plant cell wall-degrading enzymes. We sequenced the genome of the fully fertile field isolate CBS999.97 and analyzed its gene regulation characteristics in comparison with the commonly used laboratory wild-type strain QM6a, which is not female fertile. Additionally, we also evaluated fully fertile strains with genotypes very close to that of QM6a in order to distinguish between strain-specific and fertility-specific characteristics. We found that QM6a and CBS999.97 clearly differ in their growth patterns on different carbon sources, CAZyme gene regulation, and secondary metabolism. Importantly, we found altered regulation of 90 genes associated with female fertility, including CAZyme genes and transporter genes, but only minor mating type-dependent differences. Hence, when using sexual crossing in research and for strain improvement, it is important to consider female fertile and female sterile strains for comparison with QM6a and to achieve optimal performance.


Assuntos
Celulase/genética , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Trichoderma/enzimologia , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento , Proteínas de Membrana Transportadoras/metabolismo , Transcrição Gênica , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento
8.
J Biol Chem ; 290(36): 22203-11, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26183776

RESUMO

Kinetic and thermodynamic data have been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Trichoderma reesei), we were able to measure or collect relevant values for all stable and activated complexes defined by the reaction scheme and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association and dissociation of the enzyme-substrate complex. The results showed that the kinetics of enzyme-substrate association (i.e. formation of the Michaelis complex) was almost entirely entropy-controlled and that the activation entropy corresponded approximately to the loss of translational and rotational degrees of freedom of the dissolved enzyme. This implied that the transition state occurred early in the path where the enzyme has lost these degrees of freedom but not yet established extensive contact interactions in the binding tunnel. For dissociation, a similar analysis suggested that the transition state was late in the path where most enzyme-substrate contacts were broken. Activation enthalpies revealed that the rate of dissociation was far more temperature-sensitive than the rates of both association and the inner catalytic cycle. Comparisons of one- and two-domain variants showed that the CBM had no influence on the transition state for association but increased the free energy barrier for dissociation. Hence, the CBM appeared to promote the stability of the complex by delaying dissociation rather than accelerating association.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Termodinâmica , Algoritmos , Biocatálise , Celulose 1,4-beta-Celobiosidase/genética , Entropia , Proteínas Fúngicas/genética , Variação Genética , Hidrólise , Hypocrea/enzimologia , Hypocrea/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligação Proteica , Especificidade por Substrato , Trichoderma/enzimologia , Trichoderma/genética
9.
J Biol Chem ; 290(36): 22193-202, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26183777

RESUMO

We measured hydrolytic rates of four purified cellulases in small increments of temperature (10-50 °C) and substrate loads (0-100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Temperatura , Algoritmos , Ascomicetos/enzimologia , Ascomicetos/genética , Ligação Competitiva , Celobiose/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/genética , Variação Genética , Hidrólise , Hypocrea/enzimologia , Hypocrea/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligação Proteica , Especificidade por Substrato , Trichoderma/enzimologia , Trichoderma/genética
10.
J Biol Chem ; 289(45): 31624-37, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25164811

RESUMO

Cellulase mixtures from Hypocrea jecorina are commonly used for the saccharification of cellulose in biotechnical applications. The most abundant ß-glucosidase in the mesophilic fungus Hypocrea jecorina is HjCel3A, which hydrolyzes the ß-linkage between two adjacent molecules in dimers and short oligomers of glucose. It has been shown that enhanced levels of HjCel3A in H. jecorina cellulase mixtures benefit the conversion of cellulose to glucose. Biochemical characterization of HjCel3A shows that the enzyme efficiently hydrolyzes (1,4)- as well as (1,2)-, (1,3)-, and (1,6)-ß-D-linked disaccharides. For crystallization studies, HjCel3A was produced in both H. jecorina (HjCel3A) and Pichia pastoris (Pp-HjCel3A). Whereas the thermostabilities of HjCel3A and Pp-HjCel3A are the same, Pp-HjCel3A has a higher degree of N-linked glycosylation. Here, we present x-ray structures of HjCel3A with and without glucose bound in the active site. The structures have a three-domain architecture as observed previously for other glycoside hydrolase family 3 ß-glucosidases. Both production hosts resulted in HjCel3A structures that have N-linked glycosylations at Asn(208) and Asn(310). In H. jecorina-produced HjCel3A, a single N-acetylglucosamine is present at both sites, whereas in Pp-HjCel3A, the P. pastoris-produced HjCel3A enzyme, the glycan chains consist of 8 or 4 saccharides. The glycosylations are involved in intermolecular contacts in the structures derived from either host. Due to the different sizes of the glycosylations, the interactions result in different crystal forms for the two protein forms.


Assuntos
Proteínas Fúngicas/química , Glucosidases/química , Hypocrea/enzimologia , beta-Glucosidase/química , Biomassa , Domínio Catalítico , Celulase/química , Cristalografia por Raios X , Glucose/química , Glucosídeos/química , Glicosilação , Ligação de Hidrogênio , Hidrólise , Ligantes , Espectrometria de Massas , Nitrobenzenos/química , Oligossacarídeos/química , Pichia/metabolismo , Especificidade por Substrato , Temperatura , Xilose/análogos & derivados , Xilose/química
11.
Appl Microbiol Biotechnol ; 99(23): 10083-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272087

RESUMO

Targeted integration of expression cassettes for enzyme production in industrial microorganisms is desirable especially when enzyme variants are screened for improved enzymatic properties. However, currently used methods for targeted integration are inefficient and result in low transformation frequencies. In this study, we expressed the Saccharomyces cerevisiae I-SceI meganuclease to generate double-strand breaks at a defined locus in the Trichoderma reesei genome. We showed that the double-strand DNA breaks mediated by I-SceI can be efficiently repaired when an exogenous DNA cassette flanked by regions homologous to the I-SceI landing locus was added during transformation. Transformation efficiencies increased approximately sixfold compared to control transformation. Analysis of the transformants obtained via I-SceI-mediated gene targeting showed that about two thirds of the transformants resulted from a homologous recombination event at the predetermined locus. Counter selection of the transformants for the loss of the pyrG marker upon integration of the DNA cassette showed that almost all of the clones contained the cassette at the predetermined locus. Analysis of independently obtained transformants using targeted integration of a glucoamylase expression cassette demonstrated that glucoamylase production among the transformants was high and showing limited variation. In conclusion, the gene targeting system developed in this study significantly increases transformation efficiency as well as homologous recombination efficiency and omits the use of Δku70 strains. It is also suitable for high-throughput screening of enzyme variants or gene libraries in T. reesei.


Assuntos
Quebras de DNA de Cadeia Dupla , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Marcação de Genes/métodos , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Trichoderma/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transformação Genética
12.
Anal Biochem ; 447: 162-8, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24299990

RESUMO

Cellulases hydrolyze cellulose to soluble sugars and this process is utilized in sustainable industries based on lignocellulosic feedstock. Better analytical tools will be necessary to understand basic cellulase mechanisms, and hence deliver rational improvements of the industrial process. In this work we describe a new electrochemical approach to the quantification of the populations of enzyme that are respectively free in the aqueous bulk, adsorbed to the insoluble substrate with an unoccupied active site or threaded with the cellulose strand in the active tunnel. Distinction of these three states appears essential to the identification of the rate-limiting step. The method is based on disposable graphene-modified screen-printed carbon electrodes, and we show how the temporal development in the concentrations of the three enzyme forms can be derived from a combination of the electrochemical data and adsorption measurements. The approach was tested for the cellobiohydrolase Cel7A from Hypocrea jecorina acting on microcrystalline cellulose, and it was found that the threaded enzyme form dominates for this system while adsorbed enzyme with an unoccupied active site constitutes less than 5% of the population.


Assuntos
Carbono/química , Domínio Catalítico , Celulase/química , Celulase/metabolismo , Eletroquímica/métodos , Grafite/química , Impressão , Celulose/metabolismo , Eletroquímica/instrumentação , Eletrodos , Hypocrea/enzimologia , Modelos Moleculares
13.
Catal Today ; 167(1): 122-128, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27667900

RESUMO

Hypocrea jecorina (anamorph Trichoderma reesei) is a saprophytic fungus that produces hydrolases, which are applied in different types of industries and used for the production of biofuel. A recombinant Hypocrea strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1), was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also showed improved ability of clearing xylan medium on plates. Furthermore, this strain has a changed transcription profile concerning genes encoding for hydrolases and enzymes associated with degradation of (hemi)celluloses. We demonstrated that enzymes of this strain from a xylan cultivation favoured break down of hemicelluloses to the monomer d-xylose compared to the parental strain, while the enzymes of the latter one formed more xylobiose. Applying supernatants from cultivation on carboxymethylcellulose in enzymatic conversion of hemicelluloses, the enzymes of the recombinant strain were clearly producing more of both, d-xylose and xylobiose, compared to the parental strain. Altogether, these results point to a changed hydrolase expression profile, an enhanced capability to form the xylan-monomer d-xylose and the assumption that there is a disordered induction pattern if the Xylanase regulator 1 is de-regulated in Hypocrea.

14.
Biotechnol Biofuels ; 14(1): 193, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598727

RESUMO

BACKGROUND: Even if the loss of production capacity of a microorganism is said to be a serious problem in various biotechnology industries, reports in literature are rather rare. Strains of the genera Trichoderma reesei are used for large-scale production of cellulases, which are needed in food and feed, textile, paper industries and biofuel production. RESULTS: Here, we describe the phenomenon of spontaneous degeneration of T. reesei strains during large-scale cultivation. The phenotype of the degenerated population is characterized most importantly by a loss of any cellulase formation. Interestingly, promoter regions of relevant genes had a more compact chromatin in the (cel -) strains compared to productive strains. For a systematic investigation of the phenomenon a protocol for artificially induced and lab-scaled strain degeneration was developed. This workflow allows to determine the degeneration rate and thus, to compare the occurrence of a degenerated population in differently productive strains on the one hand, and to monitor the success of any strategies to prevent or decrease the degeneration on the other hand. While highly productive strains have higher degeneration rates compared to moderate producers, the degeneration can hardly be triggered in moderate producers. The observed (cel -) phenotype is not caused by a mutation in the gene encoding the essential transactivator Xyr1. The development of a non-producing population is also not triggered by any compounds released by either producing or non-producing cells. CONCLUSIONS: The extent of the occurrence of a degenerated strain population relates to the production capacity of the strain and goes along with chromatin condensation in relevant promoter regions.

15.
J Fungi (Basel) ; 7(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34436152

RESUMO

Vib1, a member of the Ndt80/PhoG-like transcription factor family, has been shown to be essential for cellulase production of Trichoderma reesei. Here, we combined transcriptomic and genetic analyses to gain mechanistic insights into the roles of Vib1 during cellulose degradation. Our transcriptome analysis showed that the vib1 deletion caused 586 genes with decreased expression and 431 genes with increased expression on cellulose. The downregulated genes were enriched for Gene Ontology terms associated with carbohydrate metabolism, transmembrane transport, oxidoreductase activity, and transcription factor activity. Of the 258 genes induced by cellulose, 229 showed no or decreased expression in Δvib1 on cellulose, including almost all (hemi)cellulase genes, crucial sugar transporter genes (IDs:69957, 3405), and the genes encoding main transcriptional activators Xyr1 and Ace3. Additionally, Vib1 also regulated the expression of genes involved in secondary metabolism. Further comparison of the transcriptomes of Δvib1 and Δxyr1 in cellulose revealed that the genes regulated by Vib1 had much overlap with Xyr1 targets especially for the gene set induced by cellulose, presumably whose expression requires the cooperativity between Vib1 and Xyr1. Genetic evidence indicated that Vib1 regulates cellulase gene expression partially via Xyr1. Our results will provide new clues for strain improvement.

16.
Front Microbiol ; 12: 552301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584603

RESUMO

Fungi of the genus Trichoderma are of high importance for biotechnological applications, in biocontrol and for production of homologous and heterologous proteins. However, sexual crossing under laboratory conditions has so far only been achieved with the species Trichoderma reesei, which was so far only isolated from tropical regions. Our isolation efforts aimed at the collection of Trichoderma strains from Austrian soils surprisingly also yielded 12 strains of the species T. reesei, which was previously not known to occur in Europe. Their identity was confirmed with tef1- and rpb2-sequencing and phylogenetic analysis. They could clearly be distinguished from tropical strains including the common laboratory wildtypes by UP-PCR and genetic variations adjacent to the mating type locus. The strains readily mated with reference strains derived from CBS999.97. Secreted cellulase and xylanase levels of these isolates were up to six-fold higher than those of QM6a indicating a high potential for strain improvement. The strains showed different responses to injury in terms of induction of sporulation, but a correlation to alterations in the nox1-gene sequence was not detected. Several synonymous SNPs were found in the sequence of the regulator gene noxR of the soil isolates compared to QM6a. Only in one strain, non-synonymous SNPs were found which impact a PEST sequence of NoxR, suggesting altered protein stability. The availability of sexually fertile strains from middle Europe naturally producing decent amounts of plant cell wall degrading enzymes opens up novel perspectives for non-GMO strain improvement and biological pretreatment of plant biomass for bioethanol production. Moreover, the varied response of these strains to injury in terms of sporulation, which is independent of Nox1 and NoxR suggests that additional regulators impact this phenomenon in T. reesei.

17.
Front Microbiol ; 11: 974, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508786

RESUMO

The complex environment of fungi requires a delicate balance between the efforts to acquire nutrition, to reproduce, and to fend off competitors. In Trichoderma reesei, an interrelationship between regulation of enzyme gene expression and secondary metabolism was shown. In this study, we investigated the physiological relevance of the unique YPK1-type kinase USK1 of T. reesei. Usk1 is located in the vicinity of the SOR cluster and is involved in regulation of several genes from this secondary metabolite cluster as well as dihydrotrichotetronine and other secondary metabolites. Moreover, USK1 is required for biosynthesis of normal levels of secondary metabolites in liquid culture. USK1 positively influences cellulase gene regulation, secreted cellulase activity, and biomass formation upon growth in constant darkness on cellulose. Positive effects of USK1 on transcript abundance of the regulator of secondary metabolism, vel1, and the carbon catabolite repressor gene cre1 are in agreement with these functions. In summary, we found that with USK1, T. reesei comprises a unique kinase that adds an additional layer of regulation to the connection of secondary metabolism and enzyme production in fungi.

18.
Biotechnol Rep (Amst) ; 25: e00431, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32071895

RESUMO

Manganese (Mn) is toxic at higher concentrations requiring its removal before returning the wastewater to the environment. This article reported the Mn removal of two fungi strains isolated from mine wastewater. ITS rRNA region sequencing identified the fungi strains as Cladosporium halotolerans and Hypocrea jecorina. Mn2+ removal assays were performed in Sabouraud broth with 50 mg L-1 Mn2+ supplemented and bioleaching assays using MnO2 instead of MnSO4 at the same conditions. C. halotolerans removed 96 % of 50 mg L-1 Mn2+ at two weeks without MnO2 bioleaching with 649.9 mg of biomass and H. jecorina removed about 50 % of Mn2+ in 21 days from initial 50 mg of Mn2+ L-1 with 316.8 mg of biomass. Extracellular laccases were present in C. halotolerans agar regardless of the Mn addition. Mn adsorbed was detected on C. halotolerans hyphae. Mn oxidation was positive to H. jecorina by reaction of its medium with Leucoberbelin blue.

19.
Artigo em Inglês | MEDLINE | ID: mdl-31528353

RESUMO

BACKGROUND: Trichoderma reesei represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes. Moreover, the cAMP pathway impacts growth and development. RESULTS: Here, we investigated gene regulation by the catalytic subunit of protein kinase A (PKAc1) upon growth on cellulose. We found distinct gene sets for regulation upon growth in light and darkness with an overlap of only 13 genes. PKAc1 regulates metabolic genes as well as transport and defense functions. The overlap of gene regulation by PKAc1 with the genes representing the cAMP dependent regulatory output of the photoreceptor ENV1 indicates an involvement of PKA in this pathway, which counteracts its effects by contrasting regulation. Moreover, we found considerable overlap with the gene sets regulated under cellulase inducing conditions and by the carbon catabolite repressor CRE1. Our analysis also showed that PKAc1 regulates the genes of the SOR cluster associated with the biosynthesis of sorbicillinoids. The homologue of gin4, encoding a CAMK type kinase, which is regulated by PKAc1, CRE1 and YPR2 showed a moderate impact on trichodimerol production. We isolated trichodimerol as representative sorbicillin compound and established a method for its quantification in large sample sets using high performance thin layer chromatography (HPTLC), which can be broadly applied for secondary metabolite screening of mutants or different growth conditions. Due to the high expression levels of the SOR cluster under conditions of sexual development we crosschecked the relevance of PKAc1 under these conditions. We could show that PKAc1 impacts biosynthesis of trichodimerol in axenic growth and upon mating. CONCLUSIONS: We conclude that PKAc1 is involved in light dependent regulation of plant cell wall degradation, including carbon catabolite repression as well as secondary metabolism and development in T. reesei.

20.
Fungal Biol ; 122(6): 479-486, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801792

RESUMO

Trichoderma reesei represents one of the most prolific producers of homologous and heterologous proteins. Discovery of the photoreceptor ENV1 as a regulator of cellulase gene expression initiated analysis of light response pathways and their physiological relevance for T. reesei. The function of ENV1 in regulation of plant cell wall degrading enzymes is conserved in Neurospora crassa. ENV1 emerged as a central checkpoint for integration of nutrient sensing, light response and development. This photoreceptor exerts its function by influencing transcript abundance and feedback cycles of the alpha subunits of the heterotrimeric G-protein pathway and impacts regulation of the beta and gamma subunits via mutual regulation with the phosducin PhLP1. The output of regulation by ENV1 is in part mediated by the cAMP pathway and likely aimed at cellulose recognition. Lack of ENV1 causes deregulation of the pheromone system and female sterility in light. A regulatory interconnection with VEL1 and influence on other regulators of secondary metabolism like YPR2 as well as polyketide synthase encoding genes indicates a function in secondary metabolism. The function of ENV1 in integrating light response with signaling of osmotic and oxidative stress is evolutionary conserved in Hypocreales and distinct from other sordariomycetes including N. crassa.


Assuntos
Proteínas Fúngicas/metabolismo , Fotorreceptores Microbianos/metabolismo , Trichoderma/fisiologia , Proteínas do Olho/metabolismo , Proteínas Fúngicas/genética , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Heterotriméricas de Ligação ao GTP/genética , Feromônios/metabolismo , Fosfoproteínas/metabolismo , Fotorreceptores Microbianos/genética , Metabolismo Secundário , Transdução de Sinais , Trichoderma/genética , Trichoderma/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA