Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
EMBO Rep ; 25(2): 725-744, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177923

RESUMO

Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.


Assuntos
Herpesvirus Humano 6 , Proteínas Imediatamente Precoces , Infecções por Roseolovirus , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Infecções por Roseolovirus/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Integração Viral , Instabilidade Genômica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
J Virol ; 97(5): e0031323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097169

RESUMO

Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.


Assuntos
Conexina 43 , Infecções por Citomegalovirus , Citomegalovirus , Proteínas Imediatamente Precoces , Animais , Humanos , Recém-Nascido , Camundongos , Conexina 43/genética , Conexina 43/metabolismo , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877992

RESUMO

The baculovirus IE1 gene encodes a multifunctional protein that is essential for both DNA replication and RNA transcription of the virus. Prior to viral DNA replication, IE1 promotes early gene transcription when localized in hr-dependent foci. During viral DNA replication, the IE1 foci expand and fuse to generate the virogenic stroma (VS) with IE1 found in the VS reticulum. To explore the IE1 structural features essential for this coordinated localization, we constructed various IE1 mutants based on three putative domains (N, I, and C). We determined that a BDI motif located in the intrinsic disorder region (IDR) between the N and I domains acts as a nuclear localization signal, whereas BDII and HLH in the C domain are required for VS localization in infected cells or for chromosomal association in uninfected mitotic cells. Deletion of the SLiM (short linear motif) located in the I domain restrains both nuclear- and VS localization. Intra-molecular fluorescence resonance energy transfer (FRET) probes of IE1 mutants revealed a conformational change of the I-C two-domain fragment during infection, which was inhibited by aphidicolin, suggesting that IE1 undergoes a stage-dependent conformational change. Further, homo-dimerization of the I domain and stage-dependent conformational changes require an intact SLiM. Mutational analysis of SLiM revealed that VS localization and chromosomal association were retained following S291A and S291E substitutions, but hr-dependent focus formation differed between the two mutations. These results suggest that coordinated IE1 localization is controlled by SLiM-dependent conformational changes that are potentially switched by the phosphorylation state of the SLiM.


Assuntos
Baculoviridae , Replicação do DNA , Baculoviridae/genética , Replicação Viral , DNA Viral , Fosforilação
4.
Cell Commun Signal ; 21(1): 104, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158899

RESUMO

Viruses have evolved various strategies to achieve early infection by initiating transcription of their own early genes via host transcription factors, such as NF-κb, STAT, and AP1. How the host copes with this immune escape has been a topic of interest. Tripartite motif (TRIM) family proteins with RING-type domains have E3 ubiquitin ligase activity and are known as host restriction factors. Trim has been reported to be associated with phagocytosis and is also believed to be involved in the activation of autophagy. Preventing the virus from entering the host cell may be the most economical way for the host to resist virus infection. The role of TRIM in the early stage of virus infection in host cells remains to be further interpreted. In the current study, a crayfish TRIM with a RING-type domain, designated as PcTrim, was significantly upregulated under white spot syndrome virus (WSSV) infection in the red swamp crayfish (Procambarus clarkii). Recombinant PcTrim significantly inhibited WSSV replication in crayfish. RNAi targeting PcTrim or blocking PcTrim with an antibody promoted WSSV replication in crayfish. Pulldown and co-IP assays showed that PcTrim can interact with the virus protein VP26. PcTrim restricts the expression level of dynamin, which is involved in the regulation of phagocytosis, by inhibiting AP1 entry into the nucleus. AP1-RNAi effectively reduced the expression levels of dynamin and inhibited host cell endocytosis of WSSV in vivo. Our study demonstrated that PcTrim might reduce early WSSV infection by binding to VP26 and then inhibiting AP1 activation, resulting in reduced endocytosis of WSSV in crayfish hemocytes. Video Abstract.


Assuntos
Astacoidea , Vírus da Síndrome da Mancha Branca 1 , Anticorpos , Autofagia , Endocitose , Fagocitose , Proteínas com Motivo Tripartido , Astacoidea/virologia , Animais
5.
J Med Virol ; 94(11): 5492-5506, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35879101

RESUMO

During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.


Assuntos
Infecções por Citomegalovirus , Proteínas Imediatamente Precoces , Adenosina Trifosfatases/metabolismo , Citomegalovirus/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Replicação Viral
6.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142194

RESUMO

The immediate early protein 1 (IE1) acts as a transcriptional activator and is essential for viral gene transcription and viral DNA replication. However, the key regulatory domains of IE1 remain poorly understood. Here, we analyzed the sequence characteristics of Bombyx mori nucleopolyhedrovirus (BmNPV) IE1 and identified the key functional domains of BmNPV IE1 by stepwise truncation. Our results showed that BmNPV IE1 was highly similar to Autographa californica nucleopolyhedrovirus (AcMNPV) IE1, but was less conserved with IE1 of other baculoviruses, the C-terminus of IE1 was more conserved than the N-terminus, and BmNPV IE1 was also necessary for BmNPV proliferation. Moreover, we found that IE1158-208 was a major nuclear localization element, and IE11-157 and IE1539-559 were minor nuclear localization elements, but the combination of these two minor elements was equally sufficient to fully mediate the nuclear entry of IE1. Meanwhile, IE11-258, IE1560-584, and the association of amino acids 258 and 259 were indispensable for the transactivation activity of BmNPV IE1. These results systematically resolve the functional domains of BmNPV IE1, which contribute to the understanding of the mechanism of baculovirus infection and provide a possibility to synthesize a small molecule IE1-truncated mutant as an agonist or antagonist.


Assuntos
Bombyx , Replicação do DNA , Aminoácidos/metabolismo , Animais , Bombyx/metabolismo , DNA Viral , Regulação Viral da Expressão Gênica , Proteínas de Insetos/genética , Nucleopoliedrovírus , Transativadores/metabolismo , Replicação Viral
7.
Proc Natl Acad Sci U S A ; 115(5): 1069-1074, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339472

RESUMO

Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.


Assuntos
Citomegalovirus/genética , Proteínas Imediatamente Precoces/metabolismo , MicroRNAs/metabolismo , Transativadores/metabolismo , Biologia Computacional , Fibroblastos/metabolismo , Regulação Viral da Expressão Gênica , Inativação Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Mutação , Células Mieloides/metabolismo , Ativação Transcricional , Transcriptoma , Proteínas do Envelope Viral/genética , Replicação Viral
8.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597766

RESUMO

Human herpesviruses 6A and 6B (HHV-6A and HHV-6B) are human viruses capable of chromosomal integration. Approximately 1% of the human population carries one copy of HHV-6A/B integrated into every cell in their body, referred to as inherited chromosomally integrated human herpesvirus 6A/B (iciHHV-6A/B). Whether iciHHV-6A/B is transcriptionally active in vivo and how it shapes the immunological response are still unclear. In this study, we screened DNA sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) data for 650 individuals available through the Genotype-Tissue Expression (GTEx) project and identified 2 iciHHV-6A- and 4 iciHHV-6B-positive candidates. When corresponding tissue-specific gene expression signatures were analyzed, low levels HHV-6A/B gene expression was found across multiple tissues, with the highest levels of gene expression in the brain (specifically for HHV-6A), testis, esophagus, and adrenal gland. U90 and U100 were the most highly expressed HHV-6 genes in both iciHHV-6A- and iciHHV-6B-positive individuals. To assess whether tissue-specific gene expression from iciHHV-6A/B influences the immune response, a cohort of 15,498 subjects was screened and 85 iciHHV-6A/B+ subjects were identified. Plasma samples from iciHHV-6A/B+ and age- and sex-matched controls were analyzed for antibodies to control antigens (cytomegalovirus [CMV], Epstein-Barr virus [EBV], and influenza virus [FLU]) or HHV-6A/B antigens. Our results indicate that iciHHV-6A/B+ subjects have significantly more antibodies against the U90 gene product (IE1) than do non-iciHHV-6-positive individuals. Antibody responses against EBV and FLU antigens or HHV-6A/B gene products either not expressed or expressed at low levels, such as U47, U57, and U72, were identical between controls and iciHHV-6A/B+ subjects. CMV-seropositive individuals with iciHHV-6A/B+ have more antibodies against CMV pp150 than do CMV-seropositive controls. These results argue that spontaneous gene expression from integrated HHV-6A/B leads to an increase in antigenic burden that translates into a more robust HHV-6A/B-specific antibody response.IMPORTANCE HHV-6A and -6B are human herpesviruses that have the unique property of being able to integrate into the telomeric regions of human chromosomes. Approximately 1% of the world's population carries integrated HHV-6A/B genome in every cell of their body. Whether viral genes are transcriptionally active in these individuals is unclear. By taking advantage of a unique tissue-specific gene expression data set, we showed that the majority of tissues from iciHHV-6 individuals do not show HHV-6 gene expression. Brain and testes showed the highest tissue-specific expression of HHV-6 genes in two separate data sets. Two HHV-6 genes, U90 (immediate early 1 protein) and U100 (glycoproteins Q1 and Q2), were found to be selectively and consistently expressed across several human tissues. Expression of U90 translates into an increase in antigen-specific antibody response in iciHHV-6A/B+ subjects relative to controls. Future studies will be needed to determine the mechanism of gene expression, the effects of these genes on human gene transcription networks, and the pathophysiological impact of having increased viral protein expression in tissue in conjunction with increased antigen-specific antibody production.


Assuntos
Anticorpos Antivirais/sangue , Cromossomos Humanos/química , Herpesvirus Humano 6/genética , RNA Viral/genética , Infecções por Roseolovirus/virologia , Glândulas Suprarrenais/imunologia , Glândulas Suprarrenais/virologia , Idoso , Encéfalo/imunologia , Encéfalo/virologia , Estudos de Coortes , Citomegalovirus/imunologia , Esôfago/imunologia , Esôfago/virologia , Feminino , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 6/classificação , Herpesvirus Humano 6/imunologia , Humanos , Padrões de Herança , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Orthomyxoviridae/imunologia , Filogenia , RNA Viral/imunologia , Infecções por Roseolovirus/genética , Infecções por Roseolovirus/imunologia , Testículo/imunologia , Testículo/virologia , Integração Viral , Sequenciamento Completo do Genoma
9.
Fish Shellfish Immunol ; 106: 910-919, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32841684

RESUMO

Since the mechanisms by which cellular factors modulate replication of the shrimp viral pathogen white spot syndrome virus (WSSV) are still largely unknown, here we consider the sirtuins, a family of NAD+-dependent protein deacetylases that are known to function as regulatory factors that activate or suppress viral transcription and replication in mammals. In particular, we focus on SIRT1 by isolating and characterizing LvSIRT1 from white shrimp (Litopenaeus vannamei) and investigating its involvement in WSSV infection. DsRNA-mediated gene silencing led to the expression of WSSV genes and the replication of genomic DNAs being significantly decreased in LvSIRT1-silenced shrimp. The deacetylase activity of LvSIRT1 was significantly induced at the early stage (2 hpi) and the genome replication stage (12 hpi) of WSSV replication, but decreased at the late stage of WSSV replication (24 hpi). Treatment with the SIRT1 activator resveratrol further suggested that LvSIRT1 activation increased the expression of several WSSV genes (IE1, VP28 and ICP11). Lastly, we used transfection and dual luciferase assays in Sf9 insect cells to show that while the overexpression of LvSIRT1 facilitates the promoter activity of WSSV IE1, this enhancement of WSSV IE1 expression is achieved by a transactivation pathway that is NF-κB-independent.


Assuntos
Proteínas de Artrópodes/genética , Infecções por Vírus de DNA/genética , Penaeidae/genética , Sirtuína 1/genética , Proteínas Virais/genética , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Sítios de Ligação , Linhagem Celular , Infecções por Vírus de DNA/veterinária , Inativação Gênica , Insetos , Mutação , NF-kappa B , Penaeidae/virologia , Regiões Promotoras Genéticas
10.
Microbiol Immunol ; 64(11): 747-761, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32910457

RESUMO

The human herpesvirus 6B (HHV-6B) U79/80 gene belongs to the early gene class and appears as early as 3 hr postinfection. It is one of the most abundantly expressed transcripts and a useful diagnostic marker for viral reactivation. However, the expression mechanisms of the U79/80 gene remain unclear. To identify the viral factor(s) that activates the U79/80 promoter along with other HHV-6B core early gene promoters, p41, DNA polymerase, and U41, we examined the activities of U79/80 and other early gene promoters. In HHV-6B-infected MT-4 cells, U79/80 promoter activity was the highest among early gene promoters. In addition, we identified that HHV-6B immediate-early (IE)2B protein is one of the viral proteins involved in the activation of the U79/80 and other early gene promoters. Although the IE2B could independently activate these early gene promoters, the presence of IE1B significantly augmented the activities of early gene promoters. We also found that IE2B bound three human cytomegalovirus IE2-binding consensus, cis repression signal (CRS), within the U79/80 promoter. Moreover, the U79/80 promoter was activated by cellular factors, which are highly expressed in MT-4 cells, instead of HeLa cells because it was upregulated by mock infection and in the absence of IE2B. These results suggested that the activation mechanism of the U79/80 gene differs from other HHV-6B core early genes, apparently supporting its rapid and abundant expression. Therefore, the U79/80 early gene is an actually suitable biomarker of HHV-6B reactivation.


Assuntos
Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Regiões Promotoras Genéticas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Citomegalovirus/genética , DNA Polimerase Dirigida por DNA , Regulação Viral da Expressão Gênica , Células HeLa , Humanos , Transcrição Gênica , Ativação Transcricional
11.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950413

RESUMO

The mechanisms underlying neurodevelopmental damage caused by virus infections remain poorly defined. Congenital human cytomegalovirus (HCMV) infection is the leading cause of fetal brain development disorders. Previous work has linked HCMV infection to perturbations of neural cell fate, including premature differentiation of neural progenitor cells (NPCs). Here, we show that HCMV infection of NPCs results in loss of the SOX2 protein, a key pluripotency-associated transcription factor. SOX2 depletion maps to the HCMV major immediate early (IE) transcription unit and is individually mediated by the IE1 and IE2 proteins. IE1 causes SOX2 downregulation by promoting the nuclear accumulation and inhibiting the phosphorylation of STAT3, a transcriptional activator of SOX2 expression. Deranged signaling resulting in depletion of a critical stem cell protein is an unanticipated mechanism by which the viral major IE proteins may contribute to brain development disorders caused by congenital HCMV infection.IMPORTANCE Human cytomegalovirus (HCMV) infections are a leading cause of brain damage, hearing loss, and other neurological disabilities in children. We report that the HCMV proteins known as IE1 and IE2 target expression of human SOX2, a central pluripotency-associated transcription factor that governs neural progenitor cell (NPC) fate and is required for normal brain development. Both during HCMV infection and when expressed alone, IE1 causes the loss of SOX2 from NPCs. IE1 mediates SOX2 depletion by targeting STAT3, a critical upstream regulator of SOX2 expression. Our findings reveal an unanticipated mechanism by which a common virus may cause damage to the developing nervous system and suggest novel targets for medical intervention.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/virologia , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Cultivadas , Humanos
12.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343581

RESUMO

The human cytomegalovirus (HCMV) immediate early 1 (IE1) and IE2 proteins are critical regulators of virus replication. Both proteins are needed to efficiently establish lytic infection, and nascent expression of IE1 and IE2 is critical for reactivation from latency. The regulation of IE1 and IE2 protein expression is thus a central event in the outcome of HCMV infection. Transcription of the primary transcript encoding both IE1 and IE2 is well studied, but relatively little is known about the posttranscriptional mechanisms that control IE1 and IE2 protein synthesis. The mRNA 5' untranslated region (5' UTR) plays an important role in regulating mRNA translation. Therefore, to better understand the control of IE1 and IE2 mRNA translation, we examined the role of the shared 5' UTR of the IE1 and IE2 mRNAs (MIE 5' UTR) in regulating translation. In a cell-free system, the MIE 5' UTR repressed translation, as predicted based on its length and sequence composition. However, in transfected cells we found that the MIE 5' UTR increased the expression of a reporter gene and enhanced its association with polysomes, demonstrating that the MIE 5' UTR has a positive role in translation control. We also found that the MIE 5' UTR was necessary for efficient IE1 and IE2 translation during infection. Replacing the MIE 5' UTR with an unstructured sequence of the same length decreased IE1 and IE2 protein expression despite similar levels of IE1 and IE2 mRNA and reduced the association of the IE1 and IE2 mRNAs with polysomes. The wild-type MIE 5'-UTR sequence was also necessary for efficient HCMV replication. Together these data identify the shared 5' UTR of the IE1 and IE2 mRNAs as an important regulator of HCMV lytic replication.IMPORTANCE The HCMV IE1 and IE2 proteins are critical regulators of HCMV replication, both during primary infection and during reactivation from viral latency. Thus, defining factors that regulate IE1 and IE2 expression is important for understanding the molecular events controlling the HCMV replicative cycle. Here we identify a positive role for the MIE 5' UTR in mediating the efficient translation of the IE1 and IE2 mRNAs. This result is an important advance for several reasons. To date, most studies of IE1 and IE2 regulation have focused on defining events that regulate IE1 and IE2 transcription. Our work reveals that in addition to the regulation of transcription, IE1 and IE2 are also regulated at the level of translation. Therefore, this study is important in that it identifies an additional layer of regulation controlling IE1 and IE2 expression and thus HCMV pathogenesis. These translational regulatory events could potentially be targeted by novel antiviral therapeutics that limit IE1 and IE2 mRNA translation and thus inhibit lytic replication or prevent HCMV reactivation.


Assuntos
Regiões 5' não Traduzidas , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Proteínas Imediatamente Precoces/biossíntese , RNA Viral/metabolismo , Replicação Viral/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Células HeLa , Humanos , Proteínas Imediatamente Precoces/genética , RNA Viral/genética
13.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258013

RESUMO

To countermeasure the host cellular intrinsic defense, cytomegalovirus (CMV) and herpes simplex viruses (HSV) have evolved the ability to disperse nuclear domain 10 (ND10, aka PML body). However, mechanisms underlying their action on ND10 differ. HSV infection produces ICP0, which degrades the ND10-forming protein PML. Human CMV (HCMV) infection expresses IE1 that deSUMOylates PML to result in dispersion of ND10. It has been demonstrated that HSV ICP0 degraded only the SUMOylated PML, so we hypothesized that HCMV IE1 can protect PML from degradation by ICP0. HCMV IE1-expressing cell lines (U-251 MG-IE1 and HELF-IE1) were used for infection of HSV-1 or transfection of ICP0-expressing plasmid. Multilabeling by immunocytochemistry assay and protein examination by Western blot assay were performed to determine the resultant fate of PML caused by ICP0 in the presence or absence of HCMV IE1. Here, we report that deSUMOylation of human PML (hPML) by HCMV IE1 was incomplete, as mono-SUMOylated PML remained in the IE1-expressing cells, which is consistent with the report by E. M. Schilling, M. Scherer, N. Reuter, J. Schweininger, et al. (J Virol 91:e02049-16, 2017, https://doi.org/10.1128/JVI.02049-16). As expected, we found that IE1 protected PML from degradation by ICP0 or HSV-1 infection. An in vitro study found that IE1 with mutation of L174P failed to deSUMOylate PML and did not protect PML from degradation by ICP0; hence, we conclude that the deSUMOylation of PML is important for IE1 to protect PML from degradation by ICP0. In addition, we revealed that murine CMV failed to deSUMOylate and to protect the HSV-mediated degradation of hPML, and that HCMV failed to deSUMOylate and protect the HSV-mediated degradation of mouse PML. However, IE1-expressing cells did not enhance wild-type HSV-1 replication but significantly increased ICP0-defective HSV-1 replication at a low multiplicity of infection. Therefore, our results uncovered a host-virus functional interaction at the posttranslational level.IMPORTANCE Our finding that HCMV IE1 protected hPML from degradation by HSV ICP0 is important, because the PML body (aka ND10) is believed to be the first line of host intrinsic defense against herpesviral infection. How the infected viruses overcome the nuclear defensive structure (PML body) has not been fully understood. Herpesviral proteins, ICP0 of HSV and IE1 of CMV, have been identified to interact with PML. Here, we report that HCMV IE1 incompletely deSUMOylated PML, resulting in the mono-SUMOylated PML, which is consistent with the report of Schilling et al. (J Virol 91:e02049-16, 2017, https://doi.org/10.1128/JVI.02049-16). The mono-SUMOylated PML was subjected to degradation by HSV ICP0. However, it was protected by IE1 from degradation by ICP0 or HSV-1 infection. In contrast, IE1 with L174P mutation lost the function of deSUMOylating PML and failed to protect the degradation of the mono-SUMOylated PML. Whether the mono-SUMOylated PML has any defensive function against viral infection will be further investigated.


Assuntos
Infecções por Citomegalovirus/metabolismo , Herpes Simples/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteólise , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos , Proteína da Leucemia Promielocítica/química , Proteína da Leucemia Promielocítica/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral
14.
Med Microbiol Immunol ; 208(3-4): 439-446, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31004200

RESUMO

Roizman's definition of herpesviral latency, which applies also to cytomegaloviruses (CMVs), demands maintenance of reactivation-competent viral genomes after clearance of productive infection. It is more recent understanding that failure to complete the productive viral cycle for virus assembly and release does not imply viral gene silencing at all genetic loci and all the time. It rather appears that CMV latency is transcriptionally "noisy" in that silenced viral genes get desilenced from time to time in a stochastic manner, leading to "transcripts expressed in latency" (TELs). If a TEL happens to code for a protein that contains a CD8 T cell epitope, protein processing can lead to the presentation of the antigenic peptide and restimulation of cognate CD8 T cells during latency. This mechanism is discussed as a potential driver of epitope-selective accumulation of CD8 T cells over time, a phenomenon linked to CMV latency and known as "memory inflation" (MI). So far, expression of an epitope-encoding TEL was shown only for the major immediate-early (MIE) gene m123/ie1 of murine cytomegalovirus (mCMV), which codes for the prototypic MI-driving antigenic peptide YPHFMPTNL that is presented by the MHC class-I molecule Ld. The only known second MI-driving antigenic peptide of mCMV in the murine MHC haplotype H-2d is AGPPRYSRI presented by the MHC-I molecule Dd. This peptide is very special in that it is encoded by the early (E) phase gene m164 and by an overlapping immediate-early (IE) transcript governed by a promoter upstream of m164. If MI is driven by presentation of TEL-derived antigenic peptides, as the hypothesis says, one should find corresponding TELs. We show here that E-phase and IE-phase transcripts that code for the MI-driving antigenic peptide AGPPRYSRI are independently and stochastically expressed in latently infected lungs.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Perfilação da Expressão Gênica , Muromegalovirus/imunologia , Latência Viral , Animais , Antígenos Virais/biossíntese , Modelos Animais de Doenças , Epitopos/biossíntese , Epitopos/imunologia , Memória Imunológica , Muromegalovirus/crescimento & desenvolvimento
15.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250117

RESUMO

Previous studies identified the nuclear domain 10 (ND10) components promyelocytic leukemia protein (PML), hDaxx, and Sp100 as factors of an intrinsic immune response against human cytomegalovirus (HCMV). This antiviral function of ND10, however, is antagonized by viral effector proteins like IE1p72, which induces dispersal of ND10. Furthermore, we have shown that both major immediate early proteins of HCMV, IE1p72 and IE2p86, transiently colocalize with ND10 subnuclear structures and undergo modification by the covalent attachment of SUMO. Since recent reports indicate that PML acts as a SUMO E3 ligase, we asked whether the SUMOylation of IE1p72 and IE2p86 is regulated by PML. To address this, PML-depleted fibroblasts, as well as cells overexpressing individual PML isoforms, were infected with HCMV. Western blot experiments revealed a clear correlation between the degree of IE1p72 SUMO conjugation and the abundance of PML. On the other hand, the SUMOylation of IE2p86 was not affected by PML. By performing in vitro SUMOylation assays, we were able to provide direct evidence that IE1p72 is a substrate for PML-mediated SUMOylation. Interestingly, disruption of the RING finger domain of PML, which is proposed to confer SUMO E3 ligase activity, abolished PML-induced SUMOylation of IE1p72. In contrast, IE1p72 was still efficiently SUMO modified by a SUMOylation-defective PML mutant, indicating that intact ND10 bodies are not necessary for this effect. Thus, this is the first report that the E3 ligase PML is capable of stimulating the SUMOylation of a viral protein which is supposed to serve as a cellular mechanism to compromise specific functions of IE1p72.IMPORTANCE The major immediate early proteins of human cytomegalovirus, termed IE1p72 and IE2p86, have previously been shown to undergo posttranslational modification by covalent coupling to SUMO moieties at specific lysine residues. However, the enzymatic activities that are responsible for this modification have not been identified. Here, we demonstrate that the PML protein, which mediates an intrinsic immune response against HCMV, specifically serves as an E3 ligase for SUMO modification of IE1p72. Since SUMO modification of IE1p72 has previously been shown to interfere with STAT factor binding, thus compromising the interferon-antagonistic function of this viral effector protein, our finding highlights an additional mechanism through which PML is able to restrict viral infections.


Assuntos
Citomegalovirus/genética , Citomegalovirus/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Nucleares/química , Proteína da Leucemia Promielocítica/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Citomegalovirus/enzimologia , Fibroblastos/virologia , Humanos , Proteínas Imediatamente Precoces/genética , Mutação , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/química , Proteína SUMO-1/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
16.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077637

RESUMO

Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L. vannamei TATA-binding protein (LvTBP), which may have an effect on basal transcription. Knockdown of LvYY1 expression inhibited ie1 transcription and subsequently reduced viral DNA replication and decreased cumulative mortality rates of WSSV-infected shrimp. These findings are expected to contribute to future studies involving WSSV-host interactions.


Assuntos
Regulação Viral da Expressão Gênica , Genes Precoces , Interações Hospedeiro-Patógeno , Penaeidae/virologia , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Clonagem Molecular , DNA Viral/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Virais , Insetos , Regiões Promotoras Genéticas , Ligação Proteica , Vírus da Síndrome da Mancha Branca 1/genética , Fator de Transcrição YY1/genética
17.
Int J Mol Sci ; 19(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486430

RESUMO

The recombinant baculovirus has been widely used as an efficient tool to mediate gene delivery into mammalian cells but has barely been used in fish cells. In the present study, we constructed a recombinant baculovirus containing the dual-promoter cytomegalovirus (CMV) and white spot syndrome virus (WSSV) immediate-early gene 1 (ie1) (WSSV ie1), followed by a puromycin⁻green fluorescent protein (Puro-GFP, pf) or puromycin⁻red fluorescent protein (Puro-RFP, pr) cassette, which simultaneously allowed for easy observation, rapid titer determination, drug selection, and exogenous gene expression. This recombinant baculovirus was successfully transduced into fish cells, including Mylopharyngodon piceus bladder (MPB), fin (MPF), and kidney (MPK); Oryzias latipes spermatogonia (SG3); and Danio rerio embryonic fibroblast (ZF4) cells. Stable transgenic cell lines were generated after drug selection, which was further verified by Western blot. A cell monoclonal formation assay proved the stable heredity of transgenic MPB cells. In addition, a recombinant baculovirus containing a pr cassette and four transcription factors for induced pluripotent stem cells (iPSC) was constructed and transduced into ZF4 cells, and these exogenous genes were simultaneously delivered and transcribed efficiently in drug-selected ZF4 cells, proving the practicability of this modified recombinant baculovirus system. We also proved that the WSSV ie1 promoter had robust activity in fish cells in vitro and in vivo. Taken together, this modified recombinant baculovirus can be a favorable transgenic tool to obtain transient or stable transgenic fish cells.


Assuntos
Baculoviridae/genética , Peixes/genética , Expressão Gênica , Vetores Genéticos/genética , Transgenes , Animais , Linhagem Celular , Ordem dos Genes , Técnicas de Transferência de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética
18.
BMC Immunol ; 18(1): 15, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270092

RESUMO

BACKGROUND: Uncontrolled cytomegalovirus (CMV) replication in immunocompromised solid-organ transplant recipients is a clinically relevant issue and an indication of impaired CMV-specific cell-mediated immunity (CMI). Primary aim of this study was to assess the suitability of the immune monitoring tool T-Track® CMV to determine CMV-reactive CMI in a cohort of hemodialysis patients representative of patients eligible for renal transplantation. Positive and negative agreement of T-Track® CMV with CMV serology was examined in 124 hemodialysis patients, of whom 67 (54%) revealed a positive CMV serostatus. Secondary aim of the study was to evaluate T-Track® CMV performance against two unrelated CMV-specific CMI monitoring assays, QuantiFERON®-CMV and a cocktail of six class I iTAg™ MHC Tetramers. RESULTS: Positive T-Track® CMV results were obtained in 90% (60/67) of CMV-seropositive hemodialysis patients. In comparison, 73% (45/62) and 77% (40/52) positive agreement with CMV serology was achieved using QuantiFERON®-CMV and iTAg™ MHC Tetramer. Positive T-Track® CMV responses in CMV-seropositive patients were dominated by pp65-reactive cells (58/67 [87%]), while IE-1-responsive cells contributed to an improved (87% to 90%) positive agreement of T-Track® CMV with CMV serology. Interestingly, T-Track® CMV, QuantiFERON®-CMV and iTAg™ MHC Tetramers showed 79% (45/57), 87% (48/55) and 93% (42/45) negative agreement with serology, respectively, and a strong inter-assay variability. Notably, T-Track® CMV was able to detect IE-1-reactive cells in blood samples of patients with a negative CMV serology, suggesting either a previous exposure to CMV that yielded a cellular but no humoral immune response, or TCR cross-reactivity with foreign antigens, both suggesting a possible protective immunity against CMV in these patients. CONCLUSION: T-Track® CMV is a highly sensitive assay, enabling the functional assessment of CMV-responsive cells in hemodialysis patients prior to renal transplantation. T-Track® CMV thus represents a valuable immune monitoring tool to identify candidate transplant recipients potentially at increased risk for CMV-related clinical complications.


Assuntos
Infecções por Citomegalovirus/diagnóstico , Citomegalovirus/imunologia , Hospedeiro Imunocomprometido , Falência Renal Crônica/diagnóstico , Diálise Renal , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Células Cultivadas , Estudos de Coortes , Infecções por Citomegalovirus/imunologia , Feminino , Humanos , Proteínas Imediatamente Precoces/imunologia , Imunidade Celular , Imunoensaio , Falência Renal Crônica/imunologia , Falência Renal Crônica/terapia , Transplante de Rim , Masculino , Pessoa de Meia-Idade , Monitorização Imunológica/métodos , Variações Dependentes do Observador , Fosfoproteínas/imunologia , Sensibilidade e Especificidade , Proteínas da Matriz Viral/imunologia , Listas de Espera
19.
BMC Immunol ; 18(1): 14, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270111

RESUMO

BACKGROUND: In healthy individuals, Cytomegalovirus (CMV) infection is efficiently controlled by CMV-specific cell-mediated immunity (CMI). Functional impairment of CMI in immunocompromized individuals however can lead to uncontrolled CMV replication and severe clinical complications. Close monitoring of CMV-specific CMI is therefore clinically relevant and might allow a reliable prognosis of CMV disease as well as assist personalized therapeutic decisions. METHODS: Objective of this work was the optimization and technical validation of an IFN-γ ELISpot assay for a standardized, sensitive and reliable quantification of CMV-reactive effector cells. T-activated® immunodominant CMV IE-1 and pp65 proteins were used as stimulants. All basic assay parameters and reagents were tested and optimized to establish a user-friendly protocol and maximize the signal-to-noise ratio of the ELISpot assay. RESULTS: Optimized and standardized ELISpot revealed low intra-assay, inter-assay and inter-operator variability (coefficient of variation CV below 22%) and CV inter-site was lower than 40%. Good assay linearity was obtained between 6 × 104 and 2 × 105 PBMC per well upon stimulation with T-activated® IE-1 (R2 = 0.97) and pp65 (R2 = 0.99) antigens. Remarkably, stimulation of peripheral blood mononuclear cells (PBMC) with T-activated® IE-1 and pp65 proteins resulted in the activation of a broad range of CMV-reactive effector cells, including CD3+CD4+ (Th), CD3+CD8+ (CTL), CD3-CD56+ (NK) and CD3+CD56+ (NKT-like) cells. Accordingly, the optimized IFN-γ ELISpot assay revealed very high sensitivity (97%) in a cohort of 45 healthy donors, of which 32 were CMV IgG-seropositive. CONCLUSION: The combined use of T-activated® IE-1 and pp65 proteins for the stimulation of PBMC with the optimized IFN-γ ELISpot assay represents a highly standardized, valuable tool to monitor the functionality of CMV-specific CMI with great sensitivity and reliability.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/diagnóstico , Citomegalovirus/fisiologia , ELISPOT/métodos , Células Matadoras Naturais/imunologia , Células T Matadoras Naturais/imunologia , Adulto , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Infecções por Citomegalovirus/imunologia , Citotoxicidade Imunológica , Feminino , Humanos , Proteínas Imediatamente Precoces/imunologia , Imunidade Celular , Interferon gama/metabolismo , Células Matadoras Naturais/virologia , Masculino , Pessoa de Meia-Idade , Monitorização Imunológica , Células T Matadoras Naturais/virologia , Variações Dependentes do Observador , Fosfoproteínas/imunologia , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Proteínas da Matriz Viral/imunologia , Adulto Jovem
20.
Cell Immunol ; 300: 26-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26651951

RESUMO

CMV markedly alters the phenotype and function of NK-cells and T-cells and has been linked to immunosenescence. We show here that subjects with effective CMV control (evidenced by low CMV IgG titers) have functional responses to CMV that are driven by either NKG2C+ NK-cells or CMV-specific T-cells (15 of 24 subjects), but not both. These data indicate that people with effective CMV control are either NK-cell or T-cell responders, and corroborates the idea that NK-cells have rheostat-like properties that regulate anti-viral T-cell responses. Whether or not lifelong CMV control through either NK-cell or T-cell responses have implications for immunosenescence remains to be determined.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Imunossenescência/imunologia , Células Matadoras Naturais/imunologia , Latência Viral/imunologia , Adulto , Diferenciação Celular/imunologia , Citomegalovirus/fisiologia , ELISPOT , Feminino , Citometria de Fluxo , Humanos , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA