Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049778

RESUMO

Ideal Adsorbed Solution Theory (IAST) is a predictive model that does not require any mixture data. In gas purification and separation processes, IAST is used to predict multicomponent adsorption equilibrium and selectivity based solely on experimental single-component adsorption isotherms. In this work, the mixed gas adsorption isotherms were predicted using IAST calculations with the Python package (pyIAST). The experimental CO2 and CH4 single-component adsorption isotherms of Mg-gallate were first fitted to isotherm models in which the experimental data best fit the Langmuir model. The presence of CH4 in the gas mixture contributed to a lower predicted amount of adsorbed CO2 due to the competitive adsorption among the different components. Nevertheless, CO2 adsorption was more favorable and resulted in a higher predicted adsorbed amount than CH4. Mg-gallate showed a stronger affinity for CO2 molecules and hence contributed to a higher CO2 adsorption capacity even with the coexistence of a CO2/CH4 mixture. Very high IAST selectivity values for CO2/CH4 were obtained which increased as the gas phase mole fraction of CO2 approached unity. Therefore, IAST calculations suggest that Mg-gallate can act as a potential adsorbent for the separation of CO2/CH4 mixed gas.

2.
J Environ Manage ; 299: 113661, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481373

RESUMO

Over the years, single heteroatom-doped biowaste-derived activated carbons were studied for effective CO2 adsorption. However, binary or ternary heteroatoms-doping is equally important and could significantly affect the CO2 adsorption and flue gas (i.e., CO2/N2) separation. Herein, for the first time, shrimp shell-derived chitosan was used to design a series of ternary (N, S, O)-doped hierarchically porous carbons. The resultant carbons exhibit a large specific surface area (up to 2095 m2/g), micropore volume (up to 1.2647 cm3/g), and high heteroatoms content i.e., N up to 4.1 at. %, S up to 4.6 at. %, and O up to 13.4 at. %. Consequently, high CO2 uptake of 236.80 mg/g at 273 K/1 bar and an excellent CO2/N2 gas selectivity (84.3) was observed, attributed to the synergistic role of narrow micropores (<1 nm) and optimum heteroatom content. Furthermore, the stable CO2 adsorption-desorption cyclic behavior under flue gas conditions i.e., 15% CO2/85% N2 reveals the physisorption mechanism of CO2 adsorption and appears to be an energy-efficient regeneration process. Concluding, our work demonstrates a facile route of valorization of biowaste for environmental remediation to combat biowaste accumulation and mitigating atmospheric CO2 levels, simultaneously.


Assuntos
Dióxido de Carbono , Recuperação e Remediação Ambiental , Adsorção , Carvão Vegetal , Porosidade
3.
Chemistry ; 24(22): 5982-5986, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29436750

RESUMO

Selective adsorption and separation of CO2 from flue gas and landfill gas mixtures have drawn great attention in industry. Porous MOF materials are promising alternatives to achieve such separations; however, the stability in the presence of moisture must be taken into consideration. Herein, we have constructed a microporous metal-organic framework (MOF) {[Co(OBA)(L)0.5 ]⋅S}n (IITKGP-8), by employing a V-shaped organic linker with an azo-functionalized N,N' spacer forming a 3D network with mab topology and 1D rhombus-shaped channels along the crystallographic 'b' axis with a void volume of 34.2 %. The activated MOF reveals a moderate CO2 uptake capacity of 55.4 and 26.5 cm3 g-1 at 273 and 295 K/1 bar, respectively, whereas it takes up a significantly lower amount of CH4 and N2 under similar conditions and thus exhibits its potential for highly selective sorption of CO2 with excellent IAST selectivity of CO2 /N2 (106 at 273 K and 43.7 at 295 K) and CO2 /CH4 (17.7 at 273 K and 17.1 at 295 K) under 1 bar. More importantly, this MOF exhibits excellent moisture stability as assessed through PXRD experiments coupled with surface area analysis.

4.
Chemistry ; 24(9): 2137-2143, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29064590

RESUMO

A barium(II) metal-organic framework (MOF) based on a predesigned amino-functionalized ligand, namely [Ba2 (L)(DMF)(H2 O)(NO3 )1/3 ]⋅DMF⋅EtOH⋅2 H2 O (UPC-33) [H3 L=4,4'-((2-amino-5-carboxy-1,3-phenylene)bis(ethyne-2,1-diyl))dibenzoic acid] has been synthesized. UPC-33 is a 3-dimensional 3,18-connected network with fcu topology with a rare twelve-nuclear Ba12 (COO)18 (NO3 )2 cluster. UPC-33 shows permanent porosity and a high adsorption heat of CO2 (49.92 kJ mol-1 ), which can be used as a platform for selective adsorption of CO2 /CH4 (8.09). In addition, UPC-33 exhibits high separation selectivity for C3 light hydrocarbons with respect to CH4 (228.34, 151.40 for C3 H6 /CH4 , C3 H8 /CH4 at 273k and 1 bar), as shown by single component gas sorption and selectivity calculations. Due to the existence of -NH2 groups in the channels, UPC-33 can effectively catalyze Knoevenagel condensation reactions with high yield, and substrate size and electron dependency.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38922470

RESUMO

Biogas, as a sustainable energy source, encounters challenges in practical applications due to impurities, notably carbon dioxide (CO2), and nitrogen (N2). This study investigates the effect of metal/clay ratio on the adsorption selectivity of porous zirconium-pillared clay adsorbents for biogas upgradation. Comprehensive analyses including nitrogen adsorption/desorption, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were conducted to evaluate the physicochemical properties. Adsorption properties for Zr-pillared clays for biogas components such as CO2, CH4, and N2, at 25 °C under different pressures were investigated. The ideal adsorbed solution theory (IAST) was employed to assess selectivity for three binary gas mixtures (CO2/CH4, CO2/N2, and CH4/N2). Results revealed the substantial impact of Zr/Clay ratio on both adsorption capacity and selectivity of the prepared materials. For instance, the maximum adsorption capacity of gases varies as ZrPILC-4 > ZrPILC-2 > ZrPILC-8 > ZrPILC-1, whereas the adsorption selectivity for CO2/CH4 separation (at 1000 kPa) varies as ZrPILC-1 > ZrPILC-2 > ZrPILC-8 > ZrPILC-4. Interestingly, the ZrPILC-8 with maximum surface area (147 m2∙g-1) did not show maximum adsorption capacity for all the three gases, which was attributed to its lower pore volume, and basal spacing, as compared to ZrPILC-4. Amongst all the pillared samples, the ZrPILC-1 exhibited highest selectivity for all binary mixtures (at 1000 kPa), signifies increased nonspecific interactions due to its lower surface area. Its separation performance, particularly for CO2/CH4 mixture exceeded that of the parent clay by 1.5 times. A significant increase in the working capacity of the prepared samples underscores the efficacy of these pillared materials in separating biogas components. This study provides valuable insights into effects of Zr/clay ratio for developing robust pillared adsorbents, contributing to the advancement of sustainable biomethane production.

6.
J Hazard Mater ; 470: 134180, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569342

RESUMO

Obtaining suitable adsorbents for selective separation of SO2 from flue gas still remains an important issue. A stable Zr(IV)-MOF (Zr-PTBA) can be conveniently synthesized through the self-assembly of a tetracarboxylic acid ligand (H4L = 4,4',4'',4'''-(1,4-phenylenebis(azanetriyl))tetrabenzoic acid) and ZrCl4 in the presence of trace water. It exhibits a three-dimensional porous structure. The BET surface area is 1112.72 m2/g and the average pore size distribution focus on 5.9, 8.0 and 9.3 Å. Interestingly, Zr-PTBA shows selective adsorption of SO2. The maximum uptake reaches 223.21 cm3/g at ambient condition. While it exhibits lower adsorption uptake of CO2 (30.50 cm3/g) and hardly adsorbs O2 (2.57 cm3/g) and N2 (1.31 cm3/g). Higher IAST selectivities of SO2/CO2 (21.9), SO2/N2 (912.7), SO2/O2 (2269.9) and SO2/CH4 (85.0) have been obtained, which reveal its' excellent gas separation performance. Breakthrough experiment further confirms its application for flue gas deep desulfurization both in dry and humid conditions. Furthermore, the gas adsorption results and mechanisms have also been studied by theoretical calculations.

7.
J Mol Model ; 30(3): 79, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386134

RESUMO

CONTEXT: MOFs are promising candidates for the capture of H2S and CO2 from raw biogas. The presence of H2S residues in natural gas pipelines can cause corrosive damage and reduce energy efficiency. H2S capture from biogas presents several challenges due to its high toxicity and its corrosiveness. Microporous MOFs incorporating Lewis basic sites have demonstrated efficient capture of small and polar gas molecules such as CO2 and H2S from gas binary mixtures. In the quest to design and investigate functional materials to support the energy transition, specifically for the purification of RNG gas, we theoretically investigated the potential of s-heptazine-based IRH-1 for H2S capture from CH4 mixtures. IRH-1 exhibited significantly higher adsorption capacities for H2S (2.60 mmol/g) and CO2 (2.68 mmol/g) compared to CH4 (0.98 mmol/g) at 100 kPa and 298 K simulated by GCMC. All computed average energies for H2S were below 20 kJ/mol, indicating an exothermic physisorption behavior within the pores of IRH-1. IAST revealed remarkable H2S selectivity of IRH-1 for CH4/H2S binary mixtures at 5%, 10%, 15%, and 20% of H2S at 100 kPa. METHODS: GCMC simulations were performed with the BIOVIA Materials Studio 5.0 package using LJ potentials and UFF parameters to investigate the adsorption of pure H2S gas in the IRH-1 material. The IAST method was used to predict the adsorption behavior of H2S in different H2S/CH4 gas mixtures. The IAST calculations were performed using the Python package pyIAST, which allows the prediction of adsorption isotherms for mixed gases based on the adsorption isotherms for pure gases by numerical integration of the Gibbs adsorption approach.

8.
Beilstein J Nanotechnol ; 15: 897-908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076691

RESUMO

A facile approach was employed to fabricate MIL-100(Fe) materials from Fe2O3 nanoparticles through a conventional hydrothermal reaction without the presence of HF and HNO3. Effects of trimesic acid content in the reaction system on the quality and CO2/N2 separation performance of the as-prepared MIL-100(Fe) samples were investigated. Using 1.80 g of trimesic acid in the reaction system yielded the sample M-100Fe@Fe2O3#1.80, which proved to be the optimal sample. This choice struck a balance between the amount of required trimesic acid and the quality of the resulting material, resulting in a high yield of 81% and an impressive BET surface area of 1365.4 m2·g-1. At 25 °C and 1 bar, M-100Fe@Fe2O3#1.80 showed a CO2 adsorption capacity of 1.10 mmol·g-1 and an IAST-predicted CO2/N2 selectivity of 18, outperforming conventional adsorbents in CO2/N2 separation. Importantly, this route opens a new approach to utilizing Fe2O3-based waste materials from the iron and steel industry in manufacturing Fe-based MIL-100 materials.

9.
J Hazard Mater ; 427: 127904, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34895807

RESUMO

Natural organic matter (NOM) exerts negative impacts on 2-methylisoborneol (2-MIB) removal by powdered activated carbon (PAC), thus adding to the difficulty in accurate PAC dose prediction. Our study investigated the application of the ideal adsorbed solution theory-equivalent background compound (IAST-EBC) model and its simplified version for PAC dose prediction. Four raw water samples were employed, and the corresponding C0,EBC values, indicating NOM competitiveness, were calculated. The results showed that the IAST-EBC model presented ideal predictive performance in 2-MIB adsorption under both equilibrium and nonequilibrium conditions and the C0,EBC values of the Huangpu River (8800 ng/L) and Qiantang River (10300 ng/L) were high, representing the higher NOM competitiveness in these two rivers, which may be caused by municipal effluent and industrial wastewater discharge. In contrast, Tai Lake water showed a lower C0,EBC value (6400 ng/L), which was likely associated with algae and other microbial activities. The fluorescence index (FI, the ratio of Ex/Em = 370/470 nm to Ex/Em = 370/520 nm) can be applied to estimate C0,EBC, thus facilitating prediction. Our study also showed that the IAST-EBC model can be further simplified under lower initial 2-MIB concentrations or longer contact times, which is particularly useful for practical applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Pós , Poluentes Químicos da Água/análise , Qualidade da Água
10.
Water Res ; 217: 118427, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436734

RESUMO

This work presents a mathematical method to describe adsorptive removal of organic micropollutants (OMPs) and dissolved organic carbon (DOC) from wastewater treatment plant effluent using powdered activated carbon (PAC). The developed model is based on the tracer model (TRM) as a modification of the ideal adsorbed solution theory (IAST) and uses the fictive component approach for organic matter fractionation. It enables the simulation of multisolute adsorption of OMPs considering competitive adsorption behavior of organic background compounds (OBC). Adsorption equilibrium data for DOC and seven different OMPs as well as kinetic data for DOC were derived from batch experiments performed with secondary clarifier effluent of two municipal wastewater treatment plants (WWTP 1 and WWTP 2). Two conventional PAC products were investigated as well as one biogenic PAC (BioPAC). Verification and validation of the fitting results based on operational data of WWTP 1 showed promising prediction of DOC and OMP removal efficiency. However, when applied to a static simulation of a full-scale PAC adsorption stage, the model overpredicts the removal efficiency of sulfamethoxazole and candesartan. For benzotriazole, carbamazepine or hydrochlorothiazide, predicted removal falls below operational removal. The model can be used to predict removals of good adsorbable OMPs but fails to accurately predict the removals of OMPs with variable or low PAC affinity. The model was further used for a dynamic simulation of DOC and diclofenac effluent concentrations of a full-scale PAC adsorption stage with varying operating conditions and influent concentrations. Results show that the hydraulic retention time (HRT) in the contact reactor is a decisive operational parameter for OMP removal efficiency besides the PAC dose.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Compostos Orgânicos , Pós , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
11.
Nanomaterials (Basel) ; 12(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296804

RESUMO

The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH2, UiO-66(F)4, UiO-67, DUT-67, NH2-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C6 sorption properties. An understanding of the uptake of the larger C6 molecules cannot simply be achieved with surface area and pore volume (from N2 sorption) but involves the complex micropore structure of the MOF. The maximum adsorption capacity at p p0-1 = 0.9 was shown by DUT-4 for benzene, MIL-101(Cr) for cyclohexane and DUT-5 for n-hexane. In the low-pressure range from p p0-1 = 0.1 down to 0.05 the highest benzene uptake is given by DUT-5, DUT-67/UiO-67 and MIL-101(Cr), for cyclohexane and n-hexane by DUT-5, UiO-67 and MIL-101(Cr). The highest uptake capacity at p p0-1 = 0.02 was seen with MIL-53 for benzene, MIL-125 for cyclohexane and DUT-5 for n-hexane. DUT-5 and MIL-101(Cr) are the MOFs with the widest pore window openings/cross sections but the low-pressure uptake seems to be controlled by a complex combination of ligand and pore-size effect. IAST selectivities between the three binary mixtures show a finely tuned and difficult to predict interplay of pore window size with (critical) adsorptive size and possibly a role of electrostatics through functional groups such as NH2.

12.
J Colloid Interface Sci ; 583: 605-613, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039859

RESUMO

Adsorbents based on CuI for π-complexative separation of C2H4/C2H6 have attracted widespread interests. However, they are still confronting some challenges, for example, (i) a low separation efficiency, resulted from the ineffective reduction of CuII to CuI along with aggregation, and (ii) poor stability due to the oxidation of CuI to inactive CuII. In this study, active Cu and auxiliary Co species are simultaneously encapsulated within the nanopores of MIL-101 using a double-solvent (DS) method to obtain CuCoM-DS. The Cu species at the interior of MIL-101 are homogeneously dispersed and can be completely reduced to CuI without any structural damage to MIL-101. The resulting CuCoM-DS exhibits a superior performance in C2H4/C2H6 separation not only to the pristine MIL-101, but to the counterpart samples of single Cu and/or Cu/Co at the exterior of MIL-101. The best sample of 1.5CuCoM-DS adsorbent is capable to adsorb 50.5 mL·g-1 of C2H4, and the C2H4/C2H6 selectivity is 2.6 at 100 kPa. Both C2H4 uptake and C2H4/C2H6 selectivity are higher than those reference samples. Moreover, 1.5CuCoM-DS preserves over 90% of fresh C2H4 uptake after the exposure to atmospheric air for 12 days. This study provides new design ideas for confining bimetallic sites in MOFs for broad applications.

13.
Environ Technol ; 42(10): 1591-1602, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31566080

RESUMO

The three-parameter (K, b, and n) Song isotherm model was slightly modified to make it possible to obtain analytical integration of the spreading pressure integral. The modified Song model (MSM) allows more efficient and accurate calculation of the ideal adsorbed solution theory (IAST). The MSM also satisfies the Henry's law and the Freundlich model at low and high concentrations, respectively, and reverts to the Langmuir and the linear models when n equals zero and one, respectively. Approximate values of each parameter could be estimated from a plot of log (q/c) versus log c; the partition coefficient in the Henry's law region (K) and the Freundlich index (n) can be estimated from the ordinate value of the low-concentration asymptote and the slope of the high-concentration asymptote, respectively, and the parameter (b) can be estimated from the solution-phase concentration of the intersection point of the two asymptotes. The MSM was fitted to the single-solute sorption of 2-chloro-, 3-cyano-, and 4-nitrophenol onto montmorillonites modified with either HDTMA cation or TMA/HDTMA dual cations. The ideal adsorbed solution theory (IAST) combined with either dual-mode model, Khan model or MSM as a single-solute isotherm model was used to predict three bisolute and one trisolute sorption to organoclays. The Sheindorf-Rebhun-Sheintuch (SRS) and Murali-Aylmore (M-A) were also used to predict bisolute sorption to organoclays. The IAST predictions were generally in good agreement with the multisolute sorption data. The advantages of MSM over other three-parameter models were fully discussed.


Assuntos
Bentonita , Fenóis , Adsorção , Cátions , Soluções
14.
Turk J Chem ; 45(3): 868-878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385873

RESUMO

Tuning the selective sorption features of microporous organic networks is of great importance for subsequent applications in gas uptake and hiding, while it is more attractive in terms of being both time and cost effective to realize these optimizations without using functional groups in the core and linker. "Knitting" is one of the easiest and most used method to obtain a broad scope of hyper-crosslinked polymers on a large scale from aromatic structures that do not contain functional groups for polymerization. By the use of Knitting method, a hypercrosslinked covalent ultramicroporous organic polymer was obtained via stepwise process from using triazatruxene (TAT) as core -a planar indole trimer- through anhydrous FeCl3 catalyzed Friedel-Crafts alkylation using dimethoxybenzene as a linker. The resulting microporous polymer, namely TATHCCP was completely identified by analytical and spectral techniques after examined for gas properties (CO2, CH4, O2, CO, and H2) and selectivity (CO2/N2, CO2/O2, for CO2/CO and CO2/CH4) up to 1 bar and increased temperatures (273 K, 296 K and 320 K). Although it has a relatively low (Brunauer-Emmett-Teller) BET specific surface area around 557 m2/g, it was seen to have a high CO2 capture capacity approaching 10% wt. at 273 K. In accordance with (ideal adsorbed solution theory) IAST computations, it was revealed that interesting selectivity features hitting up to 60 for CO2/N2, 45 for CO2/O2, 35 for CO2/CO, 13 for CO2/CH4 at lower temperatures revealed that the material has much better selectivity values than many HCP (hyper-crosslinked polymer) derivatives in the literature even from its most similar analog dimethoxymethane derivative TATHCP, which has a surface area of 950 m2/g.

15.
ACS Appl Mater Interfaces ; 12(37): 41177-41184, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32803939

RESUMO

The stability of microporous metal-organic frameworks (MOFs) in moist environments must be taken into consideration for their practical implementations, which has been largely ignored thus far. Herein, we synthesized a new moisture-stable Zn-MOF, {[Zn2(SDB)2(L)2]·2DMA}n, IITKGP-12, by utilizing a bent organic linker 4,4'-sulfonyldibenzoic acid (H2SDB) containing a polar sulfone group (-SO2) and a N, N-donor spacer (L) with a Brunauer-Emmett-Teller surface area of 216 m2 g-1. This material displays greater CO2 adsorption capacity over N2 and CH4 with high IAST selectivity, which is also validated by breakthrough experiments with longer breakthrough times for CO2. Most importantly, the separation performance is largely unaffected in the presence of moisture of simulated flue gas stream. Temperature-programmed desorption (TPD) analysis shows the ease of the regeneration process, and the performance was verified for multiple cycles. In order to understand the structure-function relationship at the atomistic level, grand canonical Monte Carlo (GCMC) calculation was performed, indicating that the primary binding site for CO2 is between the sulfone moieties in IITKGP-12. CO2 is attracted to the bonded structure (V-shape) of the sulfone moieties in a perpendicular fashion, where CCO2 is aligned with S, and the CO2 axis bisects the SO2 axis. Thus, the strategic approach to immobilize the polar sulfone moiety with a high number of inherent stronger M-N coordination and the absence of coordination unsaturation made this MOF potential toward practical CO2 separation applications.

16.
Nanomaterials (Basel) ; 10(1)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963914

RESUMO

Separation of CO2/CH4/N2 is significantly important from the view of environmental protection and energy utilization. In this work, we reported nitrogen (N)-doped porous carbon spheres prepared from sustainable biomass glucose via hydrothermal carbonization, CO2 activation, and urea treatment. The optimal carbon sample exhibited a high CO2 and CH4 capacity, as well as a low N2 uptake, under ambient conditions. The excellent selectivities toward CO2/N2, CO2/CH4, and CH4/N2 binary mixtures were predicted by ideal adsorbed solution theory (IAST) via correlating pure component adsorption isotherms with the Langmuir-Freundlich model. At 25 °C and 1 bar, the adsorption capacities for CO2 and CH4 were 3.03 and 1.3 mmol g-1, respectively, and the IAST predicated selectivities for CO2/N2 (15/85), CO2/CH4 (10/90), and CH4/N2 (30/70) reached 16.48, 7.49, and 3.76, respectively. These results should be attributed to the synergistic effect between suitable microporous structure and desirable N content. This report introduces a simple pathway to obtain N-doped porous carbon spheres to meet the flue gas and energy gas adsorptive separation requirements.

17.
Animals (Basel) ; 10(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059433

RESUMO

Streptococcus agalactiae is one of the most important fish pathogenic bacteria as it is responsible for epizootic mortalities in both wild and farmed species. S. agalactiae is also known as a zoonotic agent. In July 2018, a stranded wild sandbar shark (Carcharhinus plumbeus), one of the most common shark species in the Mediterranean Sea, was found moribund on the seashore next to Netanya, Israel, and died a few hours later. A post-mortem examination, histopathology, classical bacteriology and advanced molecular techniques revealed a bacterial infection caused by S. agalactiae, type Ia-ST7. Available sequences publicly accessible databases and phylogenetic analysis suggest that the S. agalactiae isolated in this case is closely related to fish and human isolates. To the best of our knowledge, this is the first description of a fatal streptococcosis in sandbar sharks.

18.
ACS Appl Mater Interfaces ; 11(11): 10680-10688, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807083

RESUMO

It is very challenging to achieve efficient and deep desulfurization, especially in flue gases with an extremely low SO2 concentration. Herein, we report a microporous metal-organic framework (ELM-12) with specific polar sites and proper pore size for the highly efficient SO2 removal from flue gas and other SO2-containing gases. A high SO2 capacity of 61.2 cm3·g-1 combined with exceptionally outstanding selectivity of SO2/CO2 (30), SO2/CH4 (871), and SO2/N2 (4064) under ambient conditions (i.e., 10:90 mixture at 298 K and 1 bar) was achieved. Notably, the SO2/N2 selectivity is unprecedented among ever reported values of porous materials. Moreover, the dispersion-corrected density functional theory calculations illustrated the superior SO2 capture ability and selectivity arise from the high-density SO2 binding sites of the CF3SO3- group in the pore cavity (Sδ+···Oδ- interactions) and aromatic linkers in the pore walls (Hδ+···Oδ- interactions). Dynamic breakthrough experiments confirm the regeneration stability and excellent separation performance. Furthermore, ELM-12 is also stable after exposure to SO2, water vapor, and organic solvents.

19.
Nanomaterials (Basel) ; 8(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158462

RESUMO

Adsorption of dimethyl ether and ethene in SAPO-34 zeolite with the calorimetric (adsorption heat versus coverage) curve measured together with the adsorption isotherm showed two phases of adsorption: first, Type 1 adsorption on acid sites, and second, Type 2 adsorption elsewhere in the cages by physisorption that continued with increasing pressure. Binary gas mixture experiments showed that only the ideal adsorbed solution theory (IAST) gave correct surface concentrations, while the multicomponent Langmuir isotherm for competitive adsorption was incorrect even though the acid site concentration was the same for the adsorbates. This is because the adsorption occurred in two adsorption phases while the Langmuir isotherm model is based on a single adsorption phase.

20.
ACS Appl Mater Interfaces ; 9(16): 14506-14517, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28368569

RESUMO

In this work, nanoporous boron nitride sample was synthesized with a Brunauer-Emmett-Teller (BET) surface area of 1360 m2/g and particle size 5-7 µm. The boron nitride was characterized with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electron microscopy (TEM and SEM). Thermogravimetric analysis (TGA) under nitrogen and air and subsequent analysis with XPS and XRD suggested that its structure is stable in air up to 800 °C and in nitrogen up to 1050 °C, which is higher than most of the common adsorbents reported so far. Nitrogen and hydrocarbon adsorption at 298 K and pressure up to 1 bar suggested that all hydrocarbon adsorption amounts were higher than that of nitrogen and the adsorbed amount of hydrocarbon increases with an increase in its molecular weight. The kinetics of adsorption data suggested that adsorption becomes slower with the increase in molecular weight of hydrocarbons. The equilibrium data suggested that that boron nitride is selective to paraffins in a paraffin-olefin mixture and hence may act as an "olefin generator". The ideal adsorbed solution theory (IAST)-based selectivity for CH4/N2, C2H6/CH4, and C3H8/C3H6 was very high and probably higher than the majority of adsorbents reported in the literature. IAST-based calculations were also employed to simulate the binary mixture adsorption data for the gas pairs of CH4/N2, C2H6/CH4, C2H6/C2H4, and C3H8/C3H6. Finally, a simple mathematical model was employed to simulate the breakthrough behavior of the above-mentioned four gas pairs in a dynamic column experiment. The overall results suggest that nanoporous boron nitride can be used as a potential adsorbent for light hydrocarbon separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA