Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
1.
Microb Ecol ; 87(1): 95, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017940

RESUMO

The study of microalgal communities is critical for understanding aquatic ecosystems. These communities primarily comprise diatoms (Heterokontophyta), with two methods commonly used to study them: Microscopy and metabarcoding. However, these two methods often deliver different results; thus, their suitability for analyzing diatom communities is frequently debated and evaluated. This study used these two methods to analyze the diatom communities in identical water samples and compare the results. The taxonomy of the species constituting the diatom communities was confirmed, and both methods showed that species belonging to the orders Bacillariales and Naviculales (class Bacillariophyceae) are the most diverse. In the lower taxonomic levels (family, genus, and species), microscopy tended to show a bias toward detecting diatom species (Nitzschia frustulum, Nitzschia inconspicua, Nitzschia intermedia, Navicula gregaria, Navicula perminuta, Navicula recens, Navicula sp.) belonging to the Bacillariaceae and Naviculaceae families. The results of the two methods differed in identifying diatom species in the communities and analyzing their structural characteristics. These results are consistent with the fact that diatoms belonging to the genera Nitzschia and Navicula are abundant in the communities; furthermore, only the Illumina MiSeq data showed the abundance of the Melosira and Entomoneis genera. The results obtained from microscopy were superior to those of Illumina MiSeq regarding species-level identification. Based on the results obtained via microscopy and Illumina MiSeq, it was revealed that neither method is perfect and that each has clear strengths and weaknesses. Therefore, to analyze diatom communities effectively and accurately, these two methods should be combined.


Assuntos
Código de Barras de DNA Taxonômico , Diatomáceas , Estuários , Microscopia , Diatomáceas/classificação , Diatomáceas/crescimento & desenvolvimento , Microscopia/métodos , República da Coreia , Biodiversidade , Filogenia , Ecossistema
2.
Environ Res ; 241: 117672, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980986

RESUMO

Wet meadows, a type of wetland, are vulnerable to climate change and human activity, impacting soil properties and microorganisms that are crucial to the ecosystem processes of wet meadows. To decipher the ecological mechanisms and processes involved in wet meadows, it is necessary to examine the bacterial communities associated with plant roots. To gain valuable insight into the microbial dynamics of alpine wet meadows, we used Illumina MiSeq sequencing to investigate how environmental factors shape the bacterial communities thriving in the rhizosphere and rhizoplane of three plant species: Cremanthodium ellisii, Caltha scaposa, and Cremanthodium lineare. The most abundant bacterial phyla in rhizosphere and rhizoplane were Proteobacteria > Firmicutes > Actinobacteria, while Macrococcus, Lactococcus, and Exiguobacterium were the most abundant bacterial genera between rhizosphere and rhizoplane. The mantel test, network, and structure equation models revealed that bacterial communities of rhizosphere were shaped by total nitrogen (TN), soil water content (SWC), soil organic carbon (SOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), pH, however, rhizoplane bacterial communities exhibited varying results. The bacterial communities exhibited significant heterogeneity, with stochastic process predominating in both the rhizosphere and rhizoplane. PICRUSt2 and FAPROTAX analysis revealed substantial differences in key biogeochemical cycles and metabolic functional predictions. It was concluded that root compartments significantly influenced the bacterial communities, although plant species and elevation asserted varying effects. This study portrays how physicochemical properties, plant species, and elevations can shift the overall structure and functional repertoire of bacterial communities in alpine wet meadows.


Assuntos
Ecossistema , Rizosfera , Humanos , Carbono , Pradaria , Solo/química , Microbiologia do Solo , Bactérias/genética , Plantas , Nitrogênio
3.
Appl Microbiol Biotechnol ; 108(1): 116, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229295

RESUMO

Biotreatment of oily sludge and the involved microbial communities, particularly in saline environments, have been rarely investigated. We enriched a halophilic bacterial consortium (OS-100) from petroleum refining oily sludge, which degraded almost 86% of the aliphatic hydrocarbon (C10-C30) fraction of the oily sludge within 7 days in the presence of 100 g/L NaCl. Two halophilic hydrocarbon-degrading bacteria related to the genera Chromohalobacter and Halomonas were isolated from the OS-100 consortium. Hydrocarbon degradation by the OS-100 consortium was relatively higher compared to the isolated bacteria, indicating potential synergistic interactions among the OS-100 community members. Exclusion of FeCl2, MgCl2, CaCl2, trace elements, and vitamins from the culture medium did not significantly affect the hydrocarbon degradation efficiency of the OS-100 consortium. To the contrary, hydrocarbon biodegradation dropped from 94.1 to 54.4% and 5% when the OS-100 consortium was deprived from phosphate and nitrogen sources in the culture medium, respectively. Quantitative PCR revealed that alkB gene expression increased up to the 3rd day of incubation with 11.277-fold, consistent with the observed increments in hydrocarbon degradation. Illumina-MiSeq sequencing of 16 S rRNA gene fragments revealed that the OS-100 consortium was mainly composed of the genera Halomonas, Idiomarina, Alcanivorax and Chromohalobacter. This community structure changed depending on the culturing conditions. However, remarkable changes in the community structure were not always associated with remarkable shifts in the hydrocarbonoclastic activity and vice versa. The results show that probably synergistic interactions between community members and different subpopulations of the OS-100 consortium contributed to salinity tolerance and hydrocarbon degradation.


Assuntos
Petróleo , Esgotos , Esgotos/microbiologia , Óleos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/microbiologia , Biodegradação Ambiental , Archaea/metabolismo , Meios de Cultura/metabolismo
4.
Plant Dis ; 108(2): 502-512, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37647089

RESUMO

Mulberry fruit sclerotiniose is a prevalent disease caused by the fungal species Ciboria shiraiana, C. carunculoides, and Scleromitrula shiraiana of the order Helotiales, and severely affects the production of mulberry. However, these species have only been identified using morphological and rDNA-ITS sequence analyses, and their genetic variation is unclear. To address this, morphological and two-locus (ITS and RPB2) phylogenetic analyses were conducted using culture-dependent and independent methods for 49 samples from 31 orchards across four provinces in China. Illumina MiSeq sequencing was used to assess the fungal communities obtained from fruits varying in disease severity and color from an orchard in Wuhan. Conidial suspensions of C. shiraiana and C. carunculoides isolated from diseased fruits, diseased fruits affected with hypertrophy and pellet sorosis sclerotiniose, and mycelia of Sclerotinia sclerotiorum were determined to be pathogenic to the mulberry cultivar YSD10. However, fruits inoculated with S. sclerotiorum mycelia exhibited nontypical disease symptoms, and mycelia and conidia obtained from C. carunculoides and S. shiraiana strains were not pathogenic. Maximum parsimony and Bayesian analyses using the sequences of the assessed loci indicated species variability with no evidence of geographic specialization. Metagenomic analysis revealed that the diversity of fungal communities was reduced with disease progression. Furthermore, within a single fruit, the presence of two Ciboria spp. was detected. These results provide novel insights into Ciboria spp., revealing the secondary infections caused by conidia in diseased fruits, genetic variations of the pathogens, and the occurrence of coinfection. This improved understanding of fungal pathogens will aid in developing effective disease control strategies.


Assuntos
Coinfecção , Morus , Micobioma , Frutas , Filogenia , Teorema de Bayes , China
5.
BMC Microbiol ; 23(1): 47, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823577

RESUMO

Sediment bacterial communities play a critical role in biogeochemical cycling in alpine lake ecosystems. However, little is known about the sediment microbial communities in these lakes. In this study, the bacterial community composition (BCC) and their relationships with environmental factors of the sediment in Sayram Lake, the largest alpine and cold-water inland lake, China was analyzed using Illumina MiSeq sequencing. In total, we obtained 618,271 high quality sequences. The results showed that the bacterial communities with 30 phyla and 546 genera, were spread out among the 5 furface sediment samples, respectively. The communities were dominated by Proteobacteria, Acidobacteria, Planctomycetes, Gemmatimonadetes, Chloroflexi, Actinobacteria, Verrucomicrobia and Bacteroidetes, accounting for 48.15 ± 8.10%, 11.23 ± 3.10%, 8.42 ± 2.15%, 8.37 ± 2.26%, 7.40 ± 3.05%, 5.62 ± 1.25%, 4.18 ± 2.12% and 2.24 ± 1.10% of the total reads, respectively. At the genus level, the communities were dominated by Aquabacterium, Pseudomonas, Woeseia, MND1, Ignavibacterium and Truepera, accounting for 7.89% ± 8.24%, 2.32% ± 1.05%, 2.14% ± 0.94%, 2% ± 1.22%, 0.94% ± 0.14% and 0.80% ± 0.14% of the total reads, respectively. Statistical analyses showed the similarity of the sediment bacterial communities at our field sites was considerably low, far below 35%, and total organic carbon (TOC) was the dominant environmental factor affecting the spatial changes of BCC in the sediment. Thus, this study greatly improving our understanding of the microbial ecology of alpine lake in the arid and semi-arid ecosystems today so seriously threatened.


Assuntos
Lagos , Microbiota , Lagos/microbiologia , Sedimentos Geológicos/microbiologia , Bactérias/genética , China , RNA Ribossômico 16S/genética
6.
Mol Ecol ; 32(7): 1685-1707, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579900

RESUMO

The rise in wildfire frequency and severity across the globe has increased interest in secondary succession. However, despite the role of soil microbial communities in controlling biogeochemical cycling and their role in the regeneration of post-fire vegetation, the lack of measurements immediately post-fire and at high temporal resolution has limited understanding of microbial secondary succession. To fill this knowledge gap, we sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days after a southern California wildfire in fire-adapted chaparral shrublands. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition with Illumina MiSeq sequencing of 16S and ITS2 amplicons. Fire severely reduced bacterial biomass by 47%, bacterial richness by 46%, fungal biomass by 86%, and fungal richness by 68%. The burned bacterial and fungal communities experienced rapid succession, with 5-6 compositional turnover periods. Analogous to plants, turnover was driven by "fire-loving" pyrophilous microbes, many of which have been previously found in forests worldwide and changed markedly in abundance over time. Fungal secondary succession was initiated by the Basidiomycete yeast Geminibasidium, which traded off against the filamentous Ascomycetes Pyronema, Aspergillus, and Penicillium. For bacteria, the Proteobacteria Massilia dominated all year, but the Firmicute Bacillus and Proteobacteria Noviherbaspirillum increased in abundance over time. Our high-resolution temporal sampling allowed us to capture post-fire microbial secondary successional dynamics and suggest that putative tradeoffs in thermotolerance, colonization, and competition among dominant pyrophilous microbes control microbial succession with possible implications for ecosystem function.


Assuntos
Ascomicetos , Incêndios , Microbiota , Incêndios Florestais , Ecossistema , Florestas , Bactérias/genética , Solo/química , Microbiota/genética , Microbiologia do Solo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36748477

RESUMO

A new species of Terrisporobacter, a Gram-positive, spore-forming anaerobic group, proposed name Terrisporobacter hibernicus sp. nov., was isolated in Northern Ireland from bovine faeces collected in 2016. Designated as MCA3T, cells of T. hibernicus sp. nov. are rod shaped and motile. Cells tolerate NaCl from 0.5 to 5.5 % (w/v), with a pH tolerance between pH 6 and 9. The optimal temperature for growth is 35-40 °C, and temperatures from 20 to 30 °C are tolerated. The polar lipid profile displays diphosphatidylglycerol, phosphatidylglycerol, two aminoglycolipids, one glycophospholipid, one aminolipid, three glycolipids, five phospholipids and one lipid. No respiratory quinones are detected. The predominant fatty acid profile includes C16 : 0 at 22.8 %. Strain MCA3T is positive for glucose and maltose acidification, as well as glycerol and sorbitol. The biochemical results from a VITEK2 assay of strain MCA3T, Terrisporobacter petrolearius LAM0A37T and Terrisporobacter mayombei DSM 6539T are also included for the first time. The closed and complete genome of strain MCA3T from a hybrid Oxford Nanopore Technology MinION/Illumina assembly reveals no evidence for known virulence genes. Draft genome sequencing of T. mayombei DSM 6539T and T. petrolearius LAM0A37T, as performed by Illumina MiSeq, provides reference genomes for these respective species of Terrisporobacter for the first time. DNA-DNA hybridization values (d4) of MCA3T to Terrisporobacter glycolicus ATCC 14880T, T. petrolearius LAM0A37T and T. mayombei DSM 6539T are 48.8, 67.4 and 46.3 %, with cutoff value at 70 %. The type strain for T. hibernicus sp. nov. is MCA3T (=NCTC 14625T=LMG 32430T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Animais , Bovinos , Ácidos Graxos/química , Irlanda do Norte , Filogenia , Composição de Bases , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Hibridização de Ácido Nucleico , Fezes
8.
Int Microbiol ; 26(4): 1053-1071, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37093323

RESUMO

Investigating the microbial communities associated with invasive plant species can provide insights into how these species establish and thrive in new environments. Here, we explored the fungal species associated with the roots of the invasive species Anthemis cotula L. at 12 sites with varying elevations in the Kashmir Himalaya. Illumina MiSeq platform was used to identify the species composition, diversity, and guild structure of these root-associated fungi. The study found a total of 706 fungal operational taxonomic units (OTUs) belonging to 8 phyla, 20 classes, 53 orders, 109 families, and 160 genera associated with roots of A. cotula, with the most common genus being Funneliformis. Arbuscular mycorrhizal fungi (AMF) constituted the largest guild at higher elevations. The study also revealed that out of the 12 OTUs comprising the core mycobiome, 4 OTUs constituted the stable component while the remaining 8 OTUs comprised the dynamic component. While α-diversity did not vary across sites, significant variation was noted in ß-diversity. The study confirmed the facilitative role of the microbiome through a greenhouse trial in which a significant effect of soil microbiome on height, shoot biomass, root biomass, number of flower heads, and internal CO2 concentration of the host plant was observed. The study indicates that diverse fungal mutualists get associated with this invasive alien species even in nutrient-rich ruderal habitats and may be contributing to its spread into higher elevations. This study highlights the importance of understanding the role of root-associated fungi in invasion dynamics and the potential use of mycobiome management strategies to control invasive species.


Assuntos
Anthemis , Microbiota , Micobioma , Micorrizas , Humanos , Raízes de Plantas/microbiologia , Micorrizas/genética , Microbiologia do Solo , Fungos/genética
9.
Microb Ecol ; 85(1): 108-120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028709

RESUMO

Bacteria have a fundamental role in determining the fitness of grapevine, the composition of grapes and the features of wines but at present, little information is available. In this work, the bacteria colonizing the different portions of grapevine (bark, leaves and grapes) were explored in the vineyards of the Alpine region of Trentino, considering the impact of different environmental and agronomical variables. The vineyards included in the work were selected based on their different geographical positions (altitude) and grapevine training systems in order to explore the whole variability of the grapevine ecosystem. Moreover, the surface amount of copper was measured on grapes and leaves during the vegetative growth. Bacterial analysis, performed using plate counts and Illumina MiSeq, revealed an increase in the concentration of grape bacteria proportional to the progress of the ripening stage. Conversely, the peak of bacterial concentration onto leaf and bark samples occurred in August, probably due to the more favourable environmental conditions. In bark samples, the bacterial microbiota reached the 7 log CFU/cm2, while 6 log UFC/g were measured in grape samples. A remarkable biodiversity was observed, with 13 phyla, 35 classes, 55 orders, 78 families and 95 genera of bacteria present. The presence of some taxa (Alphaproteobacteria, Desulfovibrionaceae, Clostriadiales, Oscillospira, Lachnospiraceae and Bacteroidales) was ubiquitous in all vineyards, but differences in terms of relative abundance were observed according to the vegetative stage, altitude of the vineyard and training system. Bacteria having oenological implication (Lactobacillus, Pediococcus and Oenococcus) were detected in grape samples collected in August, in low abundance. The data revealed a complex bacterial ecosystem inside the vineyard that, while maintaining common traits, evolves according to environmental and agronomical inputs. This study contributes to define the role of bacteria in the complex balance established in each vineyard between human actions and agricultural environment, known as terroir.


Assuntos
Microbiota , Vitis , Humanos , Fazendas , Estações do Ano , Vitis/microbiologia , Bactérias
10.
Mol Biol Rep ; 50(4): 3547-3555, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787057

RESUMO

BACKGROUND: The genus Ternstroemia is associated with the vulnerable tropical montane cloud forest in Mexico and with other relevant vegetation types worldwide. It contains threatened and pharmacologically important species and has taxonomic issues regarding its species limits. This study describes 38 microsatellite markers generated using a genomic-based approach. METHODS AND RESULTS: We tested 23 of these markers in a natural population of Ternstroemia lineata. These markers are highly polymorphic (all loci polymorphic with 3-14 alleles per locus and expected heterozygosity between 0.202 and 0.908), most of them (19 out of 23) are in Hardy-Weinberg Equilibrium and free of null alleles (18 out of 23). Also we found no evidence of linkage among them. Finally, we tested the transferability to six other American species of Ternstroemia, two other Pentaphylacaceae species, and four species from different families within the order Ericales. CONCLUSIONS: These molecular resources are promising tools to investigate genetic diversity loss and as barcodes for ethnopharmacological applications and species delimitation in the family Pentaphylacaceae and some Ericales, among other applications.


Assuntos
Ericales , Humanos , Ericales/genética , Genoma , Genômica , Heterozigoto , Repetições de Microssatélites/genética , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Loci Gênicos/genética
11.
J Appl Microbiol ; 134(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37096388

RESUMO

AIM: Stormwater is a major source of many contaminants of emerging concern, which can be toxic to both aquatic and terrestrial organisms. This project aimed to identify novel biodegraders of toxic tire wear particle (TWP) contaminants associated with coho salmon mortality. METHODS AND RESULTS: This study has (i) characterized the prokaryotic communities of stormwater in both urban and rural settings; (ii) evaluated the ability of stormwater isolates to degrade two model TWP contaminants, hexa(methoxymethyl)melamine and 1,3-diphenylguanidine; and (iii) evaluated the toxicological impact of these model contaminants on the growth of six model bacteria. Rural stormwater possessed a diverse microbiome dominated by Oxalobacteraceae, Microbacteriaceae, Cellulomonadaceae, and Pseudomonadaceae taxa, while urban stormwater showed much less microbial diversity overall. Additionally, multiple stormwater isolates appeared capable of using model TWP contaminants as their sole carbon source. Each model contaminant was also found to alter growth patterns of model environmental bacteria including, with 1,3-DPG appearing more acutely toxic at high concentrations. CONCLUSION: This study identified several stormwater isolates that have the potential to be used as a sustainable solution to stormwater quality management.


Assuntos
Microbiota , Oncorhynchus kisutch , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Monitoramento Ambiental
12.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012110

RESUMO

AIMS: Approximately 10% of children are born prematurely, and bacterial vaginosis during pregnancy is associated with preterm delivery. Highly accurate species-level vaginal microflora analysis helps control bacteria-induced preterm birth. Therefore, we aimed to conduct a bioinformatic analysis of gene sequences using 16S databases and compare their efficacy in comprehensively identifying potentially pathogenic vaginal microbiota in Japanese women. METHODS AND RESULTS: The 16 s rRNA databases, Silva, Greengenes, and the basic local alignment search tool (BLAST) were compared to determine whether the classification quality could be improved using the V3-V4 region next-generation sequencing (NGS) sequences. It was found that NGS data were aligned using the BLAST database with the QIIME 2 platform, whose classification quality was higher than that of Silva, and the combined Silva and Greengenes databases based on the mutual complementarity of the two databases. CONCLUSIONS: The reference database selected during the bioinformatic processing influenced the recognized sequence percentage, taxonomic rankings, and accuracy. This study showed that the BLAST database was the best choice for NGS data analysis of Japanese women's vaginal microbiota.


Assuntos
Microbiota , Nascimento Prematuro , Recém-Nascido , Criança , Feminino , Humanos , Japão , Filogenia , RNA Ribossômico 16S/genética , Microbiota/genética , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
13.
Appl Microbiol Biotechnol ; 107(1): 405-417, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36418546

RESUMO

TO explore the changes of rhizosphere soil bacterial community of Rosa rugosa "Fenghua", Rosa rugosa cv. Plena and Rosa rugosa "Zizhi" in different seasons, the Illumina Miseq sequencing and the correlation network analysis of dominant flora was used. The results showed that the bacterial communities were mainly composed of Proteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria, with Sphingomonas, GP6, GP4, Novosphingobium, Wps-1_genera_incertae_sedis, and Massilia as the dominant genera. The correlation network analysis showed that, as the dominant group with the highest relative abundance, Sphingomonas had a significant positive correlation with Gemmatimonas, Aridibacter, GP3, GP4, and Flavisolibacter, and a significant negative correlation with Solirubrobacter, indicating that it could work synergistically with a variety of microorganisms to contribute to soil metabolism and the growth and development of roses. The results revealed the diversity of microbial structures in the rhizosphere soil of Rosa rugosa "Fenghua", Rosa rugosa cv. Plena and Rosa rugosa "Zizhi", and this will provide a theoretical basis for exploring the change rules of microbial communities, screening and utilizing beneficial microorganisms, and maintaining the growth and development of roses. KEY POINTS: • Variations from season to season significantly affected the bacterial community structure. • There was less variability in the bacterial community structure between rose varieties. • Sphingomonas was the dominant bacterium in all seasons.


Assuntos
Rosa , Sphingomonas , Rizosfera , Solo/química , Estações do Ano , Microbiologia do Solo , Bactérias/genética
14.
J Environ Manage ; 345: 118879, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659362

RESUMO

Restoring peatland ecosystems involves significant uncertainty due to complex ecological and socio-economic feedbacks as well as alternative stable ecological states. The primary aim of this study was to investigate to what extent the natural functioning of drainage-affected peat soils can be restored, and to examine role of soil microbiota in this recovery process. To address these questions, a large-scale before-after-control-impact (BACI) experiment was conducted in drained peatland forests in Estonia. The restoration treatments included ditch closure and partial tree cutting to raise the water table and restore stand structure. Soil samples and environmental data were collected before and 3-4 years after the treatments; the samples were subjected to metabarcoding to assess fungal and bacterial communities and analysed for their chemical properties. The study revealed some indicators of a shift toward the reference state (natural mixotrophic bog-forests): the spatial heterogeneity in soil fungi and bacteria increased, as well as the relative abundance of saprotrophic fungi; while nitrogen content in the soil decreased significantly. However, a general stability of other physico-chemical properties (including pH remaining elevated by ca. one unit) and annual fluctuations in the microbiome suggested that soil recovery will remain incomplete and patchy for decades. The main implication is the necessity to manage hydrologically restored peatland forests while explicitly considering an uncertain future and diverse outcomes. This includes their continuous monitoring and the adoption of a precautionary approach to prevent further damage both to these ecosystems and to surrounding intact peatlands.


Assuntos
Florestas , Microbiota , Incerteza , Árvores , Solo
15.
J Nematol ; 55(1): 20230031, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38026554

RESUMO

Anguina tritici is the first plant-parasitic nematode described in literature, dating back to the year 1743. It is responsible for causing earcockle (seed gall) and tundu diseases in wheat and rye. Notably, this nematode has been observed to survive in an anhydrobiotic state for up to 32 years within wheat seed galls. These exceptional characteristics have inspired the sequencing of the A. tritici genome. In this study, we present the initial draft genome of A. tritici, obtained using the Illumina MiSeq platform with coverage of 60-fold. The genome is estimated to have a size of 164 Mb and comprises 39,965 protein-coding genes, exhibiting a GC content of 39.1%. The availability of this genome data will serve as a foundation for future functional biological investigations, particularly for genes whose functions remain unknown to this day.

16.
BMC Genomics ; 23(1): 319, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459088

RESUMO

BACKGROUND: Over 4 million SARS-CoV-2 genomes have been sequenced globally in the past 2 years. This has been crucial in elucidating transmission chains within communities, the development of new diagnostic methods, vaccines, and antivirals. Although several sequencing technologies have been employed, Illumina and Oxford Nanopore remain the two most commonly used platforms. The sequence quality between these two platforms warrants a comparison of the genomes produced by the two technologies. Here, we compared the SARS-CoV-2 consensus genomes obtained from the Oxford Nanopore Technology GridION and the Illumina MiSeq for 28 sequencing runs. RESULTS: Our results show that the MiSeq had a significantly higher number of consensus genomes classified by Nextclade as good and mediocre compared to the GridION. The MiSeq also had a significantly higher genome coverage and mutation counts than the GridION. CONCLUSION: Due to the low genome coverage, high number of indels, and sensitivity to SARS-CoV-2 viral load noted with the GridION when compared to MiSeq, we can conclude that the MiSeq is more favourable for SARS-CoV-2 genomic surveillance, as successful genomic surveillance is dependent on high quality, near-whole consensus genomes.


Assuntos
COVID-19 , SARS-CoV-2 , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , SARS-CoV-2/genética , Sequenciamento Completo do Genoma/métodos
17.
BMC Microbiol ; 22(1): 11, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991470

RESUMO

BACKGROUND: The saline-alkali soil area accounts for over 1/4-1/5 of the land area in Gansu Province of China, which are mainly distributed in the north of Hexi corridor and Jingtai basin. The unique ecological environment contains unique and diverse microbial resources. The investigation of microbial diversity in saline environment is vital to comprehend the biological mechanisms of saline adaption, develop and utilize microbial resources. RESULTS: The Illumina MiSeq sequencing method was practiced to investigate the bacterial diversity and composition in the 5 subtypes and 13 genera of saline-alkali soil in Gansu Province, China. The results from this study show that Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Gemmatimonadetes were the dominant bacterial groups in 13 saline soil. Proteobacteria had the greatest abundance in sulfate-type meadow solonchaks and orthic solonchaks, chloride-type orthic solonchaks and bog solonchaks, sulfate-chloride-type, chloride-sulfate-type, and sulfate-type dry solonchaks. Halobacteria was the dominant bacterial class in soil samples except for sulfate-type meadow solonchaks and orthic solonchaks, chloride-type orthic solonchaks and bog solonchaks. The richness estimators of Ace and Chao 1 and the diversity indices of Shannon and Simpson revealed the least diversity in bacterial community in sulfate-chloride-type orthic solonchaks. CONCLUSIONS: The sulfate anion was the most important driving force for bacterial composition (17.7%), and the second most influencing factor was pH value (11.7%).


Assuntos
Clima Desértico , Microbiota , Microbiologia do Solo , Solo/química , Álcalis/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Cloretos/análise , Águas Salinas/análise , Sulfatos/análise
18.
BMC Microbiol ; 22(1): 157, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690728

RESUMO

Pine wilt disease (PWD) is a worldwide forest disease caused by pine wood nematode (PWN). In this article, we investigated the composition, organization, correlation, and function of the endophytic microbial community in Pinus massoniana field with and without PWN. Samples were taken from branches, upper, middle, and lower trunks, as well as soil, from both healthy and infected trees. The results showed that the fungal diversity of healthy pines is around 1.1 times that of infected pines, while the bacterial diversity is about 0.75 times that of infected pines at the OTUs level. An increase of the abundance of pathogenic fungus such as Saitozyma, Graphilbum, Diplodia, Candida, Pseudoxanthomonas, Dyella and Pantoea was witnessed in infected pines according to the result of LEfSe. Furthermore, Ophiostoma and saprophytic fungus such as Entomocorticium, ganoderma, tomentella, entomocorticium were exclusively prominent in infected pines, which were substantially and highly connected with other species (p < 0.05), indicating the trees' vulnerability and making the wood blue. In healthy pines, the top three functional guilds are parasites, plant pathogens, and saprotrophs. Parasites (36.52%) are primarily found in the branches, plant pathogens (29.12%) are primarily found in the lower trunk, and saprotrophs (67.88%) are primarily found in the upper trunk of disease trees. Pines' immunity is being eroded due to an increase in the quantity and types of diseases. PICRUSt2 research revealed that NADH or NADPH, as well as carbon-nitrogen bonds, were more abundant in healthy pines, but acid anhydrides and transferring phosphorus-containing groups were more abundant in infected pines. The shift in resin secretion lowers the tree's potential and encourages pine wilt and mortality. In total, PWN may have disrupted the microbiological ecology and worked with the community to hasten the demise of pines.


Assuntos
Pinus , Bactérias/genética , Doenças das Plantas/parasitologia , Xylophilus
19.
Indian J Microbiol ; 62(1): 47-53, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068603

RESUMO

Cheese is one of the traditional fermented dairy products in Xinjiang, China. Due to its geographical location and regional feature this type of cheese harbors certain regional characteristics. To investigate these, here Illumina MiSeq high-throughput sequencing technology was used to target the v4-v5 interval to analyze the composition of fungal flora in Xinjiang traditional cheese. Our results showed the fungal flora of this cheese is mainly composed of Pichia (65.20%), Kazachstania (9.05%), Galactomyces (7.21%), Zygosaccharomyces (6.56%), Torulaspora (3.13%), Dipodascus (2.11%) and Ogataea (1.64%) belonging to the Ascomycota. PcoA (Principal Co-ordinates Analysis) and an UPGMA (unweighted pair-group method with arithmetic means) based on the OTUs (Optical Transform Unit) horizontal-weighted UniFrac distances, revealed some differences in fungal community structure among 17 cheese samples. At the OTU level, nine dominant OTUs were found in all the samples, for which Pichia was the most important fungal group. Building on this, the moisture content (23.20-59.22%), water distribution, and salt content (1.13-4.84%) in cheese were also determined. We found that six of the seven dominant fungal genera had specific correlations with the above physical and chemical variables, with only Ogataea uncorrelated with any variables. The results provide a theoretical basis for the development and use of cheese microbial resources in Xinjiang, China. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-021-00967-x.

20.
Indian J Microbiol ; 62(1): 54-60, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068604

RESUMO

Oxycarenus laetus is a cotton pest that primarily feeds on seeds that are rich in gossypol. Though gossypol is toxic to general herbivores, O. laetus does not show such complications and instead grows and reproduces well on cotton plants compared to its other hosts. In this study, we have fed O. laetus with natural and induced gossypol-based diets to explore the difference in its gut microbiota. We performed NGS 16S rRNA amplicon sequencing on the Illumina MiSeq platform and analyzed the data using the QIIME2 pipeline supplemented with Greengenes and EZBioCloud reference databases. We also used culture-based methods to identify a few abundant gut bacteria present in O. laetus. Enterococcus faecalis, Wolbachia bourtzisii, Wolbachia pipientis, Corynebacterium glyciniphilum, Staphylococcus sciuri, and Kocuria rosea were some of the major species that formed the core gut microbiome of O. laetus. We have also observed that some species were present only in the sample with the highest concentration of gossypol, signifying that they might have the potential to degrade gossypol. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-021-00964-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA