RESUMO
Bletilla striata is a valuable medicine in China, belonging to the Orchidaceae family, and is used for treating various ailments such as hemoptysis, pyocutaneous disease, and anal fissure by preventing blood flow, reducing swelling, and promoting granulation. In June 2022, a disease with symptoms similar to root rot was observed on B. striata in the pineland (the area was 0.4 hectare) of Lancang County (22°48'17" N, 99°46'58"22 E), Yunnan Province, China. The root rot incidence rate reached 16% (Table S1). The root rot incidence was calculated as follows: root rot incidence (%) = (number of root rot seedlings/total number of seedlings investigated) × 100. In May 2023, the similar symptoms were observed in the field, and the disease incidence was 17% (Table S1). Initially, there were no obvious symptoms on the leaves. Subsequently, the leaves wilted and brown spots appeared. Later, the entire leaf browned, withered and eventually died (Fig. S1A, B). The roots were brown and the browning spread from the root edge to the center, causing vascular bundle browning and dead lignified fibers in the cortex (Fig. S1C, D). To isolate the causal pathogen, 20 symptomatic root tissues were collected from 20 plants. Cutting the diseased tissues into small pieces (0.5 × 0.5 cm). After surface sterilization (30s with 75% ethanol and 3 min with 2% sodium hypochlorite, rinsed three times with sterile water), the disinfected root tissues were plated onto potato dextrose agar (PDA) and incubated at 25â for 4 to 6 days with 12 h light/dark photoperiod. A total of 10 single-spore isolates with similar morphology and conidial characteristics were obtained. one representative isolate BJG6 was selected for identification and further study. The fungal colony was reddish-brown or orange-white on PDA after 8 days of incubation at 25â. The mycelium was like carpet or cotton, and the edge of colony was uniform (Fig. S1E). Large conidia were formed on simple conidial peduncles (Fig. S1F, G). The conidia with 1~3 septates and 1 mostly, with cylindrical shapes and narrow tops but sharp bases (Fig. S1H-J). Conidia with 1 septate measured as 5.5 (4.3-6.7) × 20.7 (16.0-25.4) µm (n=30), while those with 2 septates measured as 6.6 (5.8-7.4) × 26.5 (21.7-31.3) µm (n=30), and those with 3 septates was 6.9 (6.2-7.8) × 31.8 (29.3-34.3) µm (n=30). Ellipsoidal microconidia could be formed on conidiophore and measured as 2.4 (1.9-2.9) × 4.9 (5.9-3.9) µm to 2.7 (2.2-3.2) × 5.4 (4.3-6.5) µm (n=30). Spherical or subspherical chlamydospores were produced on low-nutrient agar, with an average size of 5.8(5.0-6.6) µm×5.3 (4.4-6.2) µm (n=30) (Fig. S1K, L). According to the morphology and conidial features, the pathogen was consistent with the description of Ilyonectria coprosmae (Cabral et al. 2012). The total genomic DNA was extracted, and primer pairs ITS4/ITS5 were used to amplify and sequence the rDNA-ITS region (ITS1-5.8 S rRNA-ITS2 gene regions) (White et al. 1990). The sequences were deposited in GenBank (SUB13905750 for ITS). BLAST searches revealed BJG6 showed 98% homology with corresponding sequences of Ilyonectria coprosmae in GenBank (JF735260). A phylogenetic tree (MEGA 7.0) was constructed using maximum-likelihood methods (Fig. S2). To identify pathogenicity, a cultured medium in a size of 6mm containing isolate BJG6 was inoculated onto ten healthy roots of B. striata, PDA plugs alone were used as the uninoculated controls. All samples were placed in a dark inoculation chamber at 25â. The pathogenicity test was replicated three times. After two weeks, all inoculated roots appeared similar symptoms identical to those observed on field plants (Fig. S1M, N-P), while control plants remained healthy (Fig. S1Q, R). The same pathogenic fungus was reisolated from the symptomatic root rot, and the characteristics of colony and conidia were the same as the original isolates (Fig. S1S, T). These results confirmed I. coprosmae as the causal pathogen of root rot disease on B. striata in China by Koch's postulates tests for the first time. Further exploration should be conducted to understand the occurrence and migration of this disease, so as to develop specific and efficient disease management strategies in the future.
RESUMO
Since the first report in 2009, at least ten additional viruses have been identified and assigned to the proposed virus family Alternaviridae. Here we report two new mycoviruses tentatively assigned to this family, both identified as members of the fungal family Nectriaceae, which were isolated from surface-disinfected apple roots (Malus x domestica, Borkh.) affected by apple replant disease (ARD). ARD is a highly complex, worldwide-occurring disease resulting from plant reactions to a disturbed (micro)-biome and leads to high economic losses every year. The first alternavirus characterized in this study was identified in a Dactylonectria torresensis isolate. The virus was tentatively named dactylonectria torresensis alternavirus 1 (DtAV1) as the first member of the proposed new species Alternavirus dactylonectriae. The second virus was identified in an isolate of Ilyonectria robusta and was tentatively named ilyonectria robusta alternavirus 1 (IrAV1) as the first member of the proposed new species Alternavirus ilyonectriae. Full genomic sequences of the viruses were determined and are presented. Further, we found hints for putative components of a methyl transferase machinery using in silico approaches. This putative protein domain is encoded by segment 2. However, this result only establishes the basis for subsequent studies in which the function must be confirmed experimentally in vitro. Thus, this is the first study where a function is predicted to all three genomic segments within the group of the alternaviruses. These findings provide further insights into the virome of ARD-associated fungi and are therefore another brick in the wall of understanding the complexity of the disease.
Assuntos
Hypocreales , Hypocreales/genética , Genômica , Plantas , FilogeniaRESUMO
Coptis chinensis belongs to the Ranunculaceae family and is a widely used traditional Chinese herb. Chongqing Municipality produces >60% of China's production. Root rot seriously reduced yield and quality (Mei et al. 2021). In May 2020, root rot of C. chinensis were observed on 3-year-old roots with an average incidence of 45.3% in three commercial fields (about 0.5 acre) in Fengmu Town, Shizhu County (30.24°N; 108.48°E) from Chongqing. Diseased plants were stunted and less vigorous with wilting and twisting leaves. Brown or black discoloration lesion was appeared in the vascular and cortical tissue of roots and rhizomes. Ten fresh symptomatic plants were randomly sampled from the fields. Root tissues were surface sterilized in 75% ethanol for 60s, rinsed thrice with sterile water, placed on potato dextrose agar (PDA), and incubated at 25°C for 7 days. A total of 11 isolates were obtained from the infected tissues. Pure colonies of all fungal isolates had similar characteristics, and five isolates (a2, a4, a9, a11, a12) were randomly selected for further study. Colonies of this fungus were aurantium and felty at first, and then became brownish grey. Macroconidia (n=50) were predominating, hyaline, cylindrical, predominantly straight with both ends broadly rounded, 1~3 septate; one septate, 18.8~25.5×5.9~6.8µm; two septate, 22.6~35.4×6.1~7.2µm; three septate, 26.1~42.5×7.2~8.0 µm. Microconidia (n=50) were hyaline, ellipsoid to ovoid, 0 to 1 septate; aseptate, 7.5~8.8×3.4~4.3µm. Chlamydospores (n=50) were hyaline at first, and becoming brown, globose to subglobose, smooth, 8.3~12.5×8.1~13.5µm, mostly occurring intercalary in chains. The DNA of isolates were extracted and the ITS, HIS, TEF, TUB2 genes were amplified and sequenced using the primers ITS1/ITS4, CYLH3F/CYLH3R, EF1/EF2, T1/CYLTUB1R, respectively (Cabral et al. 2012). The representative isolate a2 were deposited in GenBenk (OK105140, ITS; OM799544, HIS; OK493444, TEF; OK493445, TUB2). BLAST analysis showed the ITS, HIS, TEF, TUB2 sequences of a2 were 100% (417/417), 100% (472/472), 100% (762/762), and 99.7% (490/491) homology with those of Ilyonectria robusta (CBS 605.92) from Tilia petiolaris in Germany. Phylogenetic analysis using Maximum Likelihood and concatenated sequences (ITS+HIS+TEF+TUB2) with MEGA7 placed isolate a2 in I. robusta with 100% bootstrap support. The isolate was thus identified as I. robusta based on morphological and molecular characteristics (Cabral et al. 2012). Thirty healthy 6-month-old C. chinensis plants were used for the pathogenicity tests, and five plants were into each of 6 pots. 10ml of conidia suspension (1×106conidia/ml) of 10-day-old isolate a2 was gently applied to the soil in each of 6 pots. Sterile water (10ml) was applied to each of 6 pots as control. All 12 pots were placed in a greenhouse (25°C, 12h photoperiod). After 6 weeks inoculation, all inoculated plants showed twisting and wilting symptoms, and the roots showed light-brown to dark-brown lesions. No symptoms were observed on the controls. The pathogen was reisolated from all symptomatic roots and identified as I.robustaas previously described above. The test was repeated twice with similar results. Although this fungus was previously reported to cause root disease on many plants (Zheng et al. 2022; Qiao et al. 2019; Guggenheim et al. 2019), this is the first report of I. robusta causing root rot on C. chinensis in China, and will establish a foundation for controlling the disease.
RESUMO
Rusty root rot is the most destructive soilborne disease of ginseng caused by pathogenic Ilyonectria spp., predominantly Ilyonectria robusta, in China. However, there remains no effective strategy to control the disease. Current control of the disease requires that soil and ginseng seeds and seedlings infected with I. robusta are avoided during planting. Therefore, rapid and accurate detection of I. robusta would be indispensable in disease control programs. A one-step polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR) assay was developed to detect I. robusta in ginseng seeds, roots, and soil. The species-specific primers HIS H3-F and HIS H3-R, designed based on a partial histone gene sequence of I. robusta, yielded a 268-bp product using the optimized PCR and qPCR protocol. DNA of I. robusta was detected by qPCR in all diseased soil and ginseng roots and seeds resulting from artificial inoculation and sampled from natural fields. I. robusta was detected at an abundance of 1.42 fg/µl at 12 h postinoculation and 191.31 fg/µl at 7 days postinoculation in ginseng roots that showed disease symptoms. In naturally infected soil sampled from ginseng fields, pathogen abundances ranging from 13.23 to 503.39 fg/µl were detected, which were 2.04 to 11.01 times higher than those in ginseng roots. The pathogen was first detected and was more abundant on the surface of the ginseng seed coat compared with that in the seed kernel. This study provides a high-efficiency detection technique for early diagnosis of I. robusta and real-time disease prevention and control strategies.
Assuntos
Basidiomycota , Hypocreales , Panax , Reação em Cadeia da Polimerase em Tempo Real , SoloRESUMO
Ilyonectria pseudodestructans, a plant pathogen that is known to cause root rot on fruit trees such as grapevine and apple, has recently been reported to also cause tuber decay in potato. The increasing risk of this pathogen on various horticultural crops makes it essential to develop a rapid and accurate detection method. In this study, an RNase H-dependent PCR (rhPCR) protocol and a modified probe-based rh-quantitative PCR (rhqPCR) protocol for I. pseudodestructans detection were developed. Both the forward and reverse primers for rhPCR and rhqPCR carry an RNA nucleotide at the site where a single-nucleotide polymorphism between I. pseudodestructans and strains of other Ilyonectria spp. is located, and the rhqPCR also contains a fluorescent-labeled target-specific probe. The primers were designed based on the sequence of the histone H3 gene and could amplify a DNA fragment of 73 bp. In the specificity test, by alignment via the BLASTn tool, the RNA nucleotide bases on both the forward and the reverse primers were identical to the corresponding genomic site of 16 of 17 (94.1%) database-available I. pseudodestructans strains, and different from 43 of 44 (97.7%) database-available strains of other Ilyonectria spp. When the rhPCR and rhqPCR protocols were applied on 11 I. pseudodestructans strains and 46 other strains of different species of plant pathogens, all of the I. pseudodestructans strains generated positive reactions whereas all of the other strains were negative, which indicated an excellent specificity of the primers. In the sensitivity test, the lowest DNA template amount for a positive reaction using the rhPCR and rhqPCR methods was 2 pg for I. pseudodestructans genomic DNA. When testing the rhqPCR method on gBlock, the lowest number of molecules for a positive reaction was six. These results indicated a high sensitivity of the protocol for I. pseudodestructans detection. To our knowledge, this is the first report of a probe-based rhqPCR to be applied to plant disease diagnosis; in addition, this is also the first rapid molecular protocol to detect I. pseudodestructans. The new rhPCR and rhqPCR methods have a potential to be applied by plant disease diagnostic labs for their routine work.
Assuntos
Solanum tuberosum , Ribonuclease H , Reação em Cadeia da Polimerase/métodos , NucleotídeosRESUMO
Eleven previously undescribed radicicol-type resorcylic acid lactones (RALs), namely ilyomycins A - K (1-9, 10a and 10b), were isolated and identified from the fermented rice culture of a soil-derived fungus, Ilyonectria sp. (strain sb65). Their gross structures were determined by extensive spectroscopic data, and the absolute configurations were elucidated by single-crystal X-ray diffraction, the modified Mosher's method, and Rh2(OCOCF3)4-induced electronic circular dichroism (ICD) experiment. Among them, 10a and 10b were a pair of inseparable regioisomers via intramolecular transacetylation. Compounds 3, 7, 8 and 10a/10b displayed immunosuppressive activities against T cell proliferation with IC50 values ranging from 1.2 to 21.7 µM, and against B cell proliferation with IC50 values ranging from 1.1 to 20.1 µM, which suggested that the α, ß-unsaturated ketone from C-8 to C-10 was an important pharmacophore. Further study revealed that ilyomycin C (3) exerted anti-proliferative effect on T lymphocytes through Hsp90 inhibition.
Assuntos
Hypocreales , Lactonas , Imunossupressores/farmacologia , Lactonas/química , Lactonas/farmacologia , Macrolídeos , Estrutura Molecular , SoloRESUMO
Brown rot is a common disease in the cultivation and production of Gastrodia elata, but its pathogens have not been fully revealed. In this study, the pathogenic fungi were isolated and purified from tubers of 77 G. elata samples with brown rot. Pathogens were identified by the pathogenicity test and morphological and molecular identification. The pathogenicity of each pathogen and its inhibitory effects on Armillaria gallica were compared. The results showed that 119 strains of fungi were isolated from tubers of G. elata infected with brown rot. Among them, the frequency of separation of Ilyonectria fungi was as high as 42.01%. The pathogenicity test showed that the pathogenicity characteristics of six strains of fungi were consistent with the natural symptoms of brown rot in G. elata. The morphological and molecular identification results showed that the six strains belonged to I. cyclaminicola and I. robusta in the Nectriaceae family of Sordariomycetes class, respectively. Both types of fungi could produce pigments, conidia, and chlamycospore, and the growth rate of I. cyclaminicola was significantly higher than that of I. robusta. The comparison of pathogenicity showed that the spots formed by I. cyclaminicola inoculation were significantly larger than those of I. robusta inoculation, suggesting I. cyclaminicola was superior to I. robusta in pathogenicity. The results of confrontation culture showed that I. cyclaminicola and I. robusta could signi-ficantly inhibit the germination and cordage growth of A. gallica. A. gallica also inhibited the growth of pathogens, and I. cyclaminicola was less inhibited as compared with I. robusta. The results of this study revealed for the first time that I. cyclaminicola and I. robusta were the pathogens responsible for G. elata brown rot.
Assuntos
Gastrodia , Fungos , Tubérculos , Esporos Fúngicos , VirulênciaRESUMO
The continuous cropping obstacle of Gastrodia elata is outstanding, but its mechanism is still unclear. In this study, microbial changes in soils after G. elata planting were investigated to explore the mechanism correlated with continuous cropping obstacle. The changes of species and abundance of fungi and bacteria in soils planted with G. elata after 1, 2, and 3 years were compared. The pathogenic fungi that might cause continuous cropping diseases of G. elata were isolated. Finally, the prevention and control measures of soil-borne fungal diseases of G. elata were investigated with the rotation planting pattern of "G. elata-Phallus impudicus". The results showed that G. elata planting resulted in the decrease in bacterial and fungal community stability and the increase in harmful fungus species and abundance in soils. This change was most obvious in the second year after G. elata planting, and the soil microbial community structure could not return to the normal level even if it was left idle for another two years. After G. elata planting in soils, the most significant change was observed in Ilyonectria cyclaminicola. The richness of the Ilyonectria fungus in soils was significantly positively correlated with the incidence of G. elata diseases. When I. cyclaminicola was inoculated in the sterile soil, the rot rate of G. elata was also significantly increased. After planting one crop of G. elata and one to three crops of P. impudicus, the fungus community structure in soils gradually recovered, and the abundance of I. cyclaminicola decreased year by year. Furthermore, the disease rate of G. elata decreased. The results showed that the cultivation of G. elata made the Ilyonectria fungi the dominant flora in soils, and I. cyclaminicola served as the main pathogen of continuous cropping diseases of G. elata, which could be reduced by rotation planting with P. impudicus.
Assuntos
Gastrodia , Micobioma , Bactérias , Fungos , Gastrodia/microbiologia , Solo , Microbiologia do SoloRESUMO
Saponins are kinds of antifungal compounds produced by Panax notoginseng to resist invasion by pathogens. Ilyonectria mors-panacis G3B was the dominant pathogen inducing root rot of P. notoginseng, and the abilities to detoxify saponins were the key to infect P. notoginseng successfully. To research the molecular mechanisms of detoxifying saponins in I. mors-panacis G3B, we used high-throughput RNA-Seq to identify 557 and 1519 differential expression genes (DEGs) in I. mors-panacis G3B with saponins treatments for 4H (Hours) and 12H (Hours) compared with no saponins treatments, respectively. Among these DEGs, we found 93 genes which were simultaneously highly expressed in I. mors-panacis G3B with saponins treatments for 4H and 12H, they mainly belong to genes encoding transporters, glycoside hydrolases, oxidation-reduction enzymes, transcription factors and so on. In addition, there were 21 putative PHI (Pathogen-Host Interaction) genes out of those 93 up-regulated genes. In this report, we analyzed virulence-associated genes in I. mors-panacis G3B which may be related to detoxifying saponins to infect P. notoginseng successfully. They provided an excellent starting point for in-depth study on pathogenicity of I. mors-panacis G3B and developed appropriate root rot disease management strategies in the future.
Assuntos
Panax notoginseng , Saponinas , Hypocreales , Panax notoginseng/genética , Raízes de Plantas , RNA-SeqRESUMO
AIM: The purpose of this study was to evaluate the in vitro and in vivo efficiency of derivatives of 8-Hydroxyquinoline (8HQ) in controlling the fungus Ilyonectria liriodendri. METHODS AND RESULTS: The in vitro tests consisted of assessing its susceptibility to the minimal inhibitory concentration (MIC) and the inhibition of mycelial growth. While the in vivo tests consisted of applying and assessing the most effective products for the protection of wounds, in both preventive + curative and curative forms. The MIC values for PH 151 (6·25 µg ml-1 ) showed better results when compared to the fungicides tebuconazole (>50 µg ml-1 ) and mancozeb (12·5 µg ml-1 for strain 176 and 25 µg ml-1 for strain 1117). PH 151 significantly inhibited mycelial growth, while mancozeb did not differ from the control. In in vivo tests, PH 151 again demonstrated excellent results in vitro, especially when applied preventively. CONCLUSIONS: The derivative of 8HQ PH 151 was effective in controlling the fungus I. liriodendri in vitro and proved to be a promising option for protecting wounds. SIGNIFICANCE AND IMPACT OF THE STUDY: This study points to the prospect of an effective and safe preventive antifungal product, which would enable the use of pesticides in vine culture to be reduced.
Assuntos
Fungicidas Industriais/farmacologia , Hypocreales , Oxiquinolina , Doenças das Plantas , Vitis/microbiologia , Hypocreales/patogenicidade , Testes de Sensibilidade Microbiana , Oxiquinolina/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controleRESUMO
Ilyonectria mors-panacis is the cause of a serious disease hampering the production of Panax notoginseng, an important Chinese medicinal herb, widely used for its anti-inflammatory, antifatigue, hepato-protective, and coronary heart disease prevention effects. Here, we report the first Illumina-Pacbio hybrid sequenced draft genome assembly of I. mors-panacis strain G3B and its annotation. The availability of this genome sequence not only represents an important tool toward understanding the genetics behind the infection mechanism of I. mors-panacis strain G3B but also will help illuminate the complexities of the taxonomy of this species.
Assuntos
Genoma Fúngico , Hypocreales , Panax notoginseng , Genoma Fúngico/genética , Hypocreales/classificação , Hypocreales/genética , Anotação de Sequência Molecular , Panax notoginseng/microbiologia , Raízes de Plantas/microbiologiaRESUMO
Black root rot is a severe disease of young avocado trees in Australia causing black necrotic roots, tree stunting, and leaf drop prior to tree death. Nectriaceous fungi (Nectriaceae, Hypocreales), are commonly isolated from symptomatic roots. This research tested the pathogenicity of 19 isolates from Calonectria, Cylindrocladiella, Dactylonectria, Gliocladiopsis, and Ilyonectria, spp. collected from young avocado trees and other hosts. Glasshouse pathogenicity tests with 'Reed' avocado (Persea americana) seedlings confirmed that Calonectria ilicicola is a severe pathogen of avocado, causing stunting, wilting, and seedling death within 5 weeks of inoculation. Isolates of C. ilicicola from peanut, papaya, and custard apple were also shown to be aggressive pathogens of avocado, demonstrating a broad host range. An isolate of a Calonectria sp. from blueberry and avocado isolates of Dactylonectria macrodidyma, D. novozelandica, D. pauciseptata, and D. anthuriicola caused significant root rot but not stunting within 5 to 9 weeks of inoculation. An isolate of an Ilyonectria sp. from grapevine closely related to Ilyonectria liriodendri, and avocado isolates of Cylindrocladiella pseudoinfestans, Gliocladiopsis peggii, and an Ilyonectria sp. were not pathogenic to avocado.
Assuntos
Hypocreales/patogenicidade , Doenças das Plantas/microbiologia , Austrália , Persea/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Plântula/microbiologia , ÁrvoresRESUMO
The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), ß-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1-alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae.
RESUMO
Four undescribed compounds including three harzianic acids (1, 3 and 4) and one oxazolidinone (2), along with three known ones (5-7) were isolated from the solid fermented product of endophytic fungus Ilyonectria sp., their structures were elucidated as 1-amino-harzianic acid (1), ilyonectria-oxazolidinone (2),10'-nor- isoharzianic acid (3), isohomoharzianic acid (4), harzianic acid (5), isoharzianic acid (6), homoharzianic acid (7) by means of detailed chemical evidences and spectroscopic data analysis. All the compounds were evaluated for cytotoxicity against SMMC-7721 human cancer cell lines by MTS assay. Among the seven tested compounds, 1-amino-harzianic acid (1) demonstrated well cytotoxic activity against SMMC-7721 with IC50 value of 26.84 µM. The results of molecular docking indicated that compound exhibited moderate anti-tumor activity may through binding to apoptosis related proteins.
Assuntos
Antineoplásicos , Simulação de Acoplamento Molecular , Oxazolidinonas , Humanos , Linhagem Celular Tumoral , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/química , Oxazolidinonas/farmacologia , Oxazolidinonas/isolamento & purificação , Endófitos/química , China , Hypocreales/químicaRESUMO
Soil-borne diseases represent an impediment to the sustainable development of agriculture. A soil-borne disease caused by Ilyonectria destructans severely impacts Panax species, and soil disinfestation has proven to be an effective management approach. Here, diallyl trisulfide (DATS), derived from garlic, exhibited pronounced inhibitory effects on the growth of I. destructans in vitro tests and contributed to the alleviation of soil-borne diseases in the field. A comprehensive analysis demonstrated that DATS inhibits the growth of I. destructans by activating detoxifying enzymes, such as GSTs, disrupting the equilibrium of redox reactions. A series of antioxidant amino acids were suppressed by DATS. Particularly noteworthy is the substantial depletion of glutathione by DATS, resulting in the accumulation of ROS, ultimately culminating in the inhibition of I. destructans growth. Briefly, DATS could effectively suppress soil-borne diseases by inhibiting pathogen growth through the activation of ROS, and it holds promise as a potential environmentally friendly soil disinfestation.
Assuntos
Compostos Alílicos , Doenças das Plantas , Espécies Reativas de Oxigênio , Sulfetos , Compostos Alílicos/farmacologia , Compostos Alílicos/química , Sulfetos/farmacologia , Sulfetos/metabolismo , Sulfetos/química , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Alho/química , Alho/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/químicaRESUMO
Two new chromone derivatives (1 and 2), and two known compounds (3 and 4) were isolated from the rhizosphere soil fungus Ilyonectria robusta. Their planar structures and absolute configurations were determined by extensive spectroscopic analysis and electronic circular dichroism (ECD) calculations. Additionally, all the isolated compounds were evaluated for their antibacterial activity against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli, but no obvious activity was observed at a concentration of 128 µg/mL.
RESUMO
(1) Background: Ilyonectria robusta can cause ginseng to suffer from rusty root rot. Secondary metabolites (SMs) produced by Bacillus methylotrophicus NJ13 can inhibit the mycelial growth of I. robusta. However, the molecular mechanism of the inhibition and response remains unclear. (2) Methods: Through an in vitro trial, the effect of B. methylotrophicus NJ13's SMs on the hyphae and conidia of I. robusta was determined. The change in the physiological function of I. robusta was evaluated in response to NJ13's SMs by measuring the electrical conductivity, malondialdehyde (MDA) content, and glucose content. The molecular interaction mechanism of I. robusta's response to NJ13's SMs was analyzed by using transcriptome sequencing. (3) Results: NJ13's SMs exhibited antifungal activity against I. robusta: namely, the hyphae swelled and branched abnormally, and their inclusions leaked out due to changes in the cell membrane permeability and the peroxidation level; the EC50 value was 1.21% (v/v). In transcripts at 4 dpi and 7 dpi, the number of differentially expressed genes (DEGs) (|log2(fold change)| > 1, p adj ≤ 0.05) was 1960 and 354, respectively. NJ13's SMs affected the glucose metabolism pathway, and the sugar-transporter-related genes were downregulated, which are utilized by I. robusta for energy production. The cell wall structure of I. robusta was disrupted, and chitin-synthase-related genes were downregulated. (4) Conclusions: A new dataset of functional responses of the ginseng pathogenic fungus I. robusta was obtained. The results will benefit the development of targeted biological fungicides for I. robusta and the study of the molecular mechanisms of interaction between biocontrol bacteria and phytopathogenic fungi.
RESUMO
Three almond nurseries were prospected in the South of Spain (Sevilla) to evaluate the sanitary status of the nursery plant material. Samples consisted of main roots, secondary roots and six-month-old basal stems 'GxN-15', 'Nemaguard', 'Cadaman', 'Rootpac-40' and 'Rootpac-20' rootstocks planted in the soil, and twigs of mother plants from 'Lauranne', 'Guara', 'Marcona', 'Marta' and 'Ferragnes' almond cultivars. Endophytic and potential pathogenic fungi were identified in mother plants and 70 Cylindrocarpon-like anamorph isolates were detected in the root system and basal stems of analyzed rootstocks. Based on partial sequencing of the his3 gene and multilocus phylogenetic analysis of the concatenated ITS, tub2, his3 and tef1-α partial sequences, seven Cylindrocarpon-like anamorph species were identified as Dactylonectria torresensis, D. novozelandica, D. macrodidyma, Ilyonectria liriodendri, Neonectria sp. 1, N. quercicola and Cylindrocladiella variabilis. Pathogenicity was assessed on young healthy detached twigs of 'Guara' almond cultivar and one-year-old 'Lauranne' potted almonds grafted onto 'GxN-15' rootstocks. Among the seven Cylindrocarpon-like anamorph species, I. liriodendri, Neonectria sp. 1 and N. quercicola were the most aggressive. Inoculated detached shoots developed necrotic lesions 15 days after inoculation. Inoculated trees showed sectorized necrosis in the main and secondary roots and the basal stem of the rootstock 5 months after inoculation. The most aggressive species were able to cause necrosis also in the grafted cultivar, and I. liriodendri, and N. quercicola also reduced the root biomass. This is the first report of Cylindrocarpon-like anamorph species causing root and basal rot of almonds.
RESUMO
Black foot disease is one of the main grapevine root diseases observed worldwide and is especially problematic in New Zealand. Arbuscular mycorrhizal fungi (AMF) have been shown to reduce infection and mitigate the effect of black foot disease on grapevine rootstocks. In contrast to prior studies, which have limited their focus to the effect of one, two or a combination of only a small number of AMF species, this study used whole AMF communities identified from 101-14, 5C and Schwarzmann rootstocks sampled from New Zealand vineyards. The effect of AMF on black foot disease was investigated in a 'home' and 'away' experiment using three commercial grapevine rootstocks. The study produced some evidence that AMF treatments lowered disease incidence at 5 cm and disease severity in vines by 40% to 50% compared to the vines inoculated with the pathogen only. This work also showed that the presence of high disease incidence may have limited the potential disease protective effect of AMF community. However, despite the high disease incidence and severity, AMF inoculation increased vine growth parameters by 60% to 80% compared to the vines inoculated with the pathogen only. This study is the first to provide an understanding on how young grapevine rootstocks inoculated with their 'home' and 'away' AMF communities would respond to challenge with a black foot pathogen species mixture. Further research is required to understand the mechanistic effect of AMF colonization on the increase of grapevine growth parameters under high black foot disease pressure.