Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216540

RESUMO

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Assuntos
Linhagem da Célula , Poliaminas/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Colite/imunologia , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigenoma , Histonas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ornitina Descarboxilase/metabolismo , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fatores de Transcrição/metabolismo
2.
Am J Hum Genet ; 109(8): 1549-1558, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35858628

RESUMO

Deoxyhypusine hydroxylase (DOHH) is the enzyme catalyzing the second step in the post-translational synthesis of hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] in the eukaryotic initiation factor 5A (eIF5A). Hypusine is formed exclusively in eIF5A by two sequential enzymatic steps catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusinated eIF5A is essential for translation and cell proliferation in eukaryotes, and all three genes encoding eIF5A, DHPS, and DOHH are highly conserved throughout eukaryotes. Pathogenic variants affecting either DHPS or EIF5A have been previously associated with neurodevelopmental disorders. Using trio exome sequencing, we identified rare bi-allelic pathogenic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. The DOHH variants are associated with a neurodevelopmental phenotype that is similar to phenotypes caused by DHPS or EIF5A variants and includes global developmental delay, intellectual disability, facial dysmorphism, and microcephaly. A two-dimensional gel analyses revealed the accumulation of deoxyhypusine-containing eIF5A [eIF5A(Dhp)] and a reduction in the hypusinated eIF5A in fibroblasts derived from affected individuals, providing biochemical evidence for deficiency of DOHH activity in cells carrying the bi-allelic DOHH variants. Our data suggest that rare bi-allelic variants in DOHH result in reduced enzyme activity, limit the hypusination of eIF5A, and thereby lead to a neurodevelopmental disorder.


Assuntos
Lisina , Oxigenases de Função Mista , Transtornos do Neurodesenvolvimento , Alelos , Expressão Gênica , Humanos , Lisina/análogos & derivados , Oxigenases de Função Mista/genética , Transtornos do Neurodesenvolvimento/genética
3.
Am J Respir Crit Care Med ; 209(11): 1376-1391, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261723

RESUMO

Rationale: The ubiquitous polyamine spermidine is essential for cell survival and proliferation. One important function of spermidine is to serve as a substrate for hypusination, a posttranslational modification process that occurs exclusively on eukaryotic translation factor 5A (eIF5A) and ensures efficient translation of various gene products. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of the small pulmonary arteries (PAs) caused by excessive proliferation of PA smooth muscle cells (PASMCs) and suppressed apoptosis. Objectives: To characterize the role of hypusine signaling in PAH. Methods: Molecular, genetic, and pharmacological approaches were used both in vitro and in vivo to investigate the role of hypusine signaling in pulmonary vascular remodeling. Measurements and Main Results: Hypusine forming enzymes-deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)-and hypusinated eukaryotic translation factor 5A are overexpressed in distal PAs and isolated PASMCs from PAH patients and animal models. In vitro, inhibition of DHPS using N1-guanyl-1,7-diaminoheptane or shRNA resulted in a decrease in PAH-PASMC resistance to apoptosis and proliferation. In vivo, inactivation of one allele of Dhps targeted to smooth muscle cells alleviates PAH in mice, and its pharmacological inhibition significantly decreases pulmonary vascular remodeling and improves hemodynamics and cardiac function in two rat models of established PAH. With mass spectrometry, hypusine signaling is shown to promote the expression of a broad array of proteins involved in oxidative phosphorylation, thus supporting the bioenergetic requirements of cell survival and proliferation. Conclusions: These findings support inhibiting hypusine signaling as a potential treatment for PAH.


Assuntos
Hipertensão Arterial Pulmonar , Transdução de Sinais , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Humanos , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Masculino , Modelos Animais de Doenças , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Camundongos , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Proliferação de Células/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Lisina/análogos & derivados
4.
Gastroenterology ; 165(3): 656-669.e8, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271289

RESUMO

BACKGROUND & AIMS: The amino acid hypusine, synthesized from the polyamine spermidine by the enzyme deoxyhypusine synthase (DHPS), is essential for the activity of eukaryotic translation initiation factor 5A (EIF5A). The role of hypusinated EIF5A (EIF5AHyp) remains unknown in intestinal homeostasis. Our aim was to investigate EIF5AHyp in the gut epithelium in inflammation and carcinogenesis. METHODS: We used human colon tissue messenger RNA samples and publicly available transcriptomic datasets, tissue microarrays, and patient-derived colon organoids. Mice with intestinal epithelial-specific deletion of Dhps were investigated at baseline and in models of colitis and colon carcinogenesis. RESULTS: We found that patients with ulcerative colitis and Crohn's disease exhibit reduced colon levels of DHPS messenger RNA and DHPS protein and reduced levels of EIF5AHyp. Similarly, colonic organoids from colitis patients also show down-regulated DHPS expression. Mice with intestinal epithelial-specific deletion of Dhps develop spontaneous colon hyperplasia, epithelial proliferation, crypt distortion, and inflammation. Furthermore, these mice are highly susceptible to experimental colitis and show exacerbated colon tumorigenesis when treated with a carcinogen. Transcriptomic and proteomic analysis on colonic epithelial cells demonstrated that loss of hypusination induces multiple pathways related to cancer and immune response. Moreover, we found that hypusination enhances translation of numerous enzymes involved in aldehyde detoxification, including glutathione S-transferases and aldehyde dehydrogenases. Accordingly, hypusination-deficient mice exhibit increased levels of aldehyde adducts in the colon, and their treatment with a scavenger of electrophiles reduces colitis. CONCLUSIONS: Hypusination in intestinal epithelial cells has a key role in the prevention of colitis and colorectal cancer, and enhancement of this pathway via supplementation of spermidine could have a therapeutic impact.


Assuntos
Colite , Espermidina , Humanos , Animais , Camundongos , Espermidina/farmacologia , Espermidina/metabolismo , Proteômica , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Carcinogênese/genética , Colite/induzido quimicamente , Colite/genética , Colite/prevenção & controle , Homeostase , Inflamação
5.
FASEB J ; 36(7): e22422, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35747924

RESUMO

Nociceptors are a type of sensory neuron that are integral to most forms of pain. Targeted disruption of nociceptor sensitization affords unique opportunities to prevent pain. An emerging model for nociceptors are sensory neurons derived from human stem cells. Here, we subjected five groups to high-throughput sequencing: human induced pluripotent stem cells (hiPSCs) prior to differentiation, mature hiPSC-derived sensory neurons, mature co-cultures containing hiPSC-derived astrocytes and sensory neurons, mouse dorsal root ganglion (DRG) tissues, and mouse DRG cultures. Co-culture of nociceptors and astrocytes promotes expression of transcripts enriched in DRG tissues. Comparisons of the hiPSC models to tissue samples reveal that many key transcripts linked to pain are present. Markers indicative of a range of neuronal subtypes present in the DRG were detected in mature hiPSCs. Intriguingly, translation factors were maintained at consistently high expression levels across species and culture systems. As a proof of concept for the utility of this resource, we validated expression of eukaryotic initiation factor 5A (eIF5A) in DRG tissues and hiPSC samples. eIF5A is subject to a unique posttranslational hypusine modification required for its activity. Inhibition of hypusine biosynthesis prevented hyperalgesic priming by inflammatory mediators in vivo and diminished hiPSC activity in vitro. Collectively, our results illuminate the transcriptomes of hiPSC sensory neuron models. We provide a demonstration for this resource through our investigation of eIF5A. Our findings reveal hypusine as a potential target for inflammation associated pain in males.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Masculino , Camundongos , Nociceptores , Dor/genética , RNA Mensageiro , Transcriptoma
6.
Amino Acids ; 55(7): 913-929, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258638

RESUMO

Hypusine amino acid [Nε-(4-amino-2-hydroxybutyl)-lysine] was first isolated in 1971 from bovine brain extracts. Hypusine originates from a post-translational modification at the eukaryotic translation initiation factor 5A (eIF5A), a protein produced by archaebacteria and eukaryotes. The eIF5A protein is the only one described containing the hypusine residue, which is essential for its activity. Hypusine as a free amino acid is a consequence of proteolytic degradation of eIF5A. Herein, we showed, for the first time, evidence of biological activity for the free hypusine. C6 rat glioma cells were treated with hypusine, and different cellular parameters were evaluated. Hypusine treatment significantly reduced C6 cell proliferation and potently suppressed their clonogenic capacity without leading to apoptosis. Hypusine also decreased the Eif5A transcript content and the global protein synthesis profile that may occur due to negative feedback in response to high hypusine concentration, controlling the content of newly synthesized eIF5A, which can affect the translation process. Besides, hypusine treatment also altered cellular metabolism by changing the pathways for energy production, reducing cellular respiration coupled with oxidative phosphorylation, and increasing the anaerobic metabolism. These observed results and the relationship between eIF5A and tumor processes led us to test the combination of hypusine with the chemotherapeutic drug temozolomide. Combining temozolomide with hypusine reduced the MTT conversion to the same levels as those observed using double temozolomide dosage alone, demonstrating a synergetic action between the compounds. Thus, since 1971, this is the first study showing evidence of biological activity for hypusine not associated with being an essential component of the eiF5A protein. Finding out the molecular targets of hypusine are the following efforts to completely characterize its biological activity.


Assuntos
Aminoácidos , Lisina , Animais , Bovinos , Ratos , Aminoácidos/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Lisina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Temozolomida
7.
Mol Biol Rep ; 50(4): 3099-3109, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36689050

RESUMO

PURPOSE: The aim of this study was to investigate whether eIF5A hypusine (eIF5AHyp) reduces adenosine 2b receptor (A2bAR) gene expression through interaction with highly structured stem-loop sequences within the A2bAR 3'UTR. METHODS AND RESULTS: Based on real-time PCR and western blotting, expression of A2bAR mRNA was significantly decreased upon treatment with eIF5AHyp in mouse embryonic fibroblasts of eIF5A (eIF5A-MEF) and 3T3-L1 cells. Target Scan software and RNAfold web server predicted two different structures formed by stem-loop sequences with overlapping microRNA 27 seed sequences and mutations. The EMSA results showed significantly impaired formation of the wild type (WT) biotin-labeled A2bAR probe (27 base) containing stem loop sequences-eIF5AHyp complex by mutation of stem-loop sequences or by eIF5A non-hypusine (eIF5ALys). The luciferase reporter assay showed that GC7-induced eIF5ALys accumulation increased the activity of pMIR-A2bAR WT containing the same stem-loop sequence in 3T3-L1 cells, whereas the activity with pMIR-A2bAR Mut was increased compared to WT control without dependence on GC7. Oil Red O staining showed that suppression of A2bAR expression (A2bAR siRNA and eIF5AHyp) increased the amount of lipid droplet formation and the mRNA levels of lipid droplet-related genes (C/EBP-ß, PPAR-γ, FABP4, SREBP-1, and Perilipin). In contrast, overexpression of A2bAR (A2bAR vector, eIF5ALys vector, and GC7) significantly decreased the expression of lipid droplet-associated genes and lipid droplet formation. CONCLUSIONS: eIF5AHyp acts as a negative regulator of A2bAR gene expression through stem loop sequences in A2bAR 3'UTR, allowing differentiation of adipocytes.


Assuntos
Fibroblastos , MicroRNAs , Animais , Camundongos , Regiões 3' não Traduzidas/genética , Fibroblastos/metabolismo , Expressão Gênica , Fatores de Iniciação de Peptídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Purinérgicos P1/metabolismo
8.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047039

RESUMO

The human eukaryotic translation initiation factor 5A (EIF5A) family consists of three members, namely EIF5A1, EIF5A2, and EIF5AL1. Recent studies have shown that the expression of EIF5As is related to many human diseases, such as diabetes, viral infection, central nervous system injury, and cancer. Among them, EIF5A1 plays different functions in various cancers, possibly as a tumor-suppressor or oncogene, while EIF5A2 promotes the occurrence and development of cancer. Yet, the biological function of EIF5AL1 is not being studied so far. Interestingly, although there are only three amino acid (at residues 36, 45, and 109) differences between EIF5A1 and EIF5AL1, we demonstrate that only EIF5A1 can be hypusinated while EIF5AL1 cannot, and EIF5AL1 has a tumor-suppressor-like function by inhibiting cell proliferation and migration. We also show that EIF5AL1 protein turnover is mediated through the proteasomal pathway, and EIF5AL1 protein turnover is much faster than that of EIF5A1, which may explain their differential protein expression level in cells. By engineering single and double mutations on these three amino acids, we pinpoint which of these amino acids are critical for hypusination and protein stability. The data of this work should fill in the gaps in EIF5As research and pave the way for future studies on EIF5AL1.


Assuntos
Lisina , Neoplasias , Humanos , Aminoácidos , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Lisina/metabolismo , Neoplasias/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Estabilidade Proteica , Fator de Iniciação de Tradução Eucariótico 5A
9.
J Biol Chem ; 297(5): 101333, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688659

RESUMO

Eukaryotic initiation factor 5A (eIF5A)†,‡ is an essential protein that requires a unique amino acid, hypusine, for its activity. Hypusine is formed exclusively in eIF5A post-translationally via two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase. Each of the genes encoding these proteins, Eif5a, Dhps, and Dohh, is required for mouse embryonic development. Variants in EIF5A or DHPS were recently identified as the genetic basis underlying certain rare neurodevelopmental disorders in humans. To investigate the roles of eIF5A and DHPS in brain development, we generated four conditional KO mouse strains using the Emx1-Cre or Camk2a-Cre strains and examined the effects of temporal- and region-specific deletion of Eif5a or Dhps. The conditional deletion of Dhps or Eif5a by Emx1 promotor-driven Cre expression (E9.5, in the cortex and hippocampus) led to gross defects in forebrain development, reduced growth, and premature death. On the other hand, the conditional deletion of Dhps or Eif5a by Camk2a promoter-driven Cre expression (postnatal, mainly in the CA1 region of the hippocampus) did not lead to global developmental defects; rather, these KO animals exhibited severe impairment in spatial learning, contextual learning, and memory when subjected to the Morris water maze and a contextual learning test. In both models, the Dhps-KO mice displayed more severe impairment than their Eif5a-KO counterparts. The observed defects in the brain, global development, or cognitive functions most likely result from translation errors due to a deficiency in active, hypusinated eIF5A. Our study underscores the important roles of eIF5A and DHPS in neurodevelopment.


Assuntos
Córtex Cerebelar/metabolismo , Cognição , Hipocampo/metabolismo , Oxigenases de Função Mista/metabolismo , Neurogênese , Neurônios/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Knockout , Oxigenases de Função Mista/genética , Especificidade de Órgãos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
10.
Am J Hum Genet ; 104(2): 287-298, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661771

RESUMO

Hypusine is formed post-translationally from lysine and is found in a single cellular protein, eukaryotic translation initiation factor-5A (eIF5A), and its homolog eIF5A2. Biosynthesis of hypusine is a two-step reaction involving the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). eIF5A is highly conserved throughout eukaryotic evolution and plays a role in mRNA translation, cellular proliferation, cellular differentiation, and inflammation. DHPS is also highly conserved and is essential for life, as Dhps-null mice are embryonic lethal. Using exome sequencing, we identified rare biallelic, recurrent, predicted likely pathogenic variants in DHPS segregating with disease in five affected individuals from four unrelated families. These individuals have similar neurodevelopmental features that include global developmental delay and seizures. Two of four affected females have short stature. All five affected individuals share a recurrent missense variant (c.518A>G [p.Asn173Ser]) in trans with a likely gene disrupting variant (c.1014+1G>A, c.912_917delTTACAT [p.Tyr305_Ile306del], or c.1A>G [p.Met1?]). cDNA studies demonstrated that the c.1014+1G>A variant causes aberrant splicing. Recombinant DHPS enzyme harboring either the p.Asn173Ser or p.Tyr305_Ile306del variant showed reduced (20%) or absent in vitro activity, respectively. We co-transfected constructs overexpressing HA-tagged DHPS (wild-type or mutant) and GFP-tagged eIF5A into HEK293T cells to determine the effect of these variants on hypusine biosynthesis and observed that the p.Tyr305_Ile306del and p.Asn173Ser variants resulted in reduced hypusination of eIF5A compared to wild-type DHPS enzyme. Our data suggest that rare biallelic variants in DHPS result in reduced enzyme activity that limits the hypusination of eIF5A and are associated with a neurodevelopmental disorder.


Assuntos
Genes Recessivos/genética , Lisina/análogos & derivados , Mutação , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Feminino , Haplótipos , Humanos , Lisina/biossíntese , Masculino , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Linhagem , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Convulsões/enzimologia , Convulsões/genética , Adulto Jovem , Fator de Iniciação de Tradução Eucariótico 5A
11.
FASEB J ; 35(5): e21473, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811703

RESUMO

Pancreatic diseases including diabetes and exocrine insufficiency would benefit from therapies that reverse cellular loss and/or restore cellular mass. The identification of molecular pathways that influence cellular growth is therefore critical for future therapeutic generation. Deoxyhypusine synthase (DHPS) is an enzyme that post-translationally modifies and activates the mRNA translation factor eukaryotic initiation factor 5A (eIF5A). Previous work demonstrated that the inhibition of DHPS impairs zebrafish exocrine pancreas development; however, the link between DHPS, eIF5A, and regulation of pancreatic organogenesis remains unknown. Herein we identified that the conditional deletion of either Dhps or Eif5a in the murine pancreas results in the absence of acinar cells. Because DHPS catalyzes the activation of eIF5A, we evaluated and uncovered a defect in mRNA translation concomitant with defective production of proteins that influence cellular development. Our studies reveal a heretofore unappreciated role for DHPS and eIF5A in the synthesis of proteins required for cellular development and function.


Assuntos
Lisina/análogos & derivados , Organogênese , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/fisiologia , Pâncreas Exócrino/citologia , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Animais , Proliferação de Células , Feminino , Lisina/biossíntese , Masculino , Camundongos , Camundongos Knockout , Pâncreas Exócrino/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
12.
Amino Acids ; 54(4): 501-511, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35000000

RESUMO

Cancer drug resistance, in particular in advanced stages such as metastasis and invasion is an emerging problem. Moreover, drug resistance of parasites causing poverty-related diseases is an enormous, global challenge for drug development in the future. To circumvent this problem of increasing resistance, the development of either novel small compounds or Advanced Medicinal Therapies have to be fostered. Polyamines have many fundamental cellular functions like DNA stabilization, protein translation, ion channel regulation, autophagy, apoptosis and mostly important, cell proliferation. Consequently, many antiproliferative drugs can be commonly administered either in cancer therapy or for the treatment of pathogenic parasites. Most important for cell proliferation is the triamine spermidine, since it is an important substrate in the biosynthesis of the posttranslational modification hypusine in eukaryotic initiation factor 5A (EIF5A). To date, no small compound has been identified that directly inhibits the precursor protein EIF5A. Moreover, only a few small molecule inhibitors of the two biosynthetic enzymes, i.e. deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) have been functionally characterized. However, it is evident that only some of the compounds have been applied in translational approaches, i.e. in murine models to analyze the function of this modified protein in cell proliferation. In recent years, the pharmaceutical industry shifted from small molecules beyond traditional pharmacology to new tools and methods to treat disorders involving signaling deregulation. In this review, we evaluate translational approaches on inhibition of EIF5A hypusination in pathogenic parasites and therapy-resistant tumors and discuss its feasibility for an application in Advanced Medicinal Therapies.


Assuntos
Neoplasias , Parasitos , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Parasitos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espermidina/metabolismo
13.
Amino Acids ; 54(4): 485-499, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34273022

RESUMO

Hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is a derivative of lysine that is formed post-translationally in the eukaryotic initiation factor 5A (eIF5A). Its occurrence at a single site in one cellular protein defines hypusine synthesis as one of the most specific post-translational modifications. Synthesis of hypusine involves two enzymatic steps: first, deoxyhypusine synthase (DHPS) cleaves the 4-aminobutyl moiety of spermidine and transfers it to the ε-amino group of a specific lysine residue of the eIF5A precursor protein to form an intermediate, deoxyhypusine [Nε-(4-aminobutyl)lysine]. This intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine in eIF5A. eIF5A, DHPS, and DOHH are highly conserved in all eukaryotes, and both enzymes exhibit a strict specificity toward eIF5A substrates. eIF5A promotes translation elongation globally by alleviating ribosome stalling and it also facilitates translation termination. Hypusine is required for the activity of eIF5A, mammalian cell proliferation, and animal development. Homozygous knockout of any of the three genes, Eif5a, Dhps, or Dohh, leads to embryonic lethality in mice. eIF5A has been implicated in various human pathological conditions. A recent genetic study reveals that heterozygous germline EIF5A variants cause Faundes-Banka syndrome, a craniofacial-neurodevelopmental malformations in humans. Biallelic variants of DHPS were identified as the genetic basis underlying a rare inherited neurodevelopmental disorder. Furthermore, biallelic DOHH variants also appear to be associated with neurodevelopmental disorder. The clinical phenotypes of these patients include intellectual disability, developmental delay, seizures, microcephaly, growth impairment, and/or facial dysmorphisms. Taken together, these findings underscore the importance of eIF5A and the hypusine modification pathway in neurodevelopment in humans.


Assuntos
Lisina , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Animais , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Transtornos do Neurodesenvolvimento/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Fator de Iniciação de Tradução Eucariótico 5A
14.
Amino Acids ; 54(7): 1083-1099, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35243537

RESUMO

Hypusination is a unique two-step enzymatic post-translational modification of the Nε-amino group of lysine-50 of the eukaryotic initiation factor 5A (eIF5A). We developed a specific and sensitive gas chromatography-mass spectrometry (GC-MS) method for the measurement of biological hypusine (Hyp), i.e., Nε-(4-amino-2-hydroxybutyl)lysine. The method includes a two-step derivatization of Hyp: first esterification with 2 M HCl in CH3OH (60 min, 80 °C) to the methyl ester (Me) and then acylation with penta-fluoro-propionic (PFP) anhydride in ethyl acetate (30 min, 65 °C). Esterification with 2 M HCl in CD3OD was used to prepare the internal standard. The major derivatization product was identified as the un-labelled (d0Me) and the deuterium-labelled methyl esters (d3Me) derivatives: d0Me-Hyp-(PFP)5 and d3Me-Hyp-(PFP)5, respectively. Negative-ion chemical ionization generated the most intense ions with m/z 811 for d0Me-Hyp-(PFP)5 and m/z 814 for the internal standard d3Me-Hyp-(PFP)5. Selected-ion monitoring of m/z 811 and m/z 814 was used in quantitative analyses. Free Hyp was found in spot urine samples (10 µL) of two healthy subjects at 0.60 µM (0.29 µmol Hyp/mmol creatinine) in the female and 1.80 µM (0.19 µmol Hyp/mmol creatinine) in the male subject. The mean accuracy of the method in these urine samples spiked with 1-5 µM Hyp was 91-94%. The limit of detection (LOD) of the method is 1.4 fmol Hyp. The method was applied to measure the urinary excretion rates of Hyp in healthy black (n = 38, age 7.8 ± 0.7 years) and white (n = 41, age 7.7 ± 1.0 years) boys of the Arterial Stiffness in Offspring Study (ASOS). The Hyp concentrations were 3.55 [2.68-5.31] µM (range 0.54-9.84 µM) in the black boys and 3.87 [2.95-5.06] µM (range 1.0-11.7 µM) in the white boys (P = 0.64). The creatinine-corrected excretion rates were 0.25 [0.20-0.29] µmol/mmol (range 0.11-0.36 µmol/mmol) in the black boys and 0.26 [0.21-0.30] µmol/mmol (range 0.10-0.45 µmol/mmol) in the white boys (P = 0.82). These results suggest that there is no ethnic-related difference in the ASOS population in the eIF5A modification. Remarkable differences were found between black and white boys with respect to correlations of urinary Hyp with amino acids and advanced glycation end-products of Lys, Arg and Cys. Deoxyhypusine, formally the direct precursor of Hyp, seems not to be excreted in the urine by healthy subjects.


Assuntos
Lisina , Rigidez Vascular , Biomarcadores , Criança , Creatinina , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Lisina/análogos & derivados , Lisina/química , Masculino , Fatores de Iniciação de Peptídeos/metabolismo
15.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458660

RESUMO

The treatment of a variety of protozoal infections, in particular those causing disabling human diseases, is still hampered by a lack of drugs or increasing resistance to registered drugs. However, in recent years, remarkable progress has been achieved to combat neglected tropical diseases by sequencing the parasites' genomes or the validation of new targets in the parasites by novel genetic manipulation techniques, leading to loss of function. The novel amino acid hypusine is a posttranslational modification (PTM) that occurs in eukaryotic initiation factor 5A (EIF5A) at a specific lysine residue. This modification occurs by two steps catalyzed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (DOHH) enzymes. dhs from Plasmodium has been validated as a druggable target by small molecules and reverse genetics. Recently, the synthesis of a series of human dhs inhibitors led to 6-bromo-N-(1H-indol-4yl)-1-benzothiophene-2-carboxamide, a potent allosteric inhibitor with an IC50 value of 0.062 µM. We investigated this allosteric dhs inhibitor in Plasmodium. In vitro P. falciparum growth assays showed weak inhibition activity, with IC50 values of 46.1 µM for the Dd2 strain and 51.5 µM for the 3D7 strain, respectively. The antimalarial activity could not be attributed to the targeting of the Pfdhs gene, as shown by chemogenomic profiling with transgenically modified P. falciparum lines. Moreover, in dose-dependent enzymatic assays with purified recombinant P. falciparum dhs protein, only 45% inhibition was observed at an inhibitor dose of 0.4 µM. These data are in agreement with a homology-modeled Pfdhs, suggesting significant structural differences in the allosteric site between the human and parasite enzymes. Virtual screening of the allosteric database identified candidate ligand binding to novel binding pockets identified in P. falciparum dhs, which might foster the development of parasite-specific inhibitors.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Plasmodium , Inibidores Enzimáticos/farmacologia , Humanos , Oxigenases de Função Mista/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plasmodium/metabolismo , Proteínas Recombinantes/metabolismo , Tiofenos/farmacologia
16.
J Cell Biochem ; 122(5): 549-561, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33459432

RESUMO

The eukaryotic translation initiation factor 5A (eIF5A) is the only known protein containing the amino acid residue hypusine, essential for its activity. Hypusine residue is produced by a posttranslational modification involving deoxyhypusine synthetase and deoxyhypusine hydroxylase. Herein, we aimed to describe the role of the alternative human isoform A on mitochondrial processes. Isoform A depletion modulates oxidative metabolism in association with the downregulation of mitochondrial biogenesis-related genes. Through positive feedback, it increases cell respiration leading to highly reactive oxygen species production, which impacts mitochondrial bioenergetics. These metabolic changes compromise mitochondrial morphology, increasing its electron density and fission, observed by transmission electron microscopy. This set of changes leads the cells to apoptosis, evidenced by increased DNA fragmentation and proapoptotic BAK protein content increase. Thus, we show that the alternative eIF5A isoform A is crucial for energy metabolism controlled by mitochondria and cellular survival.


Assuntos
Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Apoptose/fisiologia , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Microscopia Eletrônica de Transmissão , Fatores de Iniciação de Peptídeos/genética , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
17.
Amino Acids ; 52(5): 693-710, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32367435

RESUMO

In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2-5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.


Assuntos
Apoptose , Malária/patologia , Miócitos Cardíacos/patologia , Parasitemia/patologia , Fatores de Iniciação de Peptídeos/metabolismo , Plasmodium berghei/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Malária/metabolismo , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Parasitemia/metabolismo , Parasitemia/parasitologia , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
18.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752130

RESUMO

The eukaryotic and archaeal translation factor IF5A requires a post-translational hypusine modification, which is catalyzed by deoxyhypusine synthase (DHS) at a single lysine residue of IF5A with NAD+ and spermidine as cofactors, followed by hydroxylation to form hypusine. While human DHS catalyzed reactions have been well characterized, the mechanism of the hypusination of archaeal IF5A by DHS is not clear. Here we report a DHS structure from Pyrococcus horikoshii OT3 (PhoDHS) at 2.2 Å resolution. The structure reveals two states in a single functional unit (tetramer): two NAD+-bound monomers with the NAD+ and spermidine binding sites observed in multi-conformations (closed and open), and two NAD+-free monomers. The dynamic loop region V288-P299, in the vicinity of the active site, adopts different positions in the closed and open conformations and is disordered when NAD+ is absent. Combined with NAD+ binding analysis, it is clear that PhoDHS can exist in three states: apo, PhoDHS-2 equiv NAD+, and PhoDHS-4 equiv NAD+, which are affected by the NAD+ concentration. Our results demonstrate the dynamic structure of PhoDHS at the NAD+ and spermidine binding site, with conformational changes that may be the response to the local NAD+ concentration, and thus fine-tune the regulation of the translation process via the hypusine modification of IF5A.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH/ultraestrutura , Fatores de Iniciação de Peptídeos/ultraestrutura , Processamento de Proteína Pós-Traducional/genética , Pyrococcus horikoshii/ultraestrutura , Sítios de Ligação/genética , Cristalografia por Raios X , Eucariotos/genética , Eucariotos/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/genética , Lisina/metabolismo , NAD/química , NAD/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Conformação Proteica , Pyrococcus horikoshii/enzimologia , Espermidina/química , Espermidina/metabolismo
19.
J Biol Chem ; 293(48): 18710-18718, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30257869

RESUMO

The natural amino acid hypusine (Nϵ-4-amino-2-hydroxybutyl(lysine)) is derived from the polyamine spermidine, and occurs only in a single family of cellular proteins, eukaryotic translation factor 5A (eIF5A) isoforms. Hypusine is formed by conjugation of the aminobutyl moiety of spermidine to a specific lysine residue of this protein. The posttranslational synthesis of hypusine involves two enzymatic steps, catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusine is essential for eIF5A activity. Inactivation of either the eIF5A or the DHPS gene is lethal in yeast and mouse, underscoring the vital role of eIF5A hypusination in eukaryotic cell growth and animal development. The long and basic side chain of the hypusine residue promotes eIF5A-mediated translation elongation by facilitating peptide bond formation at polyproline stretches and at many other ribosome-pausing sites. It also enhances translation termination by stimulating peptide release. By promoting translation, the hypusine modification of eIF5A provides a key link between polyamines and cell growth regulation. eIF5A has been implicated in several human pathological conditions. Recent genetic data suggest that eIF5A haploinsufficiency or impaired deoxyhypusine synthase activity is associated with neurodevelopmental disorders in humans.


Assuntos
Eucariotos/metabolismo , Lisina/análogos & derivados , Poliaminas/metabolismo , Biossíntese de Proteínas , Animais , Eucariotos/genética , Humanos , Lisina/genética , Lisina/metabolismo
20.
Mol Biol Rep ; 46(1): 587-596, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30519811

RESUMO

The hormone insulin plays a central role in the metabolism of carbohydrates, lipids, and proteins. In relation to protein metabolism, insulin stimulates amino acid uptake and activates protein synthesis in responsive cells by modulation of signal transduction pathways, such as associated to Akt/PkB, mTOR, S6Ks, 4E-BP1, and several translation initiation/elongation factors. In this context, there is no information on direct cellular treatment with insulin and effects on eukaryotic translation initiation factor 5A (eIF5A) regulation. The eIF5A protein contains an exclusive amino acid residue denominated hypusine, which is essential for its activity and synthesized by posttranslational modification of a specific lysine residue using spermidine as substrate. The eIF5A protein is involved in cellular proliferation and differentiation processes, as observed for satellite cells derived from rat muscles, revealing that eIF5A has an important role in muscle regeneration. The aim of this study was to determine whether eIF5A expression and hypusination are influenced by direct treatment of insulin on L6 myoblast cells. We observed that insulin increased the content of eIF5A transcripts. This effect occurred in cells treated or depleted of fetal bovine serum, revealing a positive insulin effect independent of other serum components. In addition, it was observed that hypusination follows the maintenance of eIF5A protein content in the serum depleted cells and treated with insulin. These results demonstrate that eIF5A is modulated by insulin, contributing the protein synthesis machinery control, as observed by puromycin incorporation in nascent proteins.


Assuntos
Insulina/metabolismo , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/efeitos dos fármacos , Proteínas de Ligação a RNA/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Lisina/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Iniciação de Tradução Eucariótico 5A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA