Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Immunity ; 56(5): 944-958.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040761

RESUMO

Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Animais , Interferon gama/genética , Interferon gama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Sequências Reguladoras de Ácido Nucleico , Homeostase , Células Th1 , Mamíferos
2.
Mol Cell ; 81(6): 1216-1230.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606996

RESUMO

Interferon-γ (IFN-γ)-mediated adaptive resistance is one major barrier to improving immunotherapy in solid tumors. However, the mechanisms are not completely understood. Here, we report that IFN-γ promotes nuclear translocation and phase separation of YAP after anti-PD-1 therapy in tumor cells. Hydrophobic interactions of the YAP coiled-coil domain mediate droplet initiation, and weak interactions of the intrinsically disordered region in the C terminus promote droplet formation. YAP partitions with the transcription factor TEAD4, the histone acetyltransferase EP300, and Mediator1 and forms transcriptional hubs for maximizing target gene transcriptions, independent of the canonical STAT1-IRF1 transcription program. Disruption of YAP phase separation reduced tumor growth, enhanced immune response, and sensitized tumor cells to anti-PD-1 therapy. YAP activity is negatively correlated with patient outcome. Our study indicates that YAP mediates the IFN-γ pro-tumor effect through its nuclear phase separation and suggests that YAP can be used as a predictive biomarker and target of anti-PD-1 combination therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Interferon gama/metabolismo , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Humanos , Interferon gama/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
3.
Immunity ; 48(3): 542-555.e6, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29523440

RESUMO

Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3ß (GSK3ß) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3ß at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Memória Imunológica , Mitocôndrias/metabolismo , Transdução de Sinais , Respiração Celular , Retículo Endoplasmático/ultraestrutura , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicólise , Membranas Intracelulares/metabolismo , Ativação Linfocitária , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/deficiência
4.
Circulation ; 149(1): 48-66, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37746718

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.


Assuntos
Inibidores de Checkpoint Imunológico , Miocardite , Humanos , Camundongos , Animais , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos T CD8-Positivos , Miocardite/induzido quimicamente , Miocardite/metabolismo , Receptor de Morte Celular Programada 1 , Antígeno CTLA-4 , Ligantes , Quimiocinas/metabolismo , Macrófagos/metabolismo , RNA/metabolismo
5.
Trends Immunol ; 42(11): 1009-1023, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34629295

RESUMO

Interferons (IFNs) are among the first vertebrate immune pathways activated upon viral infection and are crucial for control of viral replication and dissemination, especially at mucosal surfaces as key locations for host exposure to pathogens. Inhibition of viral establishment and spread at and from these mucosal sites is paramount for preventing severe disease, while concomitantly limiting putative detrimental effects of inflammation. Here, we compare the roles of type I, II, and III IFNs in regulating three archetypal viruses - norovirus, herpes simplex virus, and severe acute respiratory virus coronavirus 2 (SARS-CoV-2) - which infect distinct mammalian mucosal tissues. Emerging paradigms include highly specific roles for IFNs in limiting local versus systemic infection, synergistic activities, and a spectrum of protective versus detrimental effects of IFNs during the infection response.


Assuntos
COVID-19 , Viroses , Animais , Humanos , Imunidade Inata , Interferons , Mucosa , SARS-CoV-2 , Replicação Viral
6.
Brain Behav Immun ; 116: 24-33, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38013040

RESUMO

Infections are often accompanied by weight loss caused by alterations in host behavior and metabolism, also known as sickness behaviors. Recent studies have revealed that sickness behaviors can either promote or impede survival during infections depending on factors such as the type of infectious pathogen. Nevertheless, we have an incomplete understanding of the underlying mechanisms of sickness behaviors. Furthermore, although the host immune responses to infections have long been known to contribute to the induction of sickness behaviors, recent studies have identified emerging cytokines that are also key regulators of host metabolism during infection and inflammation, such as growth differentiation factor 15 (GDF-15). GDF-15 is a distant member of the TGF-ß superfamily that causes weight loss by suppressing appetite and food consumption and causing emesis. These effects require activation of neurons that express the only known GDF-15 receptor, the GFRAL receptor. GDF-15 also functions in the periphery including the induction of ketogenesis and immunoregulation. Nevertheless, the functions and regulation of GDF-15 during live infections is not yet known. Murine infection with avirulent Toxoplasma gondii is an established model to understand infection-induced weight loss. Past studies have determined that acute T. gondii infection causes weight loss due to diminished food consumption and increased energy expenditure through unknown mechanisms. Additionally, our lab previously demonstrated that T. gondii causes upregulation in serum GDF-15 in an IFN-γ-dependent manner during the post-acute phase of the infection. In this study, we interrogated the in-vivo functions and immune regulation of GDF-15 during Toxoplasma gondii infection. First, we found that in wild-type mice, acute T. gondii infection caused a significant weight loss that is preceded by elevation of serum levels of IFN-γ and GDF-15. To determine whether IFN-γ regulates GDF-15, we neutralized IFN-γ on days 5 and 6 and measured GDF-15 on day 7 and found that serum but not tissue levels of GDF-15 decreased after IFN-γ neutralization. Additionally, exogenous IFN-γ was sufficient to elevate serum GDF-15 in the absence of infection. Next, we compared the outcomes of T. gondii infection between WT and Gdf15-/- mice. We observed that the weight trajectories were declining in WT mice while they were increasing in Gdf15-/-mice during the acute phase of the infection. This difference in trajectories extended throughout the chronic infection resulting to an overall weight loss relative to initial weights in WT mice but not Gdf15-/-mice. Then, we determined that GDF-15 is not essential for survival and immunoregulation during T. gondii infection. We also demonstrated that GDF-15 is required for the induction of FGF21, stress-induced cytokine with prominent roles in regulating host metabolism. Finally, we discovered a cytokine cascade IFN-γ-GDF-15-FGF21 that is likely involved in the regulation of host metabolism. Overall, our study provides evidence that IFN-γ contributes to the regulation of host metabolism during infection by inducing GDF-15 and FGF21. GDF-15 orchestrates changes in host metabolism that supports the host immune response in clearing the infection. These physiological alterations induce FGF21, which in turn, orchestrates the adaptive responses to the effects of GDF-15, which can be detrimental when protracted.


Assuntos
Fatores de Crescimento de Fibroblastos , Toxoplasma , Toxoplasmose , Animais , Camundongos , Fator 15 de Diferenciação de Crescimento/genética , Interferon gama/metabolismo , Citocinas
7.
Immunol Invest ; 53(2): 224-240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095846

RESUMO

BACKGROUND: Previous studies have explored the role of AKT protein in anti-apoptotic/proliferative activities. However, there has been a lack of information regarding the role of Akt in association with cytokines expression in HBV-related (wild type HBV and HBV with mutations of 'a' determinant region) studies either in the case of HBV infection or in transfected hepatoma cells. The present study tries to determine the role of Akt and cytokines expression in the presence of small surface gene mutants in the hepatoma cell line. METHODS: Mutations of 'a' determinant region, viz. sA128V and sG145R, were created in wild-type pHBV1.3 by site-directed mutagenesis and transfected in hepatoma cell line. Secretory levels of HBsAg in the wild type as well as in both the mutants were analyzed by ELISA. Apoptotic analysis of transfected cells was studied by flow cytometry. Expression analysis of Akt and cytokines (TNF-alpha, IL-6, and IFN-gamma) was done by qPCR. RESULTS: The presence of significantly more alive cells in sG145R than sA128V transfected cells may be due to the up-regulation of the Akt gene expression. Cytokines expression was nearly similar between sA128V and wild-type pHBV1.3 transfected cells. Presence of sG145R showed dramatically high cytokines expression than sA128V and wild-type pHBV1.3. CONCLUSION: Cytokines expression predominantly contributes to the detrimental effects associated with the 'a' determinant region mutations particularly sG145R mutant. It may also be inferred that mechanisms associated with cellular apoptosis apparently do not play any major role to assign the 'a' determinant small surface gene mutation(s) for their pathological outcome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/genética , Antígenos de Superfície da Hepatite B/genética , Citocinas/genética , Proteínas Proto-Oncogênicas c-akt , Mutação , Neoplasias Hepáticas/genética , Linhagem Celular , Apoptose/genética , DNA Viral/análise , DNA Viral/genética , DNA Viral/farmacologia
8.
Immunol Invest ; : 1-15, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813886

RESUMO

INTRODUCTION: Here, we explored methods to generate anti-tumor bone marrow-derived macrophages (BMDM) and how delivery of the BMDM at early tumor sites could impact disease progression. METHODS: BMDM treated with IFN-γ, sCD40L, poly(I:C), and a combination of the three were assessed. RESULTS: Treatment with sCD40L had no significant impact on the BMDM. Treating BMDM with IFN-γ impacted IL-1ß, MHC Class II, and CD80 expression. While poly(I:C) treatment had a greater impact on the BMDM than IFN-γ when assessed by the in vitro assays, the BMDM treated with poly (I:C) had mixed results in vivo where they decreased growth of the EMT6 tumor, did not impact growth of the 168 tumor, and enhanced growth of the 4T1 tumor. The combination of poly(I:C), IFN-γ, and sCD40L had the greatest impact on the BMDM in vitro and in vivo. Treatment with all three agonists resulted in increased IL-1ß, TNF-α, and IL-12 expression, decreased expression of arginase and mrc, increased phagocytic activity, nitrite production, and MHC Class II and CD80 expression, and significantly impacted growth of the EMT6 and 168 murine mammary carcinoma models. DISCUSSION: Collectively, these data show that treating BMDM with poly(I:C), IFN-γ, and sCD40L generates BMDM with more consistent anti-tumor activity than BMDM generated with the individual agonists.

9.
BMC Infect Dis ; 24(1): 430, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649842

RESUMO

BACKGROUND: Adenovirus (ADV) is a prevalent infective virus in children, accounting for around 5-10% of all cases of acute respiratory illnesses and 4-15% of pneumonia cases in children younger than five years old. Without treatment, severe ADV pneumonia could result in fatality rates of over 50% in cases of emerging strains or disseminated disease. This study aims to uncover the relationship of clinical indicators with primary ADV infection severity, regarding duration of hospitalization and liver injury. METHODS: In this retrospective study, we collected and analyzed the medical records of 1151 in-patients who met the inclusion and exclusion criteria. According to duration of hospitalization, all patients were divided into three groups. Then the difference and correlation of clinical indicators with ADV infection were analyzed, and the relationship among liver injury, immune cells and cytokines was evaluated. RESULTS: The study revealed that patients with a duration of hospitalization exceeding 14 days had the highest percentage of abnormalities across most indicators. This was in contrast to the patients with a hospitalization duration of either less than or equal to 7 days or between 7 and 14 days. Furthermore, correlation analysis indicated that a longer duration of body temperature of ≥ 39°C, bilateral lung lobes infiltration detected by X ray, abnormal levels of AST, PaO2, and SPO2, and a lower age were all predictive of longer hospital stays. Furthermore, an elevated AST level and reduced liver synthesis capacity were related with a longer hospital stay and higher ADV copy number. Additionally, AST/ALT was correlated positively with IFN-γ level and IFN-γ level was only correlated positively with CD4+ T cells. CONCLUSIONS: The study provided a set of predicting indicators for longer duration of hospitalization, which responded for primary severe ADV infection, and elucidated the possible reason for prolonged duration of hospitalization attributing to liver injury via higher ADV copy number, IFN-γ and CD4+ T cells, which suggested the importance of IFN-γ level and liver function monitoring for the patients with primary severe ADV infection.


Assuntos
Tempo de Internação , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pré-Escolar , Lactente , Tempo de Internação/estatística & dados numéricos , Índice de Gravidade de Doença , Hospitalização/estatística & dados numéricos , Infecções por Adenovirus Humanos/virologia , Criança , Fígado/patologia , Fígado/virologia , Infecções por Adenoviridae
10.
Bioorg Chem ; 143: 106987, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039927

RESUMO

Secreted proteins play critical roles in regulating immune responses, exerting cytotoxic effects on tumor cells, promoting inflammatory processes, and influencing cellular metabolism. Deciphering the intricate relationship between the heterogeneity of secreted proteins and their transcriptional states is pivotal in the study of cellular heterogeneity. Here we proposed a cell-antibody conjugate-based sequencing methodology (Cellab-seq) for joint characterization of secreted proteins and transcriptome. Cellab-seq utilizes a chemoenzymatic strategy to construct cell-antibody conjugates, which enables the capture of secreted proteins and their signal transduction with the incorporation of barcode detection antibodies. We applied Cellab-seq to investigate how gene expression influences the activity of secreted proteins in NK cells. Altogether, this strategy facilitates a nuanced understanding of cellular dynamics under diverse physiological conditions, ultimately contributing to the prevention, diagnosis and treatment of diseases.


Assuntos
Células Matadoras Naturais , Transcriptoma
11.
Diabetologia ; 66(11): 2170-2185, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37670018

RESUMO

AIMS/HYPOTHESIS: The loss of pericytes surrounding the retinal vasculature in early diabetic retinopathy underlies changes to the neurovascular unit that lead to more destructive forms of the disease. However, it is unclear which changes lead to loss of retinal pericytes. This study investigated the hypothesis that chronic increases in one or more inflammatory factors mitigate the signalling pathways needed for pericyte survival. METHODS: Loss of pericytes and levels of inflammatory markers at the mRNA and protein levels were investigated in two genetic models of diabetes, Ins2Akita/+ (a model of type 1 diabetes) and Leprdb/db (a model of type 2 diabetes), at early stages of diabetic retinopathy. In addition, changes that accompany gliosis and the retinal vasculature were determined. Finally, changes in retinal pericytes chronically incubated with vehicle or increasing amounts of IFNγ were investigated to determine the effects on pericyte survival. The numbers of pericytes, microglia, astrocytes and endothelial cells in retinal flatmounts were determined by immunofluorescence. Protein and mRNA levels of inflammatory factors were determined using multiplex ELISAs and quantitative reverse transcription PCR (qRT-PCR). The effects of IFNγ on the murine retinal pericyte survival-related platelet-derived growth factor receptor ß (PDGFRß) signalling pathway were investigated by western blot analysis. Finally, the levels of cell death-associated protein kinase C isoform delta (PKCδ) and cleaved caspase 3 (CC3) in pericytes were determined by western blot analysis and immunocytochemistry. RESULTS: The essential findings of this study were that both type 1 and 2 diabetes were accompanied by a similar progression of retinal pericyte loss, as well as gliosis. However, inflammatory factor expression was dissimilar in the two models of diabetes, with peak expression occurring at different ages for each model. Retinal vascular changes were more severe in the type 2 diabetes model. Chronic incubation of murine retinal pericytes with IFNγ decreased PDGFRß signalling and increased the levels of active PKCδ and CC3. CONCLUSIONS/INTERPRETATION: We conclude that retinal inflammation is involved in and sustains pericyte loss as diabetic retinopathy progresses. Moreover, IFNγ plays a critical role in reducing pericyte survival in the retina by reducing activation of the PDGFRß signalling pathway and increasing PKCδ levels and pericyte apoptosis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Camundongos , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliais/metabolismo , Gliose/complicações , Gliose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Inflamação/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pericitos/metabolismo
12.
J Clin Immunol ; 43(2): 406-420, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308662

RESUMO

Fulminant viral hepatitis (FVH) caused by hepatitis A virus (HAV) is a life-threatening disease that typically strikes otherwise healthy individuals. The only known genetic etiology of FVH is inherited IL-18BP deficiency, which unleashes IL-18-dependent lymphocyte cytotoxicity and IFN-γ production. We studied two siblings who died from a combination of early-onset inflammatory bowel disease (EOIBD) and FVH due to HAV. The sibling tested was homozygous for the W100G variant of IL10RB previously described in an unrelated patient with EOIBD. We show here that the out-of-frame IL10RB variants seen in other EOIBD patients disrupt cellular responses to IL-10, IL-22, IL-26, and IFN-λs in overexpression conditions and in homozygous cells. By contrast, the impact of in-frame disease-causing variants varies between cases. When overexpressed, the W100G variant impairs cellular responses to IL-10, but not to IL-22, IL-26, or IFN-λ1, whereas cells homozygous for W100G do not respond to IL-10, IL-22, IL-26, or IFN-λ1. As IL-10 is a potent antagonist of IFN-γ in phagocytes, these findings suggest that the molecular basis of FVH in patients with IL-18BP or IL-10RB deficiency may involve excessive IFN-γ activity during HAV infections of the liver. Inherited IL-10RB deficiency, and possibly inherited IL-10 and IL-10RA deficiencies, confer a predisposition to FVH, and patients with these deficiencies should be vaccinated against HAV and other liver-tropic viruses.


Assuntos
Hepatite Viral Humana , Interleucina-10 , Humanos , Interleucina-10/genética , Irmãos , Interferon gama/genética
13.
Cytokine ; 169: 156299, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451115

RESUMO

Mouse mammary tumor virus (MMTV) is a retrovirus that has been associated with the development of breast cancer (BC) in mice. The identification of a 95% homologous gene sequence to MMTV in human BC samples has increased interest in this hypothesis. This virus in humans received the name of mouse mammary tumor virus-like (MMTV-like). Several cytokines may be involved in the interactions between MMTV and the immune system, such as interferon-gamma (IFN-γ), which can enhance Th1-mediated antitumor immune response but it can also play a protumorigenic role by transmitting antiapoptotic and proliferative signals. Little is known about the antiviral immune response in a microenvironment with the presence of MMTV-like in BC patients. Therefore, the purpose of the present study was to quantify the plasma levels of IFN-γ in the peripheral blood of 123 neoplasia-free donors and 98 BC patients of different molecular subtypes, by enzyme-linked immunosorbent assay (ELISA), and evaluate the association of these plasma levels with the detection of the MMTV-like env gene in tumor tissue. Correlation analyzes involving IFN-γ plasma levels and clinical-pathological parameters were performed by Kendall Tau-c test. In our study, a decrease in IFN-γ levels was observed in the group of BC patients (30.85 ± 57.49 pg/ml) compared to the control group (115.00 ± 176.80 pg/ml) (p < 0.0001). In the analysis by stratified BC molecular subtypes, Luminal-A (30.79 ± 61.04 pg/ml; p < 0.0001), Luminal-B (24.74 ± 25.78 pg/ml; p = 0.0188) and triple-negative (23.95 ± 40.45 pg/ml; p = 0.0005) had a lower plasma level compared to control group. There was no significant difference between IFN-γ plasma levels of MMTV-like DNA positive samples compared to MMTV-negative samples (p = 0.2056). In general BC, patients with larger tumor size had higher IFN-γ plasma levels (Tau-c = 0.202; p = 0.019). By analyzing the MMTV-like env negative samples, we could identify that IFN-γ plasma levels were higher in larger tumor size (Tau-c = 0.222; p = 0.020) and with greater lymph node involvement (Tau-c = 0.258; p = 0.042). Also, higher IFN-γ plasma levels were observed in patients with higher histopathological grades (Tau-c = 0.384; p = 0.019) in MMTV-like env positive samples. For the first time, we assessed the association between plasma levels of IFN-γ and the presence of the MMTV-like env gene in BC samples. However, more studies are needed to clarify whether the high levels of IFN-γ in MMTV-like env positive samples are reflecting a possible antiviral immune response or whether this cytokine is promoting tumor growth.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Vírus do Tumor Mamário do Camundongo/genética , Interferon gama/genética , Genes env , Antivirais , Microambiente Tumoral
14.
EMBO Rep ; 22(11): e53391, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34467615

RESUMO

The success of cancer immunotherapy is limited to a subset of patients, highlighting the need to identify the processes by which tumors evade immunity. Using CRISPR/Cas9 screening, we reveal that melanoma cells lacking HOIP, the catalytic subunit of LUBAC, are highly susceptible to both NK and CD8+ T-cell-mediated killing. We demonstrate that HOIP-deficient tumor cells exhibit increased sensitivity to the combined effect of the inflammatory cytokines, TNF and IFN-γ, released by NK and CD8+ T cells upon target recognition. Both genetic deletion and pharmacological inhibition of HOIP augment tumor cell sensitivity to combined TNF and IFN-γ. Together, we unveil a protective regulatory axis, involving HOIP, which limits a transcription-dependent form of cell death that engages both intrinsic and extrinsic apoptotic machinery upon exposure to TNF and IFN-γ. Our findings highlight HOIP inhibition as a potential strategy to harness and enhance the killing capacity of TNF and IFN-γ during immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Ubiquitina-Proteína Ligases , Apoptose/genética , Humanos , Interferon gama/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
15.
Curr Issues Mol Biol ; 44(11): 5756-5767, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421674

RESUMO

Although most people are infected with Epstein-Barr Virus (EBV) during their lifetime, only a minority of them develop an EBV-associated malignancy. EBV acts in both direct and indirect ways to transform infected cells into tumor cells. There are multiple ways in which the EBV, host, and tumor environment interact to promote malignant transformation. This paper focuses on some of the mechanisms that EBV uses to transform the tumor microenvironment (TME) of EBV-associated gastric cancer (EBVaGC) for its benefit, including overexpression of Indoleamine 2,3-Dioxygenase 1 (IDO1), synergism between H. pylori and EBV co-infection, and M1 to M2 switch. In this review, we expand on different modalities and combinatorial approaches to therapeutically target this mechanism.

16.
J Autoimmun ; 130: 102831, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35436746

RESUMO

Anti-melanoma differentiation-associated gene 5 (MDA5) antibody (Ab) positive dermatomyositis (anti-MDA5 DM) is a rare entity associated with poor prognosis and multiple immunologic abnormalities. These include the presence of autoAbs and deleterious interferon (IFN)-gamma production in the severe form of the disease. Here, we show that the autoAbs profile differs between patients, depending on disease severity, and that autoAbs from B cells of patients directly stimulate IFN-gamma production by peripheral blood cells. Serum of 29 anti-MDA5 DM patients were analyzed by indirect immunofluorescence (IIF) on Hep-2 cells, to identify patterns associated with poor outcome. Seventeen (59%) serum gave a specific cytoplasmic MDA5 pattern on Hep-2 cells, while 12 (41%) gave an unspecific pattern. Specific MDA5 pattern was associated with a higher risk to develop interstitial lung disease (p = 0.003). Monoclonal autoAbs were generated from B cell clones of two patients with extreme clinical presentation, one who developed a lethal form of the disease, and the other with a favorable outcome. Supernatants of the autoreactive B cell clones that gave an IIF cytoplasmic pattern were tested for their abilities to stimulate IFN-gamma production by peripheral blood cells. Out of 120,000 B cell clones analyzed, 12 produced monoclonal Abs that triggered direct IFN-gamma secretion by peripheral blood cells, by a monocyte-dependent mechanism. None of them was directed against the MDA5 antigen. Altogether, these findings demonstrated that autoAbs other than the highly specific anti-MDA5 Ab are direct contributors of the IFN-gamma upregulation that is linked to the severity of the disease.


Assuntos
Anticorpos Monoclonais , Dermatomiosite , Interferon gama , Anticorpos Monoclonais/imunologia , Autoanticorpos , Linfócitos B , Dermatomiosite/imunologia , Humanos , Interferon gama/metabolismo
17.
Cytokine ; 151: 155792, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35066451

RESUMO

BACKGROUND: Cytokines and chemokines participate in autoimmune processes at cellular targets which include insulin-producing beta cells. To which extent such participation is reflected in the circulation has not been conclusively resolved. AIM: We compared the time course of cytokines/chemokines in Latent Autoimmune Diabetes in Adults (LADA) patients heterogeneous for high or low autoimmune activity as determined by levels of antibodies against glutamic acid decarboxylase (GADA). METHODS: Serum samples to be measured were from a two-armed randomized controlled trial (RCT) in 68 LADA patients. The study encompassed 21 months with C-peptide as primary endpoint. We measured 27 immune mediators at baseline, at 9 and at 21 months (end of study). Results of measurements were analyzed by multiple linear regression. RESULTS: At baseline, a high body mass index (BMI) (>26 kg/m2) was associated with elevated levels of the interleukins (IL) IL-1 beta, IL-1ra, IL-2, IL-5, IL-6 and IL-13. Treatment during RCT (sitagliptin vs. insulin) did not affect the time course (21 months) of levels of cytokines/chemokines (by univariate analyses). However, levels of the cytokines IL-1ra and IL-1 beta decreased significantly (p < 0.04 or less) in patients with high vs. low GADA when adjusted for BMI, age, gender (male/female), treatment (insulin/sitagliptin) and study site (Norwegian/Swedish). CONCLUSIONS: In LADA, high levels of GADA, a proxy for high autoimmune activity and linked to a decline in C-peptide, was associated with a decrease of selected cytokines over time. This implies that the decline of IL-1ra and IL-1 beta in the circulation reflects autoimmune activity and beta cell demise in LADA.


Assuntos
Diabetes Autoimune Latente em Adultos , Adulto , Autoanticorpos , Peptídeo C , Citocinas , Feminino , Glutamato Descarboxilase , Humanos , Interleucina-1beta , Masculino
18.
Pharmacol Res ; 185: 106483, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252774

RESUMO

Allergic rhinitis (AR) is a series of reactions to allergen mediated by immunoglobulin E (IgE) and is one of the most common allergic diseases that affects children. Traditional Chinese Medicine, due to its diverse regulatory functions, may offer new strategies for AR therapy. Huanggui Tongqiao Granules (HTG) is a Chinese formula consisting of twelve herbs and has long been prescribed for patients with AR. The aim of this study is to determine the possible targets and action mechanisms of HTG for the AR treatment. SymMap database and TMNP algorithm were employed to show that interferon-gamma (IFN-gamma), acting as a molecular link between immunity and neural circuits, is the involved key target. The enrichment of immune and virus-related signaling pathways indicated the neuroimmunomodulatory potential of HTG. Then, AR mouse model was established by ovalbumin (OVA) challenge and was used to verify the therapeutic effects of HTG in vivo. HTG significantly relieved AR symptoms and nasal mucosal inflammation, reduced OVA-specific IgE levels and balanced IFN-gamma/IL-4 ratio. Moreover, transcriptional profile based on clinical data presented that blood cell-specific IFN-gamma co-expressed gene module (BIM) was underexpressed in AR patients, further validating the potential of IFN-gamma as target for AR. Collectively, these findings suggest that HTG could be a promising candidate drug for AR.


Assuntos
Mucosa Nasal , Rinite Alérgica , Camundongos , Animais , Mucosa Nasal/metabolismo , Camundongos Endogâmicos BALB C , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/metabolismo , Imunoglobulina E , Ovalbumina , Interferon gama/metabolismo , Modelos Animais de Doenças , Algoritmos , Citocinas/metabolismo
19.
J Perinat Med ; 50(8): 1142-1149, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35596257

RESUMO

OBJECTIVES: Preeclampsia with severe features (PECsf) is a common disease in pregnant women. let-7a and IFN-gamma (interferon-gamma) are involved in diagnosis and prognosis of preeclampsia. This study explored effects of let-7a and IFN-gamma on PECsf patients. METHODS: The placental tissue of 21 PECsf, 19 preeclampsia without severe features (PEC), and 20 normal pregnant women were collected, and clinical data were recorded. let-7a and IFN-gamma expressions in placental tissue were detected. The correlation between let-7a/IFN-gamma expression and clinical indexes was analyzed. According to let-7a and IFN-gamma expressions, PECsf patients were assigned into Hlet-7a group (let-7a high expression group), Llet-7a group (let-7a low expression group), HIFN-gamma group (IFN-gamma high expression group) and LIFN-gamma group (IFN-gamma low expression group). The incidence of adverse prognosis was compared. RESULTS: let-7a and IFN-gamma were highly expressed in placental tissue of preeclampsia patients, with significant differences between PEC and PECsf. The high expressions of let-7a and IFN-gamma were positively correlated with mean arterial pressure, lactate dehydrogenase, and 24 h urinary protein in placental tissues of PECsf patients. High let-7a and IFN-gamma expressions were correlated with adverse outcomes of PECsf. CONCLUSIONS: High let-7a and IFN-gamma expressions were correlated with clinical features, and could be used as biomarkers for treatment and poor prognosis of PECsf.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Biomarcadores , Feminino , Humanos , Interferon gama , Lactato Desidrogenases , MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/diagnóstico , Gravidez
20.
Parasitol Res ; 121(6): 1559-1571, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435512

RESUMO

Vertebrate cells have evolved an elaborate multi-tiered intracellular surveillance system linked to downstream antimicrobial effectors to defend themselves from pathogens. This cellular self-defense system is referred to as cell-autonomous immunity. A wide array of cell-autonomous mechanisms operates to control intracellular pathogens including protozoa such as Toxoplasma gondii. Cell-autonomous immunity consists of antimicrobial defenses that are constitutively active in cells and those that are inducible typically in response to host cell activation. The IFN family of cytokines is an important stimulator of inducible cell-autonomous immunity. There are several hundred interferon-stimulated genes (ISGs); many of them have known roles in inducible cell-autonomous immune mechanisms. The importance of IFN-γ activation of cell-autonomous immunity is evidenced by the fact that many intracellular pathogens have evolved a diversity of molecular mechanisms to inhibit activation of infected cells through the JAK-STAT pathway in response to IFN-γ. The goal of this review is to provide a broad framework for understanding the elaborate system of cell-autonomous immunity that acts as a first line of defense between a host and intracellular parasites.


Assuntos
Interferon gama , Toxoplasma , Imunidade Inata , Janus Quinases/metabolismo , Fatores de Transcrição STAT , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA