Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 108: 213-224, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29402721

RESUMO

The common γ-chain cytokine interleukin-15 (IL-15) plays a significant role in regulating innate and adaptive lymphocyte homeostasis and can stimulate anti-tumor activity of leukocytes. We have previously shown that the circulating IL-15 in the plasma is the heterodimeric form (hetIL-15), produced upon co-expression of IL-15 and IL-15 Receptor alpha (IL-15Rα) polypeptides in the same cell, heterodimerization of the two chains and secretion. We investigated the pharmacokinetic and pharmacodynamic profile and toxicity of purified human hetIL-15 cytokine upon injection in rhesus macaques. We compared the effects of repeated hetIL-15 administration during a two-week dosing cycle, using different subcutaneous dosing schemata, i.e. fixed doses of 0.5, 5 and 50 µg/kg or a doubling step-dose scheme ranging from 2 to 64 µg/kg. Following a fixed-dose regimen, dose-dependent peak plasma IL-15 levels decreased significantly between the first and last injection. The trough plasma IL-15 levels measured at 48 h after injections were significantly higher after the first dose, compared to subsequent doses. In contrast, following the step-dose regimen, the systemic exposure increased by more than 1 log between the first injection given at 2 µg/kg and the last injection given at 64 µg/kg, and the trough levels were comparable after each injection. Blood lymphocyte cell count, proliferation, and plasma IL-18 levels peaked at day 8 when hetIL-15 was provided at fixed doses, and at the end of the cycle following a step-dose regimen, suggesting that sustained expansion of target cells requires increasing doses of cytokine. Macaques treated with a 50 µg/kg dose showed moderate and transient toxicity, including fever, signs of capillary leak syndrome and renal dysfunction. In contrast, these effects were mild or absent using the step-dose regimen. The results provide a new method of optimal administration of this homeostatic cytokine and may have applications for the delivery of other cytokines.


Assuntos
Citocinas/sangue , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-15/sangue , Interleucina-15/farmacocinética , Animais , Subunidade alfa de Receptor de Interleucina-15/imunologia , Linfócitos , Macaca mulatta , Absorção Subcutânea
2.
Front Immunol ; 12: 793918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956227

RESUMO

Interleukin-15, produced by hematopoietic and parenchymal cells, maintains immune cell homeostasis and facilitates activation of lymphoid and myeloid cell subsets. IL-15 interacts with the ligand-binding receptor chain IL-15Rα during biosynthesis, and the IL-15:IL-15Rα complex is trans-presented to responder cells that express the IL-2/15Rßγc complex to initiate signaling. IL-15-deficient and IL-15Rα-deficient mice display similar alterations in immune cell subsets. Thus, the trimeric IL-15Rαßγc complex is considered the functional IL-15 receptor. However, studies on the pathogenic role of IL-15 in inflammatory and autoimmune diseases indicate that IL-15 can signal independently of IL-15Rα via the IL-15Rßγc dimer. Here, we compared the ability of mice lacking IL-15 (no signaling) or IL-15Rα (partial/distinct signaling) to control Listeria monocytogenes infection. We show that IL-15-deficient mice succumb to infection whereas IL-15Rα-deficient mice clear the pathogen as efficiently as wildtype mice. IL-15-deficient macrophages did not show any defect in bacterial uptake or iNOS expression in vitro. In vivo, IL-15 deficiency impaired the accumulation of inflammatory monocytes in infected spleens without affecting chemokine and pro-inflammatory cytokine production. The inability of IL-15-deficient mice to clear L. monocytogenes results from impaired early IFNγ production, which was not affected in IL-15Rα-deficient mice. Administration of IFNγ partially enabled IL-15-deficient mice to control the infection. Bone marrow chimeras revealed that IL-15 needed for early bacterial control can originate from both hematopoietic and non-hematopoietic cells. Overall, our findings indicate that IL-15-dependent IL-15Rα-independent signaling via the IL-15Rßγc dimeric complex is necessary and sufficient for the induction of IFNγ from sources other than NK/NKT cells to control bacterial pathogens.


Assuntos
Interferon gama/metabolismo , Interleucina-15/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/imunologia , Receptores de Interleucina-15/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interferon gama/genética , Interleucina-15/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose , Receptores de Interleucina-15/genética , Transdução de Sinais , Quimeras de Transplante
3.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671252

RESUMO

Immunotherapy has emerged as a valuable strategy for the treatment of many cancer types. Interleukin-15 (IL-15) promotes the growth and function of cytotoxic CD8+ T and natural killer (NK) cells. It also enhances leukocyte trafficking and stimulates tumor-infiltrating lymphocytes expansion and activity. Bioactive IL-15 is produced in the body as a heterodimeric cytokine, comprising the IL-15 and the so-called IL-15 receptor alpha chain that are together termed "heterodimeric IL-15" (hetIL-15). hetIL-15, closely resembling the natural form of the cytokine produced in vivo, and IL-15:IL-15Rα complex variants, such as hetIL-15Fc, N-803 and RLI, are the currently available IL-15 agents. These molecules have showed favorable pharmacokinetics and biological function in vivo in comparison to single-chain recombinant IL-15. Preclinical animal studies have supported their anti-tumor activity, suggesting IL-15 as a general method to convert "cold" tumors into "hot", by promoting tumor lymphocyte infiltration. In clinical trials, IL-15-based therapies are overall well-tolerated and result in the expansion and activation of NK and memory CD8+ T cells. Combinations with other immunotherapies are being investigated to improve the anti-tumor efficacy of IL-15 agents in the clinic.

4.
Pharmacol Ther ; 170: 73-79, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27777088

RESUMO

Interleukin (IL)-15 as a stand-alone therapy can activate the antitumor functions of immune effector cells resulting in significant tumor regression. Interestingly, combining IL-15 with the α-moiety of its receptor (IL-15Rα), also called IL-15 transpresentation, increases the in vivo half-life of IL-15 and enhances binding of IL-15 with cells expressing the IL-15Rßγ, such as NK cells and CD8+ T cells. These features enlarge the signal transmission of IL-15, resulting in improved proliferation and antitumor activities of both NK cells and CD8+ T cells, eventually leading to enhanced killing of tumor cells. In this review, we discuss the antitumor strategies in which this IL-15 transpresentation mechanism is implemented, that are currently under preclinical investigation. Furthermore, we give an overview of the studies in which the IL-15/IL-15Rα complexes are combined with other antitumor therapies. The promising results in these preclinical studies have incited several clinical trials to test the safety and efficacy of IL-15 transpresentation strategies to treat both hematological and advanced solid tumors.


Assuntos
Subunidade alfa de Receptor de Interleucina-15/imunologia , Interleucina-15/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/imunologia , Humanos , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA