Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804667

RESUMO

The present work aimed to study whether a high sugar diet can alter immune responses and the gut microbiome in green iguanas. Thirty-six iguanas were split into four treatment groups using a 2×2 design. Iguanas received either a sugar-supplemented diet or a control diet, and either a lipopolysaccharide (LPS) injection or a phosphate-buffered saline (PBS) injection. Iguanas were given their respective diet treatment through the entire study (∼3 months) and received a primary immune challenge 1 and 2 months into the experiment. Blood samples and cloacal swabs were taken at various points in the experiment and used to measure changes in the immune system (bacterial killing ability, lysis and agglutination scores, LPS-specific IgY concentrations), and alterations in the gut microbiome. We found that a sugar diet reduces bacterial killing ability following an LPS challenge, and sugar and the immune challenge temporarily alters gut microbiome composition while reducing alpha diversity. Although sugar did not directly reduce lysis and agglutination following the immune challenge, the change in these scores over a 24-h period following an immune challenge was more drastic (it decreased) relative to the control diet group. Moreover, sugar increased constitutive agglutination outside of the immune challenges (i.e. pre-challenge levels). In this study, we provide evidence that a high sugar diet affects the immune system of green iguanas (in a disruptive manner) and alters the gut microbiome.


Assuntos
Dieta , Microbioma Gastrointestinal , Iguanas , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Iguanas/imunologia , Iguanas/microbiologia , Dieta/veterinária , Lipopolissacarídeos/administração & dosagem , Ração Animal/análise , Açúcares da Dieta/administração & dosagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-39029618

RESUMO

The plasma bacterial killing ability (BKA) is modulated by the stress response in vertebrates, including amphibians. The complement system is an effector mechanism comprised of a set of proteins present in the plasma that once activated can promote bacterial lysis. Herein, we investigated whether changes in plasma BKA as a result of the acute stress response and an immune challenge are mediated by the complement system in Rhinella diptycha toads. Additionally, we investigated whether the observed changes in plasma BKA are associated with changes in plasma corticosterone levels (CORT). We subjected adult male toads to a restraint or an immune challenge (with three concentrations of Aeromonas hydrophila heat inactivated), and then evaluated the plasma BKA against A. hydrophila, in vitro. We determined the complement system activity on plasma BKA, by treating the plasma (baseline, 1 h and 24 h post-restraint, and after the immune challenge) with ethylenediaminetetraacetic acid, heat, or protease. Our results showed increased CORT 1 h and 24 h after restraint and decreased plasma BKA 24 h post-restraint. The inhibitors of the complement system decreased the plasma BKA compared with untreated plasma at all times (baseline, 1 h, and 24 h after restraint), demonstrating that the plasma BKA activity is partially mediated by the complement system. The immune challenge increased CORT, with the highest values being observed in the highest bacterial concentration, compared with control. The plasma BKA was not affected by the immune challenge but was demonstrated to be partially mediated by the complement system. Our results demonstrated that restraint and the immune challenge activated the hypothalamus-pituitary-interrenal axis, by increasing plasma CORT levels in R. diptycha. Also, our results demonstrated the complement system is participative in the plasma BKA for baseline and post-stress situations in these toads.

3.
Ecotoxicol Environ Saf ; 272: 116111, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350216

RESUMO

The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1ß (IL-1ß) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1ß and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.


Assuntos
Glicina/análogos & derivados , Lipopolissacarídeos , NF-kappa B , Embrião de Galinha , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like/metabolismo , Galinhas/metabolismo , Solução Salina/toxicidade , Inflamação/induzido quimicamente , Inflamação/veterinária , Homeostase , Zinco/toxicidade
4.
Fish Physiol Biochem ; 50(2): 513-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103084

RESUMO

Peroxiredoxin1(Prx1), also known as natural killer enhancing factor A (NKEF-A), is a crucial antioxidant involving in various cellular activities and immune response against bacterial and viral infection in fish. In the present study, a full-length Prx1 cDNA sequence (TfPrx1) was firstly cloned from roughskin sculpin (Trachidermus fasciatus), which was composed of 1044 bp nucleotides encoding a peptide of 199 amino acids with a molecular weight of 22.35 kDa and a theoretical pI of 6.42, respectively. The predicted peptide was a typical 2-cys Prx containing two conserved characteristic motifs 43FYPLDFTFVCPTEI56 and 170GEVCPA175 with the two conserved peroxidatic and resolving cysteine residuals forming disulfide bond. Quantitative real-time PCR analysis showed that TfPrx1 was ubiquitously expressed in all tested tissues with the highest expression in the intestine. It could be significantly induced following LPS injection and heavy metal exposure. Recombinant TfPrx1 (rTfPrx1) displayed insulin disulfide reduction and ROS-scavenging activity in a concentration-dependent manner, and further exhibited DNA and cytoprotective effects under oxidative stress. These results suggested that TfPrx1 protein may play an important role in fish immune protection from oxidative damage.


Assuntos
Perciformes , Peroxirredoxinas , Animais , Sequência de Aminoácidos , Sequência de Bases , Alinhamento de Sequência , Peroxirredoxinas/genética , Peroxirredoxinas/química , Perciformes/genética , Peixes/genética , Peptídeos/genética , Dissulfetos , Filogenia
5.
Fish Shellfish Immunol ; 138: 108804, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207886

RESUMO

Cystatins are natural inhibitors of lysosomal cysteine proteases, including cathepsins B, L, H, and S. Cystatin C (CSTC) is a member of the type 2 cystatin family and is an essential biomarker in the prognosis of several diseases. Emerging evidence suggests the immune regulatory roles of CSTC in antigen presentation, the release of different inflammatory mediators, and apoptosis in various pathophysiologies. In this study, the 390-bp cystatin C (HaCSTC) cDNA from big-belly seahorse (Hippocampus abdominalis) was cloned and characterized by screening the pre-established cDNA library. Based on similarities in sequence, HaCSTC is a homolog of the teleost type 2 cystatin family with putative catalytic cystatin domains, signal peptides, and disulfide bonds. HaCSTC transcripts were ubiquitously expressed in all tested big-belly seahorse tissues, with the highest expression in ovaries. Immune challenge with lipopolysaccharides, polyinosinic:polycytidylic acid, Edwardsiella tarda, and Streptococcus iniae caused significant upregulation in HaCSTC transcript levels. Using a pMAL-c5X expression vector, the 14.29-kDa protein of recombinant HaCSTC (rHaCSTC) was expressed in Escherichia coli BL21 (DE3), and its protease inhibitory activity against papain cysteine protease was determined with the aid of a protease substrate. Papain was competitively blocked by rHaCSTC in a dose-dependent manner. In response to viral hemorrhagic septicemia virus (VHSV) infection, HaCSTC overexpression strongly decreased the expression of VHSV transcripts, pro-inflammatory cytokines, and pro-apoptotic genes; while increasing the expression of anti-apoptotic genes in fathead minnow (FHM) cells. Furthermore, HaCSTC overexpression protected VHSV-infected FHM cells against VHSV-induced apoptosis and increased cell viability. Our findings imply the profound role of HaCSTC against pathogen infections by modulating fish immune responses.


Assuntos
Smegmamorpha , Animais , Cistatina C/genética , Papaína/genética , Streptococcus iniae/fisiologia , Poli I-C/farmacologia , Proteínas de Peixes/química , Filogenia
6.
Ecotoxicol Environ Saf ; 266: 115570, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844410

RESUMO

Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.


Assuntos
Glucocorticoides , Psoríase , Humanos , Animais , Camundongos , Glucocorticoides/toxicidade , Glucocorticoides/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor 7 Toll-Like/metabolismo , Transcriptoma , Psoríase/patologia , Imiquimode/toxicidade , Terapia de Imunossupressão , Biomarcadores/metabolismo , Pele/metabolismo
7.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298300

RESUMO

YTH domain-containing genes are important readers of N6-methyladenosine (m6A) modifications with ability to directly affect the fates of distinct RNAs in organisms. Despite their importance, little is known about YTH domain-containing genes in teleosts until now. In the present study, a total of 10 YTH domain-containing genes have been systematically identified and functionally characterized in rainbow trout (Oncorhynchus mykiss). According to the phylogenetic tree, gene structure and syntenic analysis, these YTH domain-containing genes could be classified into three evolutionary subclades, including YTHDF, YTHDC1 and YTHDC2. Of them, the copy number of OmDF1, OmDF2, OmDF3, and OmDC1 were duplicated or even triplicated in rainbow trout due to the salmonid-specific whole-genome duplication event. The three-dimensional protein structure analysis revealed that there were similar structures and the same amino acid residues that were associated with cage formation between humans and rainbow trout, implying their similar manners in binding to m6A modification. Additionally, the results of qPCR experiment indicated that the expression patterns of a few YTH domain-containing genes, especially OmDF1b, OmDF3a and OmDF3b, were significantly different in liver tissue of rainbow trout under four different temperatures (7 °C, 11 °C, 15 °C, and 19 °C). The expression levels of OmDF1a, OmDF1b and OmDC1a were obviously repressed in spleen tissue of rainbow trout at 24 h after Yersinia ruckeri infection, while increased expression was detected in OmDF3b. This study provides a systemic overview of YTH domain-containing genes in rainbow trout and reveals their biological roles in responses to temperature stress and bacterial infection.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Yersiniose , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/microbiologia , Filogenia , Temperatura , Yersiniose/genética , Yersiniose/veterinária , Yersiniose/microbiologia , Yersinia ruckeri
8.
Brain Behav Immun ; 106: 89-99, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35914697

RESUMO

While inflammation has been implicated in psychopathology, relationships between immune-suppressing processes and psychiatric constructs remain elusive. This study sought to assess whether ß2-agonist clenbuterol (CBL) would attenuate immune activation in adolescents with mood and anxiety symptoms following ex vivo exposure of whole blood to lipopolysaccharide (LPS). Our focus on adolescents aimed to target a critical developmental period when psychiatric conditions often emerge and prior to chronicity effects. To capture a diverse range of immunologic and symptomatologic phenotypes, we included 97 psychotropic-medication free adolescents with mood and anxiety symptoms and 33 healthy controls. All participants had comprehensive evaluations and dimensional assessments of psychiatric symptoms. Fasting whole-blood samples were collected and stimulated with LPS in the presence and absence of CBL for 6 hours, then analyzed for 41 cytokines, chemokines, and hematopoietic growth factors. Comparison analyses used Bonferroni-corrected nonparametric tests. Levels of nine immune biomarkers-including IL-1RA, IL-1ß, IL-6, IP-10, MCP-1, MIP-1α, MIP-1ß, TGF-α, and TNF-α-were significantly reduced by CBL treatment compared to LPS alone. Exploratory factor analysis reduced 41 analytes into 5 immune factors in each experimental condition, and their relationships with psychiatric symptoms were examined as a secondary aim. CBL + LPS Factor 4-comprising EGF, PDGF-AA, PDGF-AB/BB, sCD40L, and GRO-significantly correlated with anticipatory and consummatory anhedonia, even after controlling for depression severity. This study supports the possible inhibitory effect of CBL on immune activation. Using a data-driven method, distinctive relationships between CBL-affected immune biomarkers and dimensional anhedonia were reported, further elucidating the role of ß2-agonism in adolescent affective symptomatology.


Assuntos
Anedonia , Clembuterol , Biomarcadores , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocina CXCL10 , Clembuterol/farmacologia , Citocinas/metabolismo , Fator de Crescimento Epidérmico , Humanos , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-6 , Lipopolissacarídeos/farmacologia , Fator de Crescimento Transformador alfa , Fator de Necrose Tumoral alfa
9.
Brain Behav Immun ; 99: 327-338, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732365

RESUMO

Stress during critical periods of neurodevelopment is associated with an increased risk of developing stress-related psychiatric disorders, which are more common in women than men. Hippocampal neurogenesis (the birth of new neurons) is vulnerable to maternal separation (MS) and inflammatory stressors, and emerging evidence suggests that hippocampal neurogenesis is more sensitive to stress in the ventral hippocampus (vHi) than in the dorsal hippocampus (dHi). Although research into the effects of MS stress on hippocampal neurogenesis is well documented in male rodents, the effect in females remains underexplored. Similarly, reports on the impact of inflammatory stressors on hippocampal neurogenesis in females are limited, especially when female bias in the prevalence of stress-related psychiatric disorders begins to emerge. Thus, in this study we investigated the effects of MS followed by an inflammatory stressor (lipopolysaccharide, LPS) in early adolescence on peripheral and hippocampal inflammatory responses and hippocampal neurogenesis in juvenile female rats. We show that MS enhanced an LPS-induced increase in the pro-inflammatory cytokine IL-1ß in the vHi but not in the dHi. However, microglial activation was similar following LPS alone or MS alone in both hippocampal regions, while MS prior to LPS reduced microglial activation in both dHi and vHi. The production of new neurons was unaffected by MS and LPS. MS and LPS independently reduced the dendritic complexity of new neurons, and MS exacerbated LPS-induced reductions in the complexity of distal dendrites of new neurons in the vHi but not dHi. These data highlight that MS differentially primes the physiological response to LPS in the juvenile female rat hippocampus.


Assuntos
Privação Materna , Doenças Neuroinflamatórias , Animais , Feminino , Hipocampo , Lipopolissacarídeos/farmacologia , Masculino , Microglia , Neurogênese/fisiologia , Neurônios , Ratos
10.
Fish Shellfish Immunol ; 124: 442-453, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460877

RESUMO

Cystatins are a diverse group of cysteine protease inhibitors widely present among various organisms. Beyond their protease inhibitor function, cystatins play a crucial role in diverse pathophysiological conditions in animals, including neurodegenerative disorders, tumor progression, inflammatory diseases, and immune response. However, the role of cystatins in immunity against viral and bacterial infections in fish remains to be elucidated. In this study, the cystatin B from big-belly seahorse, Hippocampus abdominalis, designated as HaCSTB, was identified and characterized. HaCSTB shared the highest homology with type 1 cystatin family members of teleosts and had three cystatin catalytic domains with no signal peptides or disulfide bonds. HaCSTB transcripts were mainly expressed in peripheral blood cells (PBCs), followed by the testis and pouch of healthy big-belly seahorses. Immune challenge with lipopolysaccharides (LPS), polyinosinic:polycytidylic acid (Poly I:C), and Streptococcus iniae induced upregulation of relative HaCSTB mRNA expression in PBCs. Subcellular localization analysis revealed the distribution of HaCSTB in the cytosol, mitochondria, and nuclei of fathead minnow cells (FHM). Recombinant HaCSTB (rHaCSTB) exhibited potent in vitro inhibitory activity against papain, a cysteine protease, in a concentration-, pH-, and temperature-dependent manner. Overexpression of HaCSTB in viral hemorrhagic septicemia virus (VHSV)-susceptible FHM cells increased cell viability and reduced VHSV-induced apoptosis. Collectively, these results suggest that HaCSTB might engage in the teleostean immune protection against bacteria and viruses.


Assuntos
Cyprinidae , Cistatinas , Doenças dos Peixes , Smegmamorpha , Animais , Cyprinidae/genética , Cistatina B/genética , Cistatinas/genética , Proteínas de Peixes/química , Masculino , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência
11.
Ecotoxicol Environ Saf ; 233: 113346, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228030

RESUMO

In the ecotoxicological hazard assessment of chemicals, the detection of immunotoxicity is currently neglected. This is mainly due to the complexity of the immune system and the consequent lack of standardized procedures and markers for the comprehensive assessment of immunotoxic modes of action. In this study, we present a new approach applying transcriptome profiling to an immune challenge with a mixture of pathogen-associated molecular patterns (PAMPs) in zebrafish embryos, analyzing differential gene expression during acute infection with and without prior exposure to the immunosuppressive drug clobetasol propionate (CP). While PAMP injection itself triggered biological processes associated with immune activation, some of these genes were more differentially expressed upon prior exposure to CP than by immune induction alone, whereas others showed weaker or no differential regulation in response to the PAMP stimulus. All of these genes responding differently to PAMP after prior CP exposure showed additivity of PAMP- and CP-induced effects, indicating independent regulatory mechanisms. The transcriptomic profiles suggest that CP impaired innate immune induction by attenuating the response of genes involved in antigen processing, TLR signaling, NF-КB signaling, and complement activation. We propose this approach as a powerful method for detecting gene biomarkers for immunosuppressive modes of action, as it was able to identify alternatively regulated processes and pathways in a sublethal, acute infection zebrafish embryo model. This allowed to define biomarker candidates for immune-mediated effects and to comprehensively characterize immunosuppression. Ultimately, this work contributes to the development of molecular biomarker-based environmental hazard assessment of chemicals in the future.


Assuntos
Clobetasol , Peixe-Zebra , Animais , Clobetasol/metabolismo , Perfilação da Expressão Gênica , Terapia de Imunossupressão , Transcriptoma , Peixe-Zebra/metabolismo
12.
Brain Behav Immun ; 93: 119-131, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412254

RESUMO

Individuals with neurodevelopmental disorders, such as schizophrenia and autism spectrum disorder, exhibit various sleep and circadian rhythm disturbances that often persist and worsen throughout the lifespan. To study the interaction between circadian rhythm disruption and neurodevelopmental disorders, we utilized a mouse model based on prenatal maternal immune activation (MIA). We hypothesized that MIA exposure would lead to impaired circadian locomotor activity rhythms in adult mouse offspring. We induced MIA by injecting pregnant dams with polyinosinic:polycytidylic acid (poly IC) at embryonic day 9.5, then aged resulting offspring to adulthood. We first confirmed that poly IC injection in pregnant dams elevated plasma levels of pro- and anti-inflammatory cytokines and chemokines. We then placed adult offspring in running wheels and subjected them to various lighting conditions. Overall, poly IC-exposed male offspring exhibited altered locomotor activity rhythms, reminiscent of individuals with neurodevelopmental disorders. In particular, we report increased (subjective) day activity across 3 different lighting conditions: 12 h of light, 12 h of dark (12:12LD), constant darkness (DD) and constant light. Further data analysis indicated that this was driven by increased activity in the beginning of the (subjective) day in 12:12LD and DD, and at the end of the day in 12:12LD. This effect was sex-dependent, as in utero poly IC exposure led overall to much milder alterations in locomotor activity rhythms in female offspring than in male offspring. We also confirmed that the observed behavioral impairments in adult poly IC-exposed offspring were not due to differences in maternal behavior. These data further our understanding of the link between circadian rhythm disruption and neurodevelopmental disorders and may have implications for mitigating risk to the disorders and/or informing the development of circadian-based therapies.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Poli I-C , Gravidez
13.
Fish Shellfish Immunol ; 118: 228-240, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34284111

RESUMO

ß-catenin is a structural protein that makes the cell-cell connection in adherence junctions. Besides the structural functions, it also plays a role as a central transducer of the canonical Wnt signaling cascade, regulating nearly four hundred genes related to various cellular processes. Recently the immune functions of ß-catenin during pathogenic invasion have gained more attention. In the present study, we elucidated the immune function of fish ß-catenin by identifying and characterizing the ß-catenin homolog (PhCatß) from redlip mullet, Planiliza haematocheila. The complete open reading frame of PhCatß consists of 2352 bp, which encodes a putative ß-catenin homolog (molecular weight: 85.7 kDa). Multiple sequence alignment analysis revealed that ß-catenin is highly conserved in vertebrates. Phylogenetic reconstruction demonstrated the close evolutionary relationship between PhCatß and other fish ß-catenin counterparts. The tissue distribution analysis showed the highest mRNA expression of PhCatß in heart tissues of the redlip mullet under normal physiological conditions. While in response to pathogenic stress, the PhCatß transcription level was dramatically increased in the spleen and gill tissues. The overexpression of PhCatß stimulated M2 polarization and cell proliferation of murine RAW 264.7 macrophage. In fish cells, the overexpression of PhCatß resulted in a significant upregulation of antiviral gene transcription and vice versa. Moreover, the overexpression of PhCatß could inhibit the replication of VHSV in FHM cells. Our results strongly suggest that PhCatß plays a role in macrophage activation and antiviral immune response in redlip mullet.


Assuntos
Antivirais , Citosol , Proteínas de Peixes , Ativação de Macrófagos , Smegmamorpha , beta Catenina , Animais , Antivirais/química , Antivirais/imunologia , Antivirais/metabolismo , Evolução Molecular , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Especificidade de Órgãos , Filogenia , Células RAW 264.7 , Smegmamorpha/classificação , Smegmamorpha/genética , beta Catenina/química , beta Catenina/genética , beta Catenina/imunologia , beta Catenina/metabolismo
14.
Fish Shellfish Immunol ; 108: 14-23, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33259930

RESUMO

Animal defense system constitutes a series of distinct mechanisms that specifically defend against microbial invasion. Understanding these complex biological mechanisms is of paramount importance for implementing disease prevention strategies. In this study, the transcription factor, Akirin-2 was identified from ornamental fish Amphiprion clarkii and its involvement in immune response was characterized. A. clarkii Akirin-2 (AcAkirin-2) was identified as a highly conserved protein with two nuclear localization signals. In-vitro localization analysis in fathead minnow cells revealed that AcAkirin-2 is strictly localized to the nucleus. With regard to tissue-specific expression without immune challenge, AcAkirin-2 expression was highest in the brain and lowest in the liver. Immune challenge experiments revealed that AcAkirin-2 expression was the strongest in response to poly I:C. Overexpression of AcAkirin-2 alone did not enhanced NF-ĸB activity significantly in HEK293T cells; however, it significantly enhanced NF-ĸB activity in the presence of poly I:C. AcAkirin-2-mediated expression of antiviral genes was analyzed using qPCR in mullet kidney cells and plaque assay was performed to decipher the involvement of AcAkirin-2 in antiviral immunity. AcAkirin-2 overexpression significantly enhanced the expression of Viperin but not of Mx. Plaque assays revealed the ability of AcAkirin-2 to enervate VHSV titers. Taken together, this study unveiled the involvement of AcAkirin-2 in NF-ĸB-mediated transcription of antiviral genes.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , NF-kappa B/metabolismo , Filogenia , Proteínas Repressoras/química , Alinhamento de Sequência/veterinária , Transcriptoma
15.
Artigo em Inglês | MEDLINE | ID: mdl-33326846

RESUMO

Host's defense against external challenges activates an inflammatory response regulated by a set of chemical signals, including hormones. These immunomodulatory hormones, such as corticosterone, testosterone, and melatonin, trigger the systemic immune responses responsible for inflammatory assembly and resolution. This study aimed to investigate the effects of an immune challenge on endocrine and innate immune responses in the bullfrog (Lithobates catesbeianus). Adult males were intraperitoneally injected with lipopolysaccharide (LPS; 2 mg/kg) or saline, and blood samples were collected 6 and 24 h after injection for measurement of neutrophil/lymphocyte ratio, blood leukocyte phagocytosis, plasma bacterial killing ability, and plasma levels of corticosterone, melatonin, and testosterone. Our results showed LPS-induced increased neutrophil/lymphocyte ratio and leukocyte phagocytosis, and decreased melatonin and testosterone plasma levels, which were more pronounced 24 h after injection. Overall, we conclude that LPS intraperitoneal injection can activate the innate immune response and modulate the hormonal profile of the bullfrogs, with effects more pronounced 24 h than 6 h after treatment.


Assuntos
Lipopolissacarídeos/farmacologia , Linfócitos/imunologia , Melatonina/sangue , Neutrófilos/imunologia , Ranidae/fisiologia , Testosterona/sangue , Animais , Atividade Bactericida do Sangue , Injeções Intraperitoneais , Lipopolissacarídeos/administração & dosagem , Masculino , Ranidae/imunologia
16.
BMC Biol ; 18(1): 135, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028304

RESUMO

BACKGROUND: Life-history theory predicts a trade-off between investment into immune defence and other fitness-related traits. Accordingly, individuals are expected to upregulate their immune response when subjected to immune challenge. However, this is predicted to come at the expense of investment into a range of other traits that are costly to maintain, such as growth, reproduction and survival. Currently, it remains unclear whether the magnitude of such costs, and trade-offs involving immune investment and other traits, manifests consistently across species and sexes. To address this, we conducted a meta-analysis to investigate how changes in sex, ontogenetic stage and environmental factors shape phenotypic trait expression following an immune challenge. RESULTS: We explored the effects of immune challenge on three types of traits across sexually reproducing metazoans: life-history, morphological and proximate immune traits (235 effect sizes, 53 studies, 37 species [21 invertebrates vs. 16 vertebrates]). We report a general negative effect of immune challenge on survival and reproduction, a positive effect on immune trait expression, but no effect on morphology or development time. The negative effects of immune challenge on reproductive traits and survival were larger in females than males. We also report a pronounced effect of the immune treatment agent used (e.g. whether the treatment involved a live pathogen or not) on the host response to immune challenge, and find an effect of mating status on the host response in invertebrates. CONCLUSION: These results suggest that costs associated with immune deployment following an immune challenge are context-dependent and differ consistently in their magnitude across the sexes of diverse taxonomic lineages. We synthesise and discuss the outcomes in the context of evolutionary theory on sex differences in life-history and highlight the need for future studies to carefully consider the design of experiments aimed at disentangling the costs of immune deployment.


Assuntos
Sistema Imunitário/fisiologia , Invertebrados/imunologia , Características de História de Vida , Vertebrados/imunologia , Animais , Evolução Biológica , Meio Ambiente , Feminino , Crescimento , Invertebrados/crescimento & desenvolvimento , Masculino , Caracteres Sexuais , Fatores Sexuais , Vertebrados/crescimento & desenvolvimento
17.
J Evol Biol ; 33(9): 1224-1234, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32506574

RESUMO

Global change is shifting both temperature patterns and the geographic distribution of pathogens, and infection has already been shown to substantially reduce host thermal performance, potentially placing populations at greater risk that previously thought. But what about individuals that are able to successfully clear an infection? Whilst the direct damage a pathogen causes will likely lead to reductions in host's thermal tolerance, the response to infection often shares many underlying pathways with the general stress response, potentially acting as a buffer against subsequent thermal stress. Here, by exposing Drosophila melanogaster to heat-killed bacterial pathogens, we investigate how activation of a host's immune system can modify any response to both heat and cold temperature stress. In a single focal population, we find that immune activation can improve a host's knockdown times during heat shock, potentially offsetting some of the damage that would subsequently arise as an infection progresses. Conversely, immune activation had a detrimental effect on CTmax and did not influence lower thermal tolerance as measured by chill-coma recovery time. However, we also find that the influence of immune activation on heat knockdown times is not generalizable across an entire cline of locally adapted populations. Instead, immune activation led to signals of local adaptation to temperature being lost, erasing the previous advantage that populations in warmer regions had when challenged with heat stress. Our results suggest that activation of the immune system may help buffer individuals against the detrimental impact of infection on thermal tolerance; however, any response will be population specific and potentially not easily predicted across larger geographic scales, and dependent on the form of thermal stress faced by a host.


Assuntos
Drosophila melanogaster/imunologia , Termotolerância/imunologia , Animais , Austrália , Clima , Feminino
18.
Brain Behav Immun ; 90: 332-345, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860938

RESUMO

Decreases in social behavior are a hallmark aspect of acute "sickness behavior" in response to infection. However, immune insults that occur during the perinatal period may have long-lasting consequences for adult social behavior by impacting the developmental organization of underlying neural circuits. Microglia, the resident immune cells of the central nervous system, are sensitive to immune stimulation and play a critical role in the developmental sculpting of neural circuits, making them likely mediators of this process. Here, we investigated the impact of a postnatal day (PND) 4 lipopolysaccharide (LPS) challenge on social behavior in adult mice. Somewhat surprisingly, neonatal LPS treatment decreased sociability in adult female, but not male mice. LPS-treated females also displayed reduced social interaction and social memory in a social discrimination task as compared to saline-treated females. Somatostatin (SST) interneurons within the anterior cingulate cortex (ACC) have recently been suggested to modulate a variety of social behaviors. Interestingly, the female-specific changes in social behavior observed here were accompanied by an increase in SST interneuron number in the ACC. Finally, these changes in social behavior and SST cell number do not appear to depend on microglial inflammatory signaling, because microglia-specific genetic knock-down of myeloid differentiation response protein 88 (MyD88; the removal of which prevents LPS from increasing proinflammatory cytokines such as TNFα and IL-1ß) did not prevent these LPS-induced changes. This study provides novel evidence for enduring effects of neonatal immune activation on social behavior and SST interneurons in females, largely independent of microglial inflammatory signaling.


Assuntos
Células Secretoras de Somatostatina , Somatostatina , Animais , Contagem de Células , Feminino , Lipopolissacarídeos , Camundongos , Microglia , Gravidez , Comportamento Social
19.
J Exp Biol ; 223(Pt 10)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32321747

RESUMO

Mounting an immune response may be energetically costly and require the diversion of resources away from other physiological processes. Yet, both the metabolic cost of immune responses and the factors that impact investment priorities remain poorly described in many vertebrate groups. For example, although viviparity has evolved many times in vertebrates, the relationship between immune function and pregnancy has been disproportionately studied in placental mammals. To examine the energetic costs of immune activation and the modulation of immune function during pregnancy in a non-mammalian vertebrate, we elicited an immune response in pregnant and non-pregnant pygmy rattlesnakes, Sistrurus miliarius, using lipopolysaccharide (LPS). Resting metabolic rate (RMR) was measured using flow-through respirometry. Immune function was examined using bactericidal assays and leukocyte counts. The RMR of pygmy rattlesnakes increased significantly in response to LPS injection. There was no statistically significant difference in the metabolic response of non-reproductive and pregnant snakes to LPS. Mean metabolic increments for pregnant females, non-reproductive females, and males were 13%, 18% and 26%, respectively. The ratio of heterophils to lymphocytes was elevated in response to LPS across reproductive categories; however, LPS did not impact plasma bactericidal ability in non-reproductive snakes. Although pregnant females had significantly higher plasma bactericidal ability compared with non-reproductive snakes prior to manipulation, their bactericidal ability declined in response to LPS. LPS administration also significantly reduced several litter characteristics, particularly when administrated relatively early in pregnancy. Our results indicate that immune performance is energetically costly and is altered during pregnancy, and that immune activation during pregnancy may result in tradeoffs that affect offspring in a viviparous reptile.


Assuntos
Crotalinae , Placenta , Animais , Metabolismo Basal , Feminino , Masculino , Gravidez , Répteis , Serpentes
20.
J Exp Biol ; 223(Pt 17)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680897

RESUMO

The perception, processing and response to environmental challenges involves the activation of the immuno-neuroendocrine (INE) interplay. Concerted environmental challenges might induce trade-off when resource allocation to one trait occurs at the expense of another, also producing potential transgenerational effects in the offspring. We evaluated whether concerted challenges, in the form of an immune inoculum against inactivated Salmonella enteritidis (immune challenge, ICH) and a chronic heat stress (CHS) exposure on adult Japanese quail, modulate the INE responses of the parental generation and their offspring. Adults were inoculated and later exposed to a CHS along nine consecutive days. For the last 5 days of the CHS, eggs were collected for incubation. Chicks were identified according to their parental treatments and remained undisturbed. Induced inflammatory response, heterophil/lymphocyte (H/L) ratio and specific humoral response against sheep red blood cells (SRBC) were evaluated in both generations. Regardless of the ICH, stressed adults showed a reduced inflammatory response and an elevated H/L ratio compared with controls. In offspring, the inflammatory response was elevated and the specific SRBC antibody titres were diminished in those chicks prenatally exposed to CHS, regardless of the ICH. No differences were found in the H/L ratio of the offspring. Together, our results suggest that CHS exposure influences the INE interplay of adult quail, establishing trade-offs within their immune system. Moreover, CHS not only affected parental INE responses but also modulated their offspring INE responses, probably affecting their potential to respond to future challenges. The adaptability of the developmental programming of offspring would depend on the environment encountered.


Assuntos
Formação de Anticorpos , Coturnix , Animais , Ovos , Resposta ao Choque Térmico , Linfócitos , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA