Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
FASEB J ; 38(18): e70036, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275940

RESUMO

Fatty acid-binding protein 1 (FABP1) plays an important role in regulating fatty acid metabolism in liver, which is a potential therapeutic target for diseases such as non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered FABP1 induction in hepatocytes as a primary mediator of lipogenesis when exposed to fatty acids, especially saturated fatty acids (SFAs). In the feeding trial, palm oil led to excess lipid accumulation in the liver of large yellow croaker (Larimichthys crocea), accompanied by significant induction of FABP1. In cultured cells, palmitic acid (PA), a kind of SFA, triggered the fabp1 expression and increased triglyceride (TG) contents. Knockdown of FABP1 dampened PA-induced TG accumulation through mitigated lipogenesis. The overexpression of FABP1 showed the opposite result. Furthermore, the inactivation of FABP1 led to induction in insulin-induced gene 1 (INSIG1) expression, which attenuated the processing of sterol regulatory element-binding protein 1 (SREBP1) by down-regulating the nuclear-localized SREBP1. These results revealed a previously unrecognized function of FABP1 in response to PA, providing additional evidence for targeting FABP1 in the treatment of NAFLD caused by SFA.


Assuntos
Proteínas de Ligação a Ácido Graxo , Hepatócitos , Lipogênese , Perciformes , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Hepatócitos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Perciformes/metabolismo , Perciformes/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Triglicerídeos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Palmítico/farmacologia , Células Cultivadas
2.
J Cell Physiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828915

RESUMO

In our previous study, circ_015343 was found to inhibit the viability and proliferation of ovine mammary epithelial cells (OMECs) and the expression levels of milk fat synthesis marker genes, but the regulatory mechanism underlying the processes is still unclear. Accordingly in this study, the target relationships between circ_015343 with miR-25 and between miR-25 with insulin induced gene 1 (INSIG1) were verified, and the functions of miR-25 and INSIG1 were investigated in OMECs. The dual-luciferase reporter assay revealed that miR-25 mimic remarkably decreased the luciferase activity of circ_015343 in HEK293T cells cotransfected with a wild-type vector, while it did not change the activity of circ_015343 in HEK293T cells cotransfected with a mutant vector. These suggest that cic_015343 can adsorb and bind miR-25. The miR-25 increased the viability and proliferation of OMECs, and the content of triglycerides in OMECs. In addition, INSIG1 was found to be a target gene of miR-25 using a dual-luciferase reporter assay. Overexpression of INSIG1 decreased the viability, proliferation, and level of triglycerides of OMECs. In contrast, the inhibition of INSIG1 in expression had the opposite effect on activities and triglycerides of OMECs with overexpressed INSIG1. A rescue experiment revealed that circ_015343 alleviated the inhibitory effect of miR-25 on the mRNA and protein abundance of INSIG1. These results indicate that circ_015343 sponges miR-25 to inhibit the activities and content of triglycerides of OMECs by upregulating the expression of INSIG1 in OMECs. This study provided new insights for understanding the genetic molecular mechanism of lactation traits in sheep.

3.
Mol Pharm ; 21(9): 4372-4385, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39136964

RESUMO

Chronic diabetic wounds represent a significant clinical challenge because of impaired healing processes, which require innovative therapeutic strategies. This study explores the therapeutic efficacy of insulin-induced gene 1-induced bone marrow mesenchymal stem cell exosomes (Insig1-exos) in promoting wound healing in diabetic mice. We demonstrated that Insig1 enhanced the secretion of bone marrow mesenchymal stem cell-derived exosomes, which are enriched with miR-132-3p. Through a series of in vitro and in vivo experiments, these exosomes significantly promoted the proliferation, migration, and angiogenesis of dermal fibroblasts under high-glucose conditions. They also regulated key wound-healing factors, including matrix metalloproteinase-9, platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor-ß1, and platelet endothelial cell adhesion molecule-1, thereby accelerating wound closure in diabetic mice. Histological analysis showed that Insig1-exos were more effective in promoting epithelialization, enhancing collagen deposition, and reducing inflammation. Additionally, inhibition of miR-132-3p notably diminished these therapeutic effects, underscoring its pivotal role in the wound-healing mechanism facilitated by Insig1-exos. This study elucidates the molecular mechanisms through which Insig1-exos promotes diabetic wound healing, highlighting miR-132-3p as a key mediator. These findings provide new strategies and theoretical foundations for treating diabetes-related skin injuries.


Assuntos
Diabetes Mellitus Experimental , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Cicatrização , Animais , Masculino , Camundongos , Movimento Celular , Proliferação de Células , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Exossomos/metabolismo , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373175

RESUMO

MicroRNA-26 (miR-26a and miR-26b) plays a critical role in lipid metabolism, but its endogenous regulatory mechanism in fatty acid metabolism is not clear in goat mammary epithelial cells (GMECs). GMECs with the simultaneous knockout of miR-26a and miR-26b were obtained using the CRISPR/Cas9 system with four sgRNAs. In knockout GMECs, the contents of triglyceride, cholesterol, lipid droplets, and unsaturated fatty acid (UFA) were significantly reduced, and the expression of genes related to fatty acid metabolism was decreased, but the expression level of miR-26 target insulin-induced gene 1 (INSIG1) was significantly increased. Interestingly, the content of UFA in miR-26a and miR-26b simultaneous knockout GMECs was significantly lower than that in wild-type GMECs and miR-26a- and miR-26b-alone knockout cells. After decreasing INSIG1 expression in knockout cells, the contents of triglycerides, cholesterol, lipid droplets, and UFAs were restored, respectively. Our studies demonstrate that the knockout of miR-26a/b suppressed fatty acid desaturation by upregulating the target INSIG1. This provides reference methods and data for studying the functions of miRNA families and using miRNAs to regulate mammary fatty acid synthesis.


Assuntos
Cabras , MicroRNAs , Animais , Cabras/genética , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo
5.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203671

RESUMO

The purpose of the current investigation was to elucidate what kinds of responsible mechanisms induce elongation of the sclera in myopic eyes. To do this, two-dimensional (2D) cultures of human scleral stromal fibroblasts (HSSFs) obtained from eyes with two different axial length (AL) groups, <26 mm (low AL group, n = 2) and >27 mm (high AL group, n = 3), were subjected to (1) measurements of Seahorse mitochondrial and glycolytic indices to evaluate biological aspects and (2) analysis by RNA sequencing. Extracellular flux analysis revealed that metabolic indices related to mitochondrial and glycolytic functions were higher in the low AL group than in the high AL group, suggesting that metabolic activities of HSSF cells are different depending the degree of AL. Based upon RNA sequencing of these low and high AL groups, the bioinformatic analyses using gene ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) of differentially expressed genes (DEGs) identified that sterol regulatory element-binding transcription factor 2 (SREBF2) is both a possible upstream regulator and a causal network regulator. Furthermore, SREBF1, insulin-induced gene 1 (INSIG1), and insulin-like growth factor 1 (IGF1) were detected as upstream regulators, and protein tyrosine phosphatase receptor type O (PTPRO) was detected as a causal network regulator. Since those possible regulators were all pivotally involved in lipid metabolisms including fatty acid (FA), triglyceride (TG) and cholesterol (Chol) biosynthesis, the findings reported here indicate that FA, TG and Chol biosynthesis regulation may be responsible mechanisms inducing AL elongation via HSSF.


Assuntos
Metabolismo dos Lipídeos , Miopia , Humanos , Metabolismo dos Lipídeos/genética , Esclera , Fibroblastos , Biologia Computacional , Ácidos Graxos
6.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198853

RESUMO

In nonalcoholic steatohepatitis animal models, an increased lipid droplet size in hepatocytes is associated with fibrogenesis. Hepatocytes with large droplet (Ld-MaS) or small droplet (Sd-MaS) macrovesicular steatosis may coexist in the human liver, but the factors associated with the predominance of one type over the other, including hepatic fibrogenic capacity, are unknown. In pre-ischemic liver biopsies from 225 consecutive liver transplant donors, we retrospectively counted hepatocytes with Ld-MaS and Sd-MaS and defined the predominant type of steatosis as involving ≥50% of steatotic hepatocytes. We analyzed a donor Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 polymorphism, hepatic expression of proteins involved in lipid metabolism by RT-PCR, hepatic stellate cell (HSC) activation by α-SMA immunohistochemistry and, one year after transplantation, histological progression of fibrosis due to Hepatitis C Virus (HCV) recurrence. Seventy-four livers had no steatosis, and there were 98 and 53 with predominant Ld-MaS and Sd-MaS, respectively. In linear regression models, adjusted for many donor variables, the percentage of steatotic hepatocytes affected by Ld-MaS was inversely associated with hepatic expression of Insulin Induced Gene 1 (INSIG-1) and Niemann-Pick C1-Like 1 gene (NPC1L1) and directly with donor PNPLA3 variant M, HSC activation and progression of post-transplant fibrosis. In humans, Ld-MaS formation by hepatocytes is associated with abnormal PNPLA3-mediated lipolysis, downregulation of both the intracellular cholesterol sensor and cholesterol reabsorption from bile and increased hepatic fibrogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipase/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Idoso , Feminino , Regulação da Expressão Gênica/genética , Hepacivirus/genética , Hepatócitos/virologia , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Gotículas Lipídicas/virologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/virologia , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos
7.
J Biol Chem ; 294(6): 2046-2059, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30563842

RESUMO

Insulin-induced gene 1 (INSIG1) regulates sterol synthesis by mediating the activation of sterol regulatory element-binding protein (SREBP) and the degradation of the HMG-CoA reductase (HMGCR). INSIG1 is up-regulated during HIV-1 infection, but its role in HIV-1 infection is unknown. In this report, using pseudovirus production, protein overexpression, and gene knockouts, we found that INSIG1 inhibits HIV-1 production by accelerating the degradation of the HIV-1 Gag protein. Unlike the degradation of HMGCR via the E3 ubiquitin ligase autocrine motility factor receptor (AMFR), a process that depends on the proteasome, INSIG1 coordinated with another ligase, translocation in renal carcinoma chromosome 8 (TRC8), and promoted Gag degradation through the lysosome pathway. We conclude that INSIG1 functions as a sentinel responsive to HIV-1 production and inhibits HIV-1 replication by degrading Gag, a process occurring at intracellular membrane sites such as the endoplasmic reticulum and endosomes where both INSIG1 and Gag may be located.


Assuntos
HIV-1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Receptores de Superfície Celular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Jurkat , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/virologia , Proteínas de Membrana/genética , Receptores de Superfície Celular/genética , Células THP-1 , Ubiquitina-Proteína Ligases/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
8.
J Dairy Res ; 87(3): 349-355, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32907640

RESUMO

We hypothesized that insulin-induced gene 1 (INSIG1) affects milk fat synthesis in buffalo. For this reason, the protein abundance of INSIG1 in the mammary tissue of buffalo during the peak period of lactation and dry-off period was evaluated. The results showed that the expression of INSIG1 at the peak of lactation was lower than that in the dry-off period. To explore the role of INSIG1 in milk fat synthesis, the buffalo mammary epithelial cells (BMECs) were isolated and purified from buffalo mammary tissue, and INSIG1 gene were overexpressed and knocked down by constructing the recombinant lentivirus vector of INSIG1 gene and transfecting into BMECs. Results revealed that INSIG1 overexpression decreased the expression of INSIG2, SREBP, PPARG, SCD, GPAM, DGAT2 and AGPAT6, which led to reduction of triglycerides (TAG) content in the cell. In contrast, knockdown of INSIG1 had a positive effect on mRNA expression of the above genes. Overall, the data provide strong support for a key role of INSIG1 in the regulation of milk fat synthesis in BMECs.


Assuntos
Búfalos , Células Epiteliais/efeitos dos fármacos , Gorduras/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glândulas Mamárias Animais/citologia , Leite/química , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Interferência de RNA
9.
RNA ; 23(12): 1886-1893, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28928276

RESUMO

The insulin-induced gene 1 protein (Insig1) inhibits the cholesterol biosynthesis pathway by retaining transcription factor SREBP in the endoplasmic reticulum, and by causing the degradation of HMGCR, the rate-limiting enzyme in cholesterol biosynthesis. Liver-specific microRNA miR-122, on the other hand, enhances cholesterol biosynthesis by an unknown mechanism. We have found that Insig1 mRNAs are generated by alternative cleavage and polyadenylation, resulting in specific isoform mRNA species. During high cholesterol abundance, the short 1.4-kb Insig1 mRNA was found to be preferentially translated to yield Insig1 protein. Precursor molecules of miR-122 down-regulated the translation of the 1.4-kb Insig1 isoform mRNA by interfering with the usage of the promoter-proximal cleavage-polyadenylation site that gives rise to the 1.4-kb Insig1 mRNA. These findings argue that precursor miR-122 molecules modulate polyadenylation site usage in Insig1 mRNAs, resulting in down-regulation of Insig1 protein abundance. Thus, precursor microRNAs may have hitherto undetected novel functions in nuclear gene expression.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo , Proteínas de Membrana/genética , MicroRNAs/genética , Poli A/química , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Poli A/metabolismo , Poliadenilação , Isoformas de Proteínas
10.
BMC Vet Res ; 14(1): 325, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400792

RESUMO

BACKGROUND: A short period of overfeeding can lead to severe hepatic steatosis in the goose, which is physiological, suggesting that geese, as a descendent of a migrating ancestor, may have evolutionally developed a unique mechanism that operates in contrast to the mechanism underlying pathological fatty liver in humans or other mammals. In this study, we report that suppression of miR29c and upregulation of its target genes in goose fatty liver vs. normal liver could be part of a unique mechanism that contributes to the regulation of energy homeostasis and cell growth. RESULTS: Our data showed that miR29c expression was comprehensively inhibited in energy homeostasis-related tissues (the liver, fat and muscle) of overfed vs. normally fed geese, which is different from miR29c induction that occurs in tissues of the diabetic rat. To address the function of miR29c, three predicted target genes (i.e., Insig1, Sgk1 and Col3a1) that participate in energy homeostasis or cell growth were validated by a dual-fluorescence reporter system and other in vitro assays. Importantly, expression of Insig1, Sgk1 and Col3a1 was upregulated in goose fatty liver. In line with these observations, treatment of goose hepatocytes with high glucose or palmitate suppressed the expression of miR29c but induced the expression of the target genes, suggesting that hyperglycemia and hyperlipidemia, at least partially, contribute to the suppression of miR29c and induction of the target genes in goose fatty liver. In addition, pharmacological assays indicated that RFX1 was a transcription factor involved in the expression of miR29c. CONCLUSIONS: This study suggests that miR29c may play a role in the regulation of energy homeostasis and tissue growth via its target genes, contributing to the tolerance of the goose to severe hepatic steatosis.


Assuntos
Fígado Gorduroso/veterinária , Gansos/metabolismo , Homeostase , MicroRNAs/metabolismo , Doenças das Aves Domésticas/metabolismo , Animais , Crescimento Celular , Metabolismo Energético/genética , Fígado Gorduroso/metabolismo , Gansos/genética , Glucose/metabolismo , Homeostase/genética , Hiperglicemia/metabolismo , Hiperglicemia/veterinária , Hiperlipidemias/metabolismo , Hiperlipidemias/veterinária , Fígado/metabolismo , MicroRNAs/antagonistas & inibidores , Palmitatos/metabolismo , Doenças das Aves Domésticas/genética
11.
Biochim Biophys Acta ; 1859(4): 675-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26945853

RESUMO

Although triglyceride (TG) accumulation in the pancreas leads to ß-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic ß cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic ß cells. Mouse insulinoma ßTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (ßTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic ß cells.


Assuntos
Diabetes Mellitus Tipo 2/genética , Proteína Semelhante a ELAV 4/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Triglicerídeos/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Proteína Semelhante a ELAV 4/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Ligação a RNA/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
12.
RNA Biol ; 13(5): 500-10, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27002347

RESUMO

The microRNA-26 (miR-26) family is known to control adipogenesis in non-ruminants. The genomic loci of miR-26a and miR-26b have been localized in the introns of genes encoding for the proteins of the C-terminal domain RNA polymerase II polypeptide A small phosphatase (CTDSP) family. Insulin-induced gene 1 (INSIG1) encodes a protein with a key role in the regulation of lipogenesis in rodent liver. In the present study, we investigated the synergistic function of the miR-26 family and their host genes in goat mammary epithelial cells (GMEC). Downregulation of miR-26a/b and their host genes in GMEC decreased the expression of genes relate to fatty acid synthesis (PPARG, LXRA, SREBF1, FASN, ACACA, GPAM, LPIN1, DGAT1 and SCD1), triacylglycerol accumulation and unsaturated fatty acid synthesis. Luciferase reporter assays confirmed INSIG1 as a direct target of miR-26a/b. Furthermore, inhibition of the CTDSP family also downregulated the expression of INSIG1. Taken together, our findings highlight a functional association of miR-26a/b, their host genes and INSIG1, and provide new insights into the regulatory network controlling milk fat synthesis in GMEC. The data indicate that targeting this network via nutrition might be important for regulating milk fat synthesis in ruminants.


Assuntos
Glândulas Mamárias Animais/citologia , Proteínas de Membrana/genética , MicroRNAs/genética , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Cabras , Glândulas Mamárias Animais/metabolismo
13.
FASEB J ; 28(4): 1910-23, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371122

RESUMO

The scavenger receptor CD36 plays a central role in lipid metabolism by promoting macrophage cholesterol efflux with the potential to reduce atherosclerotic lesions. However, the effect of CD36 on de novo cholesterol synthesis is not known. Here, we describe the cellular mechanism by which CD36 activation induces cholesterol depletion in HepG2 cells. Using the CD36 ligand hexarelin, we found a rapid phosphorylation of HMG-CoA reductase Ser-872 in treated cells, resulting in inactivation of the rate-limiting enzyme in sterol synthesis. Degradation of HMG-CoA reductase by the ubiquitin-proteasome pathway was also enhanced by hexarelin, through an increased recruitment of the anchor proteins insulin-induced gene (Insig)-1 and Insig-2. Genes encoding key enzymes involved in cholesterol synthesis and under the control of transcription factor sterol regulatory element-binding protein (SREBP)-2 remained unresponsive to sterol depletion, due to retention of the SREBP-2 escort protein Scap by Insig-1/2. Insig1 and Insig2 gene expression was also increased through activation of nuclear receptor peroxisome-proliferator activating receptor γ (PPARγ) by CD36, which lifted the inhibitory effect of PPARγ1 Ser-84 phosphorylation. Recruitment of coactivator peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) to activated AMPKα was also promoted, resulting in PGC-1α transcriptional activation through Sirt1-mediated deacetylation, increased recruitment of PPARγ, and up-regulation of Insig-1/2, revealing a regulatory role of CD36 on PGC-1α signaling. Our data identify CD36 as a novel regulator of HMG-CoA reductase function and Insig-1/2 expression, 2 critical steps regulating cholesterol synthesis in hepatocytes.


Assuntos
Antígenos CD36/metabolismo , Colesterol/biossíntese , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Western Blotting , Antígenos CD36/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Hepatócitos/patologia , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Oligopeptídeos/farmacologia , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Fatores de Transcrição/genética
14.
J Anim Physiol Anim Nutr (Berl) ; 99(2): 308-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25040911

RESUMO

The purpose of the study was to test the hypothesis that the dietary oils with different content of n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) affect plasma lipid level in rats in a different degree. The diets with 6% of fish oil (FO) and Schizochytrium microalga oil (SchO; EPA+DHA content in the diets 9.5 + 12.3 and 2.6 + 29.5% of the sum of total fatty acids, respectively) were used; the diet with 6% of safflower oil (high content of n-6 PUFA linoleic acid, 65.5%; EPA+DHA content 0.7 + 0.9%) was used as a control. The difference between FO and SchO was established only in the case of plasma triacylglycerol (TAG) level: plasma TAG of the FO-fed rats did not differ from the control rats (p > 0.05), while SchO decreased (p < 0.05) plasma TAG to 46% of the control. On the other hand, FO and SchO decreased (p < 0.05) total plasma cholesterol (TC) in rats in the same extent, to 73% of the control. Regarding the underlying mechanisms for the TC decrease, both SchO and FO up-regulated hepatic Insig-1 gene (181 and 133% of the control; p < 0.05), which tended (p = 0.15 and p = 0.19 respectively) to decrease the amount of hepatic nSREBP-2 protein (61 and 66% of the control). However, neither SchO nor FO influenced hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase gene expression (p > 0.05); SchO (but not FO) increased (p < 0.05) low-density lipoprotein receptor mRNA in the liver. It was concluded that the decrease of total plasma cholesterol might be caused by an increased cholesterol uptake from plasma into the cells (in the case of SchO), but also by other (in the present study not tested) mechanisms.


Assuntos
Ração Animal/análise , Colesterol/sangue , Óleos de Peixe/farmacologia , Microalgas/química , Óleos de Plantas/farmacologia , Animais , Dieta , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Óleos de Peixe/química , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/química , Fígado/metabolismo , Masculino , Óleos de Plantas/química , Distribuição Aleatória , Ratos , Ratos Wistar , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
15.
J Nutr Biochem ; 134: 109717, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103107

RESUMO

Nonalcoholic fatty liver disease (NAFLD) constitutes one of major worldwide health problem which typically progressively results in nonalcoholic steatohepatitis (NASH) and eventually cirrhosis and liver cancer. Liver-specific deletion of INSIG1 promotes SREBP1 nuclear translocation to activate downstream lipogenic genes expression, leading to lipid accumulation. However, the underlying pathogenesis of NAFLD, and particularly involved in miRNA participation are still to be thoroughly explored. Here, we found that miR-363-3p was significantly overexpressed in high-fat, high-cholesterol (HFHC) diet mice liver tissue and fatty acid-induced steatosis cells. miR-363-3p directly targets INSIG1 to inhibit its expression, thereby facilitating the cleavage of SREBP and nuclear translocation to activate subsequent transcription of lipogenic genes in vitro and in vivo. In addition, we identified apigenin, a natural flavonoid compound, inhibited miR-363-3p expression to up-regulate INSIG1 and suppress nuclear translocation of SREBP1, thereby down-regulated lipogenic genes expression in steatosis cells and HFHC diet mice liver tissues. Taken together, our results demonstrated that miR-363-3p as a key regulator of hepatic lipid homeostasis targeted INSIG1, and apigenin alleviated NAFLD through the miR-363-3p/INSIG1/SREBP1 pathway. This indicates that reduction of miR-363-3p levels as a possible treatment of hepatic steatosis and provides a potential new therapeutic strategy for targeting miRNA to ameliorate NAFLD.

16.
Front Mol Neurosci ; 17: 1402055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156128

RESUMO

The cGAS-STING innate immunity pathway and the SREBP-activated cholesterol and fatty acid synthesis pathway are abnormally co-regulated in neurodegenerative disease. Activation of STING signaling occurs at the endoplasmic reticulum (ER) membrane with STING anchored by INSIG1 along with SREBP and the sterol-bound SREBP cleavage activating protein (SCAP) when sterols are in abundance. When sterols are low, the INSIG-dependent STING pathway is inactivated and the SREBP-SCAP complex is translocated to the Golgi where SREBP is cleaved and translocated to the nucleus to transactivate genes for cholesterol and fatty acid synthesis. Thus, there is inverse activation of STING vs. SREBP: when innate immunity is active, pathways for cholesterol and fatty acid synthesis are suppressed, and vice versa. The STING pathway is stimulated by foreign viral cytoplasmic nucleic acids interacting with the cyclic GMP-AMP synthase (cGAS) DNA sensor or RIG-I and MDA5 dsRNA sensors, but with neurodegeneration innate immunity is also activated by self-DNAs and double-stranded RNAs that accumulate with neuronal death. Downstream, activated STING recruits TBK1 and stimulates the transactivation of interferon stimulated genes and the autophagy pathway, which are both protective. However, chronic activation of innate immunity contributes to microglia activation, neuroinflammation and autophagy failure leading to neurodegeneration. STING is also a proton channel that when activated stimulates proton exit from STING vesicles leading to cell death. Here we review the salient features of the innate immunity and cholesterol and fatty acid synthesis pathways, observations of abnormal STING and SREBP signaling in neurodegenerative disease, and relevant therapeutic approaches.

17.
EMBO Mol Med ; 16(7): 1675-1703, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806641

RESUMO

Profibrotic proximal tubules (PT) were identified as a unique phenotype of proximal tubule cells (PTCs) in renal fibrosis by single-cell RNA sequencing (scRNA-seq). Controlling the process of renal fibrosis requires understanding how to manage the S1 subset's branch to the S3 subset rather than to the profibrotic PT subset. Insulin-induced gene 1 (Insig1) is one of the branch-dependent genes involved in controlling this process, although its role in renal fibrosis is unknown. Here, we discovered that tubular Insig1 deficiency, rather than fibroblast Insig1 deficiency, plays a detrimental role in the pathogenesis of renal fibrosis in vivo and in vitro. Overexpression of Insig1 profoundly inhibited renal fibrosis. Mechanistically, Insig1 deletion in PTCs boosted SREBP1 nuclear localization, increasing Aldh1a1 transcriptional activity, causing excessive NAD+ consumption and ER enlargement, as well as accelerating renal fibrosis. We also identified nicardipine as a selective inhibitor of Aldh1a1, which could restore NAD+ and maintain ER homeostasis, as well as improve renal fibrosis. Together, our findings support tubular Insig1 as a new therapeutic target for chronic kidney disease (CKD).


Assuntos
Fibrose , Proteínas de Membrana , NAD , Animais , Camundongos , NAD/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/metabolismo , Masculino , Humanos , Camundongos Endogâmicos C57BL , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
18.
J Lipid Res ; 54(8): 2144-2152, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720822

RESUMO

Ubxd8, a multidomain protein sensor for long-chain unsaturated fatty acids (FAs), plays a crucial role to maintain cellular homeostasis of FAs. Ubxd8 polymerizes upon interaction with long-chain unsaturated FAs, but the molecular mechanism involved in this polymerization remains unclear. Here we report that the UAS domain of Ubxd8 mediates this polymerization. We show that a positively charged surface area in the domain is required for the reaction. Mutations changing the positively charged residues in this area to glutamates prevented long-chain unsaturated FAs from inducing oligomerization of Ubxd8. Consequently, the mutant protein no longer responded to regulation by long-chain unsaturated FAs in cultured cells. Long-chain unsaturated FAs also induced polymerization of Fas-associated factor 1 (FAF1), the only other mammalian protein that contains a UAS domain homologous to that of Ubxd8. These results provide further insights into protein-FA interactions by identifying the UAS domain as a motif interacting with long-chain unsaturated FAs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Sanguíneas/química , Ácidos Graxos Insaturados/química , Proteínas de Membrana/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas Sanguíneas/metabolismo , Células CHO , Células Cultivadas , Cricetulus , Ácidos Graxos Insaturados/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Polimerização , Estrutura Terciária de Proteína
19.
Cell Rep ; 41(9): 111738, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36450259

RESUMO

Accumulating evidence indicates that macrophages reshape their cholesterol metabolism in response to pathogens to support host defense. Intervention of host cholesterol homeostasis has emerged as a promising strategy for antiviral therapy. T cell immunoglobulin and mucin domain-containing molecule 4 (Tim-4) is indispensable in maintaining the homeostasis of macrophages. However, its role in antiviral innate immunity and cholesterol metabolism remains unknown. Here, we report that Tim-4 deficiency results in boosted interferon (IFN) signaling and decreased viral load. Mechanistically, Tim-4 disturbs the Insig1-SCAP interaction and promotes SCAP-SREBP2 complex translocation to the Golgi apparatus, eventually leading to the upregulation of cholesterol biosynthesis in macrophages, which limits the type I IFN response. Our findings demonstrate that Tim-4 suppresses type I IFN signaling by enhancing SREBP2 activation, delineating the role of Tim-4 in antiviral innate immunity and cholesterol metabolism, which sheds light on the mechanism by which Tim-4 orchestrates macrophage homeostasis.


Assuntos
Antivirais , Imunidade Inata , Macrófagos , Metabolismo dos Lipídeos , Colesterol
20.
Life Sci ; 264: 118633, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190783

RESUMO

AIMS: Hypercholesterolemia remains a critical risk factor for cardiovascular diseases and there is an urgent need to develop effective alternative therapeutics. Herein, we investigated the effects of miR-128-3p inhibition on serum cholesterol levels using a hypercholesterolemic mouse model. MATERIALS AND METHODS: Five injections of anti-miR-128-3p (AM-128) treatment were given, and the cholesterol profile in serum and liver was quantified. We validated the underlying gene network using qRT-PCR, western blotting, ELISA, and dual luciferase assays. KEY FINDINGS: AM-128 treatment inhibits cholesterol biosynthesis by upregulating INSIG1 and downregulating HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) expression. The serum cholesterol clearance by SR-B1 (scavenger receptor class B member 1) and LDLR (low density lipoprotein receptors) was also increased. Furthermore, the catabolism of cholesterol by CYP7A1 (cytochrome P450 family 7 subfamily A member 1) was increased. SIGNIFICANCE: Our results confirmed a critical role of miR-128-3p inhibition in lowering serum cholesterol and suggest its potential therapeutic implications in reversing hypercholesterolemia.


Assuntos
Hipercolesterolemia/genética , MicroRNAs/genética , Animais , Doenças Cardiovasculares/prevenção & controle , Linhagem Celular Tumoral , Colesterol/sangue , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Modelos Animais de Doenças , Fibrose/metabolismo , Células Hep G2 , Humanos , Hipercolesterolemia/metabolismo , Hipercolesterolemia/terapia , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos/química , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA