Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 290: 133305, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34929272

RESUMO

The alarming presence of hazardous halo-organic pollutants in wastewater and soils generated by industrial growth, pharmaceutical and agricultural activities is a major environmental concern that has drawn the attention of scientists. Unfortunately, the application of conventional technologies within hazardous materials remediation processes has radically failed due to their high cost and ineffectiveness. Consequently, the design of innovative and sustainable techniques to remove halo-organic contaminants from wastewater and soils is crucial. Altogether, these aspects have led to the search for safe and efficient alternatives for the treatment of contaminated matrices. In fact, over the last decades, the efficacy of immobilized oxidoreductases has been explored to achieve the removal of halo-organic pollutants from diverse tainted media. Several reports have indicated that these enzymatic constructs possess unique properties, such as high removal rates, improved stability, and excellent reusability, making them promising candidates for green remediation processes. Hence, in this current review, we present an insight of green remediation approaches based on the use of immobilized constructs of phenoloxidases (e.g., laccase and tyrosinase) and peroxidases (e.g., horseradish peroxidase, chloroperoxidase, and manganese peroxidase) for sustainable decontamination of wastewater and soil matrices from halo-organic pollutants, including 2,4-dichlorophenol, 4-chlorophenol, diclofenac, 2-chlorophenol, 2,4,6-trichlorophenol, among others.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Lacase , Solo , Poluentes do Solo/análise , Águas Residuárias
2.
J Biomed Mater Res A ; 103(10): 3237-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25778996

RESUMO

Three-dimensional (3D) patterning and engineering of biomaterials and biointerfaces have helped bioengineers harness the full potential of cell immobilization for different biomedical applications. However, the bioengineering of an efficient cell immobilized tool, having application in cell biology and tissue engineering, often comes into realization only when a cell friendly immobilization technique is combined with a compatible 3D patterning scheme. We have previously demonstrated the successful blue light induced photopolymerization of poly (ethyleneglycol) diacrylate (PEGDA) based hydrogels for the entrapment of Saccharomyces cerevisiae and NIH 3T3 fibroblast cells. In the present work we have modified rheology of the prepolymer solution by mixing fumed silica nanofiller in different concentrations. Here we demonstrate the rapid prototyping of cell immobilized nanocomposite hydrogels, where S. cerevisiae loaded nanofilled prepolymer solution was directly written in layer-by-layer fashion using solid free form fabrication also known as rapid prototyping technique and was cross-linked into 3D cell loaded construct via blue light induced polymerization. The swelling trend was found to be a function of silica nanofiller concentration and transitioned from decreasing to increasing type at 10% w/v nanofiller concentration. Dynamic swelling profile predicted that the swelling agent transported with in the gels via super case II type transport mechanism irrespective of the crosslink density. In contrast, the mode of transportation of the loaded solute was found to be fickian and nonfickian type respectively for loosely and tightly crosslinked gels. Spatial heterogeneity in the crosslinked network was resulted upon blue light curing, subsequently the 3D growth of the immobilized cells was observed to be a function of crosslink density.


Assuntos
Hidrogéis/química , Teste de Materiais , Nanocompostos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Dióxido de Silício/química , Animais , Camundongos , Células NIH 3T3 , Saccharomyces cerevisiae/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA