Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
J Cutan Pathol ; 51(2): 105-107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818708

RESUMO

Imipramine is a tricyclic antidepressant typically reserved for patients with treatment-resistant mood disorders. A rare side effect of long-term use of imipramine is a slowly progressive melanin-associated, slate gray-blue hyperpigmentation of the skin in a photo-distributed pattern. We report a case of imipramine-induced hyperpigmentation developing 50 years after initiating imipramine therapy, whose lesions were essentially devoid of melanin on histopathological exam. This differs from all other reported cases of imipramine-induced hyperpigmentation in two notable respects. First, the time between initiating imipramine therapy and the onset of pigmentation changes was nearly 30 years longer than prior case reports. Second, the lack of melanin in our samples suggests a divergence from the hypothesized melanin-imipramine complex mechanism of hyperpigmentation. Instead, we propose a novel pathogenesis of imipramine-induced hyperpigmentation that is unrelated to melanin.


Assuntos
Hiperpigmentação , Imipramina , Humanos , Imipramina/efeitos adversos , Melaninas , Hiperpigmentação/induzido quimicamente , Hiperpigmentação/patologia , Antidepressivos Tricíclicos/efeitos adversos , Pele/patologia
2.
Luminescence ; 39(4): e4745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644416

RESUMO

This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.


Assuntos
Cefazolina , Compostos Ferrosos , Imipramina , Medições Luminescentes , Luminol , Cloridrato de Venlafaxina , Cefazolina/análise , Cefazolina/química , Cloridrato de Venlafaxina/análise , Cloridrato de Venlafaxina/química , Imipramina/análise , Imipramina/química , Medições Luminescentes/métodos , Luminol/química , Nanoestruturas/química , Luminescência
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732055

RESUMO

Knowledge of gender-specific drug distributions in different organs are of great importance for personalized medicine and reducing toxicity. However, such drug distributions have not been well studied. In this study, we investigated potential differences in the distribution of imipramine and chloroquine, as well as their metabolites, between male and female kidneys. Kidneys were collected from mice treated with imipramine or chloroquine and then subjected to atmospheric pressure matrix-assisted laser desorption ionization-mass spectrometry imaging (AP-MALDI-MSI). We observed differential distributions of the drugs and their metabolites between male and female kidneys. Imipramine showed prominent distributions in the cortex and medulla in male and female kidneys, respectively. Desipramine, one of the metabolites of imipramine, showed significantly higher (*** p < 0.001) distributions in the medulla of the male kidney compared to that of the female kidney. Chloroquine and its metabolites were accumulated in the pelvis of both male and female kidneys. Interestingly, they showed a characteristic distribution in the medulla of the female kidney, while almost no distributions were observed in the same areas of the male kidney. For the first time, our study revealed that the distributions of imipramine, chloroquine, and their metabolites were different in male and female kidneys.


Assuntos
Cloroquina , Imipramina , Rim , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Imipramina/metabolismo , Masculino , Cloroquina/metabolismo , Cloroquina/farmacologia , Feminino , Camundongos , Rim/metabolismo , Fatores Sexuais , Caracteres Sexuais , Distribuição Tecidual
4.
Pharm Res ; 40(3): 661-674, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36829100

RESUMO

INTRODUCTION: A physiologically based pharmacokinetic (PBPK) model is developed that focuses on the kinetic parameters of drug association and dissociation with albumin, alpha-1 acid glycoprotein (AGP), and brain tissue proteins, as well as drug permeability at the blood-brain barrier, drug metabolism, and brain blood flow. GOAL: The model evaluates the extent to which plasma protein-mediated uptake (PMU) of drugs by brain influences the concentration of free drug both within the brain capillary compartment in vivo and the brain compartment. The model also studies the effect of drug binding to brain tissue proteins on the concentration of free drug in brain. METHODS: The steady state and non-steady state PBPK models are comprised of 11-12 variables, and 18-23 parameters, respectively. Two model drugs are analyzed: propranolol, which undergoes modest PMU from the AGP-bound pool, and imipramine, which undergoes a high degree of PMU from both the albumin-bound and AGP-bound pools in plasma. RESULTS: The free propranolol concentration in brain is under-estimated 2- to fourfold by in vitro measurements of free plasma propranolol, and the free imipramine concentration in brain is under-estimated by 18- to 31-fold by in vitro measurements of free imipramine in plasma. The free drug concentration in brain in vivo is independent of drug binding to brain tissue proteins. CONCLUSIONS: In vitro measurement of free drug concentration in plasma under-estimates the free drug in brain in vivo if PMU in vivo from either the albumin and/or the AGP pools in plasma takes place at the BBB surface.


Assuntos
Imipramina , Propranolol , Propranolol/farmacocinética , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Preparações Farmacêuticas , Albuminas/metabolismo , Ligação Proteica
5.
J Sep Sci ; 46(21): e2300323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37691072

RESUMO

This study introduces a reliable and inexpensive magnetic dispersive solid phase extraction to extract imipramine and its primary metabolite (desipramine) from urine samples. To accomplish this aim, Fe3 O4 magnetic nanoparticles were synthesized by sonication, subsequently, polycarbonate was precipitated gradually onto the surface of them to form the adsorbent. Extraction recoveries of 85% and 76%, enrichment factors of 57 and 51, limits of detection of 2.5 and 2.8 µg/L, and limits of quantification of 8.3 and 9.3 µg/L were obtained for imipramine and desipramine under the optimal conditions, respectively. In addition, relative standard deviations for intra- (n = 6) and inter-day (n = 5) precisions at two concentrations (50 and 100 µg/L of each analyte) were less than or equal to 4%. Short extraction time, good repeatability, high enrichment factors, and simplicity are the main advantages of the proposed method.


Assuntos
Imipramina , Nanopartículas de Magnetita , Desipramina , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos
6.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176029

RESUMO

Clinical studies have shown that periodontitis is associated with non-alcoholic fatty liver disease (NAFLD). However, it remains unclear if periodontitis contributes to the progression of NAFLD. In this study, we generated a mouse model with high-fat diet (HFD)-induced metabolic syndrome (MetS) and NAFLD and oral P. gingivalis inoculation-induced periodontitis. Results showed that the presence of periodontitis increased insulin resistance and hepatic inflammation and exacerbated the progression of NAFLD. To determine the role of sphingolipid metabolism in the association between NAFLD and periodontitis, we also treated mice with imipramine, an inhibitor of acid sphingomyelinase (ASMase), and demonstrated that imipramine treatment significantly alleviated insulin resistance and hepatic inflammation, and improved NAFLD. Studies performed in vitro showed that lipopolysaccharide (LPS) and palmitic acid (PA), a major saturated fatty acid associated with MetS and NAFLD, synergistically increased the production of ceramide, a bioactive sphingolipid involved in NAFLD progression in macrophages but imipramine effectively reversed the ceramide production stimulated by LPS and PA. Taken together, this study showed for the first time that the presence of periodontitis contributed to the progression of NAFLD, likely due to alterations in sphingolipid metabolism that led to exacerbated insulin resistance and hepatic inflammation. This study also showed that targeting ASMase with imipramine improves NAFLD by reducing insulin resistance and hepatic inflammation.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Periodontite , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Fígado/metabolismo , Lipopolissacarídeos/farmacologia , Imipramina/farmacologia , Periodontite/complicações , Periodontite/metabolismo , Ácido Palmítico/farmacologia , Dieta Hiperlipídica/efeitos adversos , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
7.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762458

RESUMO

The study aimed to evaluate the antidepressant-like effects of an imipramine-zinc (IMI-Zn) complex compound on mice and assess the level of oxidative stress parameters. The research also investigated whether the IMI-Zn complex showed superior antidepressant activity compared to individual treatments of both compounds at effective doses and their joint administration at subtherapeutic doses. The study was conducted on mice. Forced swim (FST), tail suspension (TST), and locomotor activity tests were used for behavioral studies. The results demonstrated the IMI-Zn complex's dose-dependent antidepressant potential when orally administered to mice. Its efficacy was similar to the separate administration of therapeutic doses of imipramine (IMI) and zinc (Zn) and their joint administration at subtherapeutic doses. Moreover, subjecting mice to acute stress did not significantly affect the activity of on glutathione peroxidase (GPX), glutathione reductase (GR), and total antioxidant status (TAS), possibly due to the short exposure time to the stress stimulus. By developing the IMI-Zn complex, it might be possible to simplify the treatment approach, potentially improving patient compliance by combining the therapeutic effects of both IMI and Zn within a single compound, thus addressing one of the contributing factors to non-compliance in depression therapy. The IMI-Zn complex could be a valuable strategy to optimize therapeutic outcomes and balance efficacy and tolerability.

8.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203414

RESUMO

The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy.


Assuntos
Imipramina , Chaperonas Moleculares , Masculino , Ratos , Animais , Imipramina/farmacologia , Ratos Wistar , Proteínas de Choque Térmico HSP70 , Hipocampo , Proteínas de Choque Térmico HSP90/genética , Córtex Pré-Frontal , RNA Mensageiro/genética , Antidepressivos/farmacologia
9.
Biochem Biophys Res Commun ; 634: 92-99, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36240654

RESUMO

Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobe involved in the pathogenesis of chronic periodontitis, including local inflammation of the oral cavity. However, periodontal disease has recently been identified as a significant factor in the pathogenesis of neural diseases, including Alzheimer's disease. A virulence factor, P. gingivalis-lipopolysaccharide (LPS-PG), is involved in pro-inflammatory responses, not only in peripheral tissues but also in the brain. In this study, we examined whether P. gingivalis-induced brain inflammation could be ameliorated by pharmacotherapy, using in vivo and in vitro studies. In an animal experiment, peripheral administration of LPS-PG induced inflammation in the hippocampus via microglial activation, which was inhibited by pre-treatment with the antidepressant imipramine. Similarly, LPS-PG-induced inflammation in MG-6 cells, a mouse microglial cell line, was inhibited by pre-treatment with imipramine, which caused imipramine-induced inhibition of NF-κB signaling. Culture media obtained from LPS-PG-treated MG-6 cells induced neuronal cell death in Neuro-2A cells, a mouse neuroblastoma cell line, which was prevented by pre-treatment of MG-6 cells with imipramine. These results indicate that imipramine inhibits LPS-PG-induced inflammatory responses in microglia and ameliorates periodontal disease-related neural damage.


Assuntos
Doenças Periodontais , Porphyromonas gingivalis , Camundongos , Animais , Porphyromonas gingivalis/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Imipramina/farmacologia , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Inflamação/metabolismo
10.
Mol Pharm ; 19(5): 1526-1539, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35435696

RESUMO

Gauging the chemical stability of active pharmaceutical ingredients (APIs) is critical at various stages of pharmaceutical development to identify potential risks from drug degradation and ensure the quality and safety of the drug product. Stress testing has been the major experimental method to study API stability, but this analytical approach is time-consuming, resource-intensive, and limited by API availability, especially during the early stages of drug development. Novel computational chemistry methods may assist in screening for API chemical stability prior to synthesis and augment contemporary API stress testing studies, with the potential to significantly accelerate drug development and reduce costs. In this work, we leverage quantum chemical calculations and automated reaction mechanism generation to provide new insights into API degradation studies. In the continuation of part one in this series of studies [Grinberg Dana et al., Mol. Pharm. 2021 18 (8), 3037-3049], we have generated the first ab initio predictive chemical kinetic model of free-radical oxidative degradation for API stress testing. We focused on imipramine oxidation in an azobis(isobutyronitrile) (AIBN)/H2O/CH3OH solution and compared the model's predictions with concurrent experimental observations. We analytically determined iminodibenzyl and desimipramine as imipramine's two major degradation products under industry-standard AIBN stress testing conditions, and our ab initio kinetic model successfully identified both of them in its prediction for the top three degradation products. This work shows the potential and utility of predictive chemical kinetic modeling and quantum chemical computations to elucidate API chemical stability issues. Further, we envision an automated digital workflow that integrates first-principle models with data-driven methods that, when actively and iteratively combined with high-throughput experiments, can substantially accelerate and transform future API chemical stability studies.


Assuntos
Imipramina , Modelos Químicos , Estabilidade de Medicamentos , Radicais Livres , Cinética , Oxirredução
11.
Pharm Res ; 39(2): 223-237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35112227

RESUMO

PURPOSE: The present study aimed to elucidate the transport properties of imipramine and paroxetine, which are the antidepressants, across the blood-brain barrier (BBB) in rats. METHODS: In vivo influx and efflux transport of imipramine and paroxetine across the BBB were tested using integration plot analysis and a combination of brain efflux index and brain slice uptake studies, respectively. Conditionally immortalized rat brain capillary endothelial cells, TR-BBB13 cells, were utilized to characterize imipramine and paroxetine transport at the BBB in vitro. RESULTS: The in vivo influx clearance of [3H]imipramine and [3H]paroxetine in rats was determined to be 0.322 mL/(min·g brain) and 0.313 mL/(min·g brain), respectively. The efflux clearance of [3H]imipramine and [3H]paroxetine was 0.380 mL/(min·g brain) and 0.126 mL/(min·g brain), respectively. These results suggest that the net flux of paroxetine, but not imipramine, at the BBB in vivo was dominated by transport to the brain from the circulating blood. The uptake of imipramine and paroxetine by TR-BBB13 cells exhibited time- and temperature-dependence and one-saturable kinetics with a Km of 37.6 µM and 89.2 µM, respectively. In vitro uptake analyses of extracellular ion dependency and the effect of substrates/inhibitors for organic cation transporters and transport systems revealed minor contributions to known transporters and transport systems and the difference in transport properties in the BBB between imipramine and paroxetine. CONCLUSIONS: Our study showed the comprehensive outcomes of imipramine and paroxetine transport at the BBB, implying that molecular mechanism(s) distinct from previously reported transporters and transport systems are involved in the transport.


Assuntos
Antidepressivos de Segunda Geração/metabolismo , Antidepressivos Tricíclicos/metabolismo , Barreira Hematoencefálica/metabolismo , Imipramina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Paroxetina/metabolismo , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Antidepressivos Tricíclicos/administração & dosagem , Transporte Biológico , Linhagem Celular , Imipramina/administração & dosagem , Injeções Intravenosas , Cinética , Masculino , Modelos Biológicos , Paroxetina/administração & dosagem , Permeabilidade , Ratos Wistar
12.
J Periodontal Res ; 57(1): 173-185, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748647

RESUMO

BACKGROUND AND OBJECTIVE: Clinical studies have shown that metabolic syndrome (MetS) exacerbates periodontitis. However, the underlying mechanisms remain largely unknown. Since our animal study has shown that high-fat diet-induced MetS exacerbates lipopolysaccharide (LPS)-stimulated periodontitis in mouse model and our in vitro study showed that acid sphingomyelinase (aSMase) plays a key role in the amplification of LPS-triggered pro-inflammatory response by palmitic acid (PA) in macrophages, we tested our hypothesis that inhibitor of aSMase attenuates MetS-exacerbated periodontitis in animal model. Furthermore, to explore the potential underlying mechanisms, we tested our hypothesis that aSMase inhibitor downregulates pro-inflammatory and pro-osteoclastogenic gene expression in macrophages in vitro. MATERIAL AND METHODS: We induced MetS and periodontitis in C57BL/6 mice by feeding high-fat diet (HFD) and periodontal injection of A. actinomycetemcomitans LPS, respectively, and treated mice with imipramine, a well-established inhibitor of aSMase. Micro-computed tomography (micro-CT), tartrate-resistant acid phosphatase staining, histological and pathological evaluations as well as cell cultures were performed to evaluate alveolar bone loss, osteoclast formation, periodontal inflammation and pro-inflammatory gene expression. RESULTS: Analysis of metabolic parameter showed that while HFD induced MetS by increasing bodyweight, insulin resistance, cholesterol and free fatty acids, imipramine reduced free fatty acids but had no significant effects on other metabolic parameters. MicroCT showed that either MetS or periodontitis significantly reduced bone volume fraction (BVF) of maxilla and the combination of MetS and periodontitis further reduced BVF. However, imipramine increased BVF in mice with both MetS and periodontitis to a level similar to that in mice with periodontitis alone, suggesting that imipramine abolished the synergy between MetS and periodontitis on alveolar bone loss. Consistently, results showed that imipramine inhibited osteoclast formation and periodontal inflammation in mice with both MetS and periodontitis. To elucidate the mechanisms by which imipramine attenuates MetS-exacerbated periodontitis, we showed that imipramine inhibited the upregulation of pro-inflammatory cytokines and transcription factor c-FOS as well as ceramide production by LPS plus PA in macrophages. CONCLUSION: This study has shown that imipramine as an inhibitor of aSMase abolishes the synergy between MetS and periodontitis on alveolar bone loss in animal model and inhibits pro-inflammatory and pro-osteoclastogenic gene expression in macrophages in vitro. This study provides the first evidence that aSMase is a potential therapeutic target for MetS-exacerbated periodontitis.


Assuntos
Perda do Osso Alveolar , Síndrome Metabólica , Periodontite , Perda do Osso Alveolar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Imipramina/farmacologia , Lipopolissacarídeos , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos , Periodontite/tratamento farmacológico , Esfingomielina Fosfodiesterase , Microtomografia por Raio-X
13.
Photodermatol Photoimmunol Photomed ; 38(2): 112-122, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34358364

RESUMO

BACKGROUND/PURPOSE: Tricyclic antidepressants (TCAs) are still widely used and are available to purchase without prescription in some countries. Awareness of adverse cutaneous drug reactions is essential. METHOD: We reported a case of photo-distributed hyperpigmentation due to imipramine and carried out a systematic search of the related articles using the search terms "tricyclic antidepressants" or "tricyclic antidepressive agents", and "hyperpigmentation" or "photosensitivity disorder". Fifty non-duplicate citations were identified of which 28 articles which were independently assessed in full. The review was registered in PROSPERO, CRD42018107338. RESULTS: The remaining 25 articles met our inclusion criteria. Photo-distributed hyperpigmentation tricyclic antidepressant-induced photosensitivity reactions (TIPs) was the most common presentation. In 21 cases, this presented as an asymptomatic discolouration of exposed sites. Imipramine (81%), amitriptyline (9.5%), desipramine hydrochloride (4.8%) and mirtazapine (4.8%) were reported to be the culprit drugs. Nineteen were female with a mean age at presentation of 55 years. Mean duration from commencing the culprit drug until the development of discolouration was 10.4 years. Mean daily dose was 222.7 mg for imipramine. Histology was characteristic with golden-brown or brownish granules deposited in dermis. Staining for Masson-Fontana and MEL-5 was positive in all cases. Phototesting had not been done in cases prior to ours (negative 3 months after discontinuation of imipramine). Three further reports of suspected TIP presented with non-specific and eczematous eruption. The two presentations were reported along with systemic problems (thrombocytopenia and hepatic injury). CONCLUSIONS: This systematic review highlights the characteristic features of exposed site hyperpigmentation of TCA-induced photosensitivity occurring after prolonged drug exposure in many cases.


Assuntos
Hiperpigmentação , Transtornos de Fotossensibilidade , Antidepressivos Tricíclicos/efeitos adversos , Feminino , Humanos , Hiperpigmentação/patologia , Imipramina/efeitos adversos , Transtornos de Fotossensibilidade/induzido quimicamente , Pele/patologia
14.
Andrologia ; 54(1): e14291, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34729805

RESUMO

In recent studies, it has been reported that ion channels play an important role in cancer formation. Therefore, it is possible that the use of pharmacological agents targeting ion channels will allow the development of new strategies for cancer treatment. In this study, we investigate the effect of imipramine on Eag1 channel expression in DU145 prostate cancer cells. Culture cells were divided into 4 groups as the control, 10, 50 and 75 µM imipramine. Eag1 channel currents and conductivity were determined by whole-cell patch-clamp technique and gene expression by real time-polymerase chain reaction (RT-PCR). Current records were taken before (at 0th minute, as control) and 10 min after imipramine administration to the cells. It was observed that all three doses of imipramine significantly reduced Eag1 currents and conductivity compared with the control. However, the differences between dose groups were not significant. Similarly, Eag1 channel protein expression was found to be significantly reduced for all three doses of imipramine compared with the control group, but there was no significant difference in gene expression between dose groups. Obtained results suggested that imipramine has the potential to be used as a pharmacological agent targeting the Eag1 channel in the treatment of prostate cancer.


Assuntos
Imipramina , Neoplasias da Próstata , Linhagem Celular Tumoral , Éter , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Imipramina/farmacologia , Masculino , Neoplasias da Próstata/tratamento farmacológico
15.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499076

RESUMO

Traumatic brain injury (TBI) broadly degrades the normal function of the brain after a bump, blow, or jolt to the head. TBI leads to the aggravation of pre-existing brain dysfunction and promotes neurotoxic cascades that involve processes such as oxidative stress, loss of dendritic arborization, and zinc accumulation. Acid sphingomyelinase (ASMase) is an enzyme that hydrolyzes sphingomyelin to ceramide in cells. Under normal conditions, ceramide plays an important role in various physiological functions, such as differentiation and apoptosis. However, under pathological conditions, excessive ceramide production is toxic and activates the neuronal-death pathway. Therefore, we hypothesized that the inhibition of ASMase activity by imipramine would reduce ceramide formation and thus prevent TBI-induced neuronal death. To test our hypothesis, an ASMase inhibitor, imipramine (10 mg/kg, i.p.), was administrated to rats immediately after TBI. Based on the results of this study, we confirmed that imipramine significantly reduced ceramide formation, dendritic loss, oxidative stress, and neuronal death in the TBI-imipramine group compared with the TBI-vehicle group. Additionally, we validated that imipramine prevented TBI-induced cognitive dysfunction and the modified neurological severity score. Consequently, we suggest that ASMase inhibition may be a promising therapeutic strategy to reduce hippocampal neuronal death after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Imipramina , Animais , Ratos , Imipramina/farmacologia , Imipramina/uso terapêutico , Esfingomielina Fosfodiesterase/metabolismo , Ceramidas/metabolismo , Hipocampo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Morte Celular , Apoptose
16.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408500

RESUMO

Depression is the most common mental illness, affecting approximately 4.4% of the global population. Despite many available treatments, some patients exhibit treatment-resistant depression. Thus, the need to develop new and alternative treatments cannot be overstated. Adenosine receptor antagonists have emerged as a promising new class of antidepressants. The current study investigates a novel dual A1/A2A adenosine receptor antagonist, namely 2-(3,4-dihydroxybenzylidene)-4-methoxy-2,3-dihydro-1H-inden-1-one (1a), for antidepressant capabilities by determining its metabolic profiles and comparing them to those of two reference compounds (imipramine and KW-6002). The metabolic profiles were obtained by treating male Sprague-Dawley rats with 1a and the reference compounds and subjecting them to the forced swim test. Serum and brain material was consequently collected from the animals following euthanasia, after which the metabolites were extracted and analyzed through untargeted metabolomics using both 1H-NMR and GC-TOFMS. The current study provides insight into compound 1a's metabolic profile. The metabolic profile of 1a was similar to those of the reference compounds. They potentially exhibit their antidepressive capabilities via downstream effects on amino acid and lipid metabolism.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antagonistas de Receptores Purinérgicos P1 , Animais , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Humanos , Masculino , Metabolômica , Nucleosídeos de Purina , Ratos , Ratos Sprague-Dawley
17.
J Cell Mol Med ; 25(19): 9350-9363, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34469035

RESUMO

Patients with malignant glioma often suffered from depression, which leads to an increased risk of detrimental outcomes. Imipramine, an FDA-approved tricyclic antidepressant, has been commonly used to relieve depressive symptoms in the clinic. Recently, imipramine has been reported to participate in the suppression of tumour progression in several human cancers, including prostate cancer, colon cancer and lymphomas. However, the effect of imipramine on malignant glioma is largely unclear. Here, we show that imipramine significantly retarded proliferation of immortalized and primary glioma cells. Mechanistically, imipramine suppressed tumour proliferation by inhibiting yes-associated protein (YAP), a recognized oncogene in glioma, independent of Hippo pathway. In addition to inhibiting YAP transcription, imipramine also promoted the subcellular translocation of YAP from nucleus into cytoplasm. Consistently, imipramine administration significantly reduced orthotopic tumour progression and prolonged survival of tumour-bearing mice. Moreover, exogenous overexpression of YAP partially restored the inhibitory effect of imipramine on glioma progression. Most importantly, compared with imipramine or temozolomide (TMZ) monotherapy, combination therapy with imipramine and TMZ exhibited enhanced inhibitory effect on glioma growth both in vitro and in vivo, suggesting the synergism of both agents. In conclusion, we found that tricyclic antidepressant imipramine impedes glioma progression by inhibiting YAP. In addition, combination therapy with imipramine and TMZ may potentially serve as promising anti-glioma regimens, thus predicting a broad prospect of clinical application.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Imipramina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Glioma , Humanos , Camundongos , Prognóstico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Sep Sci ; 44(15): 2972-2981, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34031991

RESUMO

A novel covalent organic polymer was prepared using 1,5-diaminonaphthalene as a linker and cyanuric chloride as a node. A thin-film nanocomposite of 1,5-diaminonaphthalene covalent organic polymer and cellulose nanocrystalline was then fabricated via filtering and casting method. The effect of incorporation of various amounts of 1,5-diaminonaphthalene covalent organic polymer and cellulose nanocrystalline was studied to obtain an efficient nanocomposite thin-film with a large number of polar functional groups and high mechanical stability. Field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, and thermogravimetric analysis techniques were applied for the characterization of physicochemical properties of the prepared materials. Imipramine was determined in the biological samples using thin-film microextraction followed by gas chromatography flame ionization detection. Parameters affecting the extraction efficiency of imipramine were investigated. Under the optimized conditions, the limit of detection was 0.5 ng/mL. Film-to-film reproducibility for three different films fabricated under the same conditions (at three concentration levels) varied between 8.9 and 9.7%. The linear dynamic range covered more than three orders of magnitude (2-5000 ng/mL) with a determination coefficient of 0.9985. The method was successfully applied for preconcentration and determination of imipramine in biological samples with spiking recoveries between 78 and 93%.


Assuntos
Celulose/química , Imipramina/isolamento & purificação , Nanocompostos/química , Compostos Orgânicos/química , Polímeros/química , Adulto , Antidepressivos Tricíclicos , Humanos , Limite de Detecção , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
19.
Mikrochim Acta ; 188(2): 60, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33511456

RESUMO

A high-performance imipramine (IMPR) sensor has been developed  based on metal chalcogenide-carbon composite materials. The antimony telluride-graphite nanofiber (Sb2Te3-GNF, hereafter SBT-GNF) composite was synthesized by the hydrothermal method and confirmed by X-ray powder diffraction (XRD) pattern. The morphology, crystalline lattice, and chemical states were characterized by HRTEM, SAED, and XPS analysis. The characterizations confirmed the formation of an effective composite, SBT-GNF. The SBT-GNF was fabricated as a disposable sensor electrode with a screen-printed carbon electrode (SPCE) and examined for the detection of IMPR by differential pulse voltammetry (DPV). The electroanalytical results of SBT-GNF are compared with the SBT and GNF, and the rational design of effective composite is discussed. SBT-GNF/SPCE showed a good linear range (0.01­51.8 µM), sensitivity (1.35 ± 0.1 µA µM-1 cm-2), and low LOD (4 ± 2 nM). Moreover, the SBT-GNF/SPCE revealed high selectivity and high tolerance limit against potential interfering compounds in blood serum and urine samples. Therefore, this electrochemical sensor can be applicable for the detection of tricyclic antidepressant drug IMPR in clinical and pharmaceutical analysis.


Assuntos
Antidepressivos/sangue , Antidepressivos/urina , Imipramina/sangue , Imipramina/urina , Nanofibras/química , Antimônio/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Comprimidos/análise , Telúrio/química
20.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884712

RESUMO

Three new compounds, namely [HL]2+[CuCl4]2-, [HL]2+[ZnCl4]2-, and [HL]2+[CdCl4]2- (where L: imipramine) were synthesized and their physicochemical and biological properties were thoroughly investigated. All three compounds form isostructural, crystalline systems, which have been studied using Single-Crystal X-ray diffraction analysis (SC-XRD) and Fourier-transform infrared spectroscopy (FTIR). The thermal stability was investigated using thermogravimetric analysis (TGA) and melting points for all compounds have been determined. Magnetic measurements were performed in order to study the magnetic properties of the compounds. The above mentioned techniques allowed us to comprehensively examine the physicochemical properties of the newly obtained compounds. The biological activity was investigated using the number of Zebrafish tests, as it is one of the most common models for studying the impact of newly synthesized compounds on the central nervous system (CNS), since this model is very similar to the human CNS.


Assuntos
Cádmio/química , Complexos de Coordenação/farmacologia , Cobre/química , Embrião não Mamífero/citologia , Peixe-Zebra/crescimento & desenvolvimento , Zinco/química , Animais , Elétrons , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA