Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pflugers Arch ; 470(12): 1765-1776, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30155776

RESUMO

The acetylcholine (ACh)-gated inwardly rectifying K+ current (IKACh) plays a vital role in cardiac excitability by regulating heart rate variability and vulnerability to atrial arrhythmias. These crucial physiological contributions are determined principally by the inwardly rectifying nature of IKACh. Here, we investigated the relative contribution of two distinct mechanisms of IKACh inward rectification measured in atrial myocytes: a rapid component due to KACh channel block by intracellular Mg2+ and polyamines; and a time- and concentration-dependent mechanism. The time- and ACh concentration-dependent inward rectification component was eliminated when IKACh was activated by GTPγS, a compound that bypasses the muscarinic-2 receptor (M2R) and directly stimulates trimeric G proteins to open KACh channels. Moreover, the time-dependent component of IKACh inward rectification was also eliminated at ACh concentrations that saturate the receptor. These observations indicate that the time- and concentration-dependent rectification mechanism is an intrinsic property of the receptor, M2R; consistent with our previous work demonstrating that voltage-dependent conformational changes in the M2R alter the receptor affinity for ACh. Our analysis of the initial and time-dependent components of IKACh indicate that rapid Mg2+-polyamine block accounts for 60-70% of inward rectification, with M2R voltage sensitivity contributing 30-40% at sub-saturating ACh concentrations. Thus, while both inward rectification mechanisms are extrinsic to the KACh channel, to our knowledge, this is the first description of extrinsic inward rectification of ionic current attributable to an intrinsic voltage-sensitive property of a G protein-coupled receptor.


Assuntos
Potenciais de Ação , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Miócitos Cardíacos/metabolismo , Receptor Muscarínico M2/metabolismo , Acetilcolina/metabolismo , Animais , Gatos , Células Cultivadas , Feminino , Átrios do Coração/citologia , Magnésio/metabolismo , Masculino , Miócitos Cardíacos/fisiologia , Poliaminas/metabolismo
2.
Pflugers Arch ; 468(7): 1207-1214, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27023349

RESUMO

Recently, it has been shown that G protein-coupled receptors (GPCRs) display intrinsic voltage sensitivity. We reported that the voltage sensitivity of M2 muscarinic receptor (M2R) is also ligand specific. Here, we provide additional evidence to understand the mechanism underlying the ligand-specific voltage sensitivity of the M2R. Using ACh, pilocarpine (Pilo), and bethanechol (Beth), we evaluated the agonist-specific effects of voltage by measuring the ACh-activated K(+) current (I KACh) in feline and rabbit atrial myocytes and in HEK-293 cells expressing M2R-Kir3.1/Kir3.4. The activation of I KACh by the muscarinic agonist Beth was voltage insensitive, suggesting that the voltage-induced conformational changes in M2R do not modify its affinity for this agonist. Moreover, deactivation of the Beth-evoked I KACh was voltage insensitive. By contrast, deactivation of the ACh-induced I KACh was significantly slower at -100 mV than at +50 mV, while an opposite effect was observed when I KACh was activated by Pilo. These findings are consistent with the voltage affinity pattern observed for these three agonists. Our findings suggest that independent of how voltage disturbs the receptor binding site, the voltage dependence of the signaling pathway is ultimately determined by the agonist. These observations emphasize the pharmacological potential to regulate the M2R-parasympathetic associated cardiac function and also other cellular signaling pathways by exploiting the voltage-dependent properties of GPCRs.


Assuntos
Acetilcolina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Receptor Muscarínico M2/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Gatos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-24845199

RESUMO

KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, in cardiomyocytes KB-R7943 also effectively blocks several K(+) currents including the delayed rectifier, IKr, and background inward rectifier, IK1. In the present study we analyze the effects of KB-R7943 on the ATP-dependent potassium current (IKATP) recorded by whole-cell patch-clamp in ventricular cardiomyocytes from a mammal (mouse) and a fish (crucian carp). IKATP was induced by external application of a mitochondrial uncoupler CCCP (3×10(-7) M) and internal perfusion of the cell with ATP-free pipette solution. A weakly inwardly rectifying current with a large outward component, recorded in the presence of CCCP, was blocked with 10(-5) M glibenclamide by 56.1±4.6% and 56.9±3.6% in crucian carp and mouse ventricular myocytes, respectively. In fish cardiomyocytes IKATP was blocked by KB-R7943 with an IC50 value of 3.14×10(-7) M, while in mammalian cells IC50 was 2.8×10(-6) M (P<0.05). 10(-5) M KB-R7943 inhibited CCCP-induced IKATP by 99.9±0.13% and 97.5±1.2% in crucian carp and mouse ventricular myocytes, respectively. In crucian carp the IKATP is about an order of magnitude more sensitive to KB-R7943 than the background IK1, but in mammals IKATP and IK1 are almost equally sensitive to KB-R7943. Therefore, the ability of KB-R7943 to block IKATP should be taken into account together with INCX inhibition when investigating possible cardioprotective effects of this compound.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Potássio/metabolismo , Tioureia/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Coração/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Transporte de Íons/genética , Camundongos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Trocador de Sódio e Cálcio/metabolismo , Tioureia/administração & dosagem
4.
Cell Signal ; 100: 110475, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150420

RESUMO

Cigarette smoking (CS) is a major cause of cardiovascular diseases. Smokers are at a significantly higher risk for developing atrial fibrillation (AF), a dangerous and abnormal heart rhythm. In the US, 15.5% of adults are current smokers, and it is becoming clear that CS is an independent risk factor for AF, but a detailed mechanistic understanding of how CS contributes to the molecular patho-electrophysiology of AF remains elusive. We investigated if CS related AF is in part mediated through a mechanism that depends on the cardiac acetylcholine activated inward rectifier potassium current (IKACh). We tested the hypothesis that CS increases IKACh via phosphatidylinositol 4-phosphate 5-kinase alpha (PIP5K) and ADP ribosylation factor 6 (Arf6) signaling, leading to AF perpetuation. In vivo inducibility of AF was assessed in mice exposed to CS for 8 weeks. AF duration was increased in CS exposed mice, and TertiapinQ, an IKACh blocker prevented AF development in CS exposed mice. In HEK293 cells stably transfected with Kir3.1 and Kir3.4, the molecular correlates of IKACh, CS exposure increased the expression of the Kir3.1 and Kir3.4 proteins at the cell surface, activated Arf6 and increased the IKACh current. Inhibition of PIP5K, or of Kir3.1/Kir3.4 trafficking via Arf6 abrogated the CS effects on IKACh. Cigarette smoke modifies the atrial electrophysiological substrate, leading to arrhythmogenesis, in part, through IKACh activation via an Arf6/PIP5K dependent pathway.

5.
Biochem Pharmacol ; 177: 113961, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272111

RESUMO

It has been reported that muscarinic type-2 receptors (M2R) are voltage sensitive in an agonist-specific manner. In this work, we studied the effects of membrane potential on the interaction of M2R with the superagonist iperoxo (IXO), both functionally (using the activation of the ACh-gated K+ current (IKACh) in cardiomyocytes) and by molecular dynamics (MD) simulations. We found that IXO activated IKACh with remarkable high potency and clear voltage dependence, displaying a larger effect at the hyperpolarized potential. This result is consistent with a greater affinity, as validated by a slower (τ = 14.8 ± 2.3 s) deactivation kinetics of the IXO-evoked IKACh than that at the positive voltage (τ = 6.7 ± 1.2 s). The voltage-dependent M2R-IXO interaction induced IKACh to exhibit voltage-dependent features of this current, such as the 'relaxation gating' and the modulation of rectification. MD simulations revealed that membrane potential evoked specific conformational changes both at the external access and orthosteric site of M2R that underlie the agonist affinity change provoked by voltage on M2R. Moreover, our experimental data suggest that the 'tyrosine lid' (Y104, Y403, and Y426) is not the previously proposed voltage sensor of M2R. These findings provide an insight into the structural and functional framework of the biased signaling induced by voltage on GPCRs.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Isoxazóis/farmacologia , Simulação de Dinâmica Molecular , Compostos de Amônio Quaternário/farmacologia , Receptor Muscarínico M2/fisiologia , Acetilcolina/farmacologia , Animais , Gatos , Células Cultivadas , Estimulação Elétrica , Feminino , Ativação do Canal Iônico/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Agonistas Muscarínicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Conformação Proteica , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Xenopus laevis
6.
Dis Model Mech ; 12(7)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31208990

RESUMO

Mutations in GNB5, encoding the G-protein ß5 subunit (Gß5), have recently been linked to a multisystem disorder that includes severe bradycardia. Here, we investigated the mechanism underlying bradycardia caused by the recessive p.S81L Gß5 variant. Using CRISPR/Cas9-based targeting, we generated an isogenic series of human induced pluripotent stem cell (hiPSC) lines that were either wild type, heterozygous or homozygous for the GNB5 p.S81L variant. These were differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed the acetylcholine-activated potassium channel [I(KACh); also known as IK,ACh]. Baseline electrophysiological properties of the lines did not differ. Upon application of carbachol (CCh), homozygous p.S81L hiPSC-CMs displayed an increased acetylcholine-activated potassium current (IK,ACh) density and a more pronounced decrease of spontaneous activity as compared to wild-type and heterozygous p.S81L hiPSC-CMs, explaining the bradycardia in homozygous carriers. Application of the specific I(KACh) blocker XEN-R0703 resulted in near-complete reversal of the phenotype. Our results provide mechanistic insights and proof of principle for potential therapy in patients carrying GNB5 mutations.This article has an associated First Person interview with the first author of the paper.


Assuntos
Acetilcolina/farmacologia , Bradicardia/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Variação Genética , Canais de Potássio/efeitos dos fármacos , Receptores Colinérgicos/fisiologia , Animais , Bradicardia/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Técnicas de Patch-Clamp , Canais de Potássio/fisiologia , Estudo de Prova de Conceito , Peixe-Zebra
7.
J Comp Physiol B ; 188(4): 649-656, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29429060

RESUMO

The striking seasonal difference in sensitivity of frog cardiac muscle to acetylcholine or stimulation of parasympathetic nervous fibers has been noted almost a century ago, although its electrophysiological basis has never been revealed. The present study compares the effects of the muscarinic agonist carbamylcholine chloride (CCh 10-8-10-5 M) on electrical activity in isolated atrial and ventricular preparations from dormant frogs (Rana temporaria) caught in January (winter-acclimatized, WA) and from active frogs caught in July (summer-acclimatized, SA). Seasonal differences in the density of potassium acetylcholine-dependent current (IKACh) were also studied in atrial and ventricular myocytes from both summer and winter groups. In atrial myocardium, CCh produced concentration-dependent shortening of action potentials (APs). CCh concentration producing a 50% reduction of AP duration was lower in WA (1.03 × 10-7 M) than SA atria (2.7 × 10-7 M). 10-6 M CCh induced drastic reduction of AP amplitude rendering the tissue unexcitable in both WA or SA atrial preparations. Ventricular preparations showed greater seasonal difference in CCh sensitivity. While 10-6 M induced inexcitability in 50% of tested WA preparations, in SA preparations even 10-5 M CCh was without effect. This striking difference between cholinergic effects in SA and WA frog ventricle could be explained by seasonal changes in the IKACh density. The density of IKACh induced by 10-5 M CCh and measured at 0 mV was 14.4 ± 3.45 pA/pF in WA, but only 1.5 ± 0.4 pA/pF in SA atrial cells. In ventricular cells, the respective values were 2.61 ± 0.56 and 0.71 ± 0.09 pA/pF. Thus, hibernating winter frog has a much greater electrophysiological cholinergic response than active summer frog due to up-regulation of IKACh.


Assuntos
Aclimatação/fisiologia , Função Atrial/efeitos dos fármacos , Agonistas Colinérgicos/farmacologia , Rana temporaria/fisiologia , Função Ventricular/efeitos dos fármacos , Acetilcolina/farmacologia , Potenciais de Ação , Animais , Carbacol/farmacologia , Miócitos Cardíacos/fisiologia , Estações do Ano , Transdução de Sinais
8.
J Physiol Sci ; 67(4): 523-529, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27942993

RESUMO

Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10-4 M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10-7 M) or selective GIRK channels blocker tertiapin (10-6 M) completely abolished all Ap5A effects, while P2 blocker PPADS (10-4 M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.


Assuntos
Acetilcolina/metabolismo , Função Atrial/efeitos dos fármacos , Fosfatos de Dinucleosídeos/farmacologia , Átrios do Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Potássio/metabolismo , Potenciais de Ação , Animais , Cobaias , Átrios do Coração/metabolismo , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Agonistas do Receptor Purinérgico P1/farmacologia , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/metabolismo , Especificidade da Espécie , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-23973826

RESUMO

KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K(+) currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6×10(-6) M and 3.5×10(-6) M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2×10(-7) M for rat and 2.5×10(-7) M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9-3×10(-6) M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1~INCX

Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tioureia/análogos & derivados , Animais , Carbacol/farmacologia , Carpas , Feminino , Masculino , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Ratos , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/fisiologia , Tioureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA