Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.321
Filtrar
1.
Cell ; 185(16): 2936-2951.e19, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931021

RESUMO

We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígenos HLA-A , Antígenos de Histocompatibilidade Classe I , Humanos
2.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662412

RESUMO

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Assuntos
Anticorpos Monoclonais , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Antivirais , COVID-19 , Vacinas contra COVID-19/administração & dosagem , Epitopos , Humanos , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
3.
Cell ; 184(26): 6229-6242.e18, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910927

RESUMO

SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from acquired immunity. Much effort has been devoted to measuring these phenotypes, but understanding their impact on the course of the pandemic-especially that of immune escape-has remained a challenge. Here, we use a mathematical model to simulate the dynamics of wild-type and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility frequently increase epidemic severity, whereas those with partial immune escape either fail to spread widely or primarily cause reinfections and breakthrough infections. However, when these phenotypes are combined, a variant can continue spreading even as immunity builds up in the population, limiting the impact of vaccination and exacerbating the epidemic. These findings help explain the trajectories of past and present SARS-CoV-2 variants and may inform variant assessment and response in the future.


Assuntos
COVID-19/imunologia , COVID-19/transmissão , Evasão da Resposta Imune , SARS-CoV-2/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Simulação por Computador , Humanos , Imunidade , Modelos Biológicos , Reinfecção , Vacinação
4.
Cell ; 184(9): 2362-2371.e9, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33735608

RESUMO

The 501Y.V2 variants of SARS-CoV-2 containing multiple mutations in spike are now dominant in South Africa and are rapidly spreading to other countries. Here, experiments with 18 pseudotyped viruses showed that the 501Y.V2 variants do not confer increased infectivity in multiple cell types except for murine ACE2-overexpressing cells, where a substantial increase in infectivity was observed. Notably, the susceptibility of the 501Y.V2 variants to 12 of 17 neutralizing monoclonal antibodies was substantially diminished, and the neutralization ability of the sera from convalescent patients and immunized mice was also reduced for these variants. The neutralization resistance was mainly caused by E484K and N501Y mutations in the receptor-binding domain of spike. The enhanced infectivity in murine ACE2-overexpressing cells suggests the possibility of spillover of the 501Y.V2 variants to mice. Moreover, the neutralization resistance we detected for the 501Y.V2 variants suggests the potential for compromised efficacy of monoclonal antibodies and vaccines.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Evasão da Resposta Imune , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mutação/genética , SARS-CoV-2/genética
5.
Immunity ; 56(7): 1631-1648.e10, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392737

RESUMO

CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Diferenciação Celular , Proliferação de Células , Receptores de Antígenos de Linfócitos T
6.
Cell ; 171(6): 1259-1271.e11, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29107330

RESUMO

Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. VIDEO ABSTRACT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Antígenos HLA/genética , Neoplasias Pulmonares/imunologia , Evasão Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Apresentação de Antígeno , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Estudos de Coortes , Feminino , Antígenos HLA/imunologia , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único
7.
Immunity ; 55(8): 1501-1514.e3, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35777362

RESUMO

SARS-CoV-2 Omicron variant has presented significant challenges to current antibodies and vaccines. Herein, we systematically compared the efficacy of 50 human monoclonal antibodies (mAbs), covering the seven identified epitope classes of the SARS-CoV-2 RBD, against Omicron sub-variants BA.1, BA.1.1, BA.2, and BA.3. Binding and pseudovirus-based neutralizing assays revealed that 37 of the 50 mAbs lost neutralizing activities, whereas the others displayed variably decreased activities against the four Omicron sub-variants. BA.2 was found to be more sensitive to RBD-5 antibodies than the other sub-variants. Furthermore, a quaternary complex structure of BA.1 RBD with three mAbs showing different neutralizing potencies against Omicron provided a basis for understanding the immune evasion of Omicron sub-variants and revealed the lack of G446S mutation accounting for the sensitivity of BA.2 to RBD-5 mAbs. Our results may guide the application of the available mAbs and facilitate the development of universal therapeutic antibodies and vaccines against COVID-19.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Monoclonais , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Glicoproteínas de Membrana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
8.
Immunity ; 54(7): 1611-1621.e5, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34166623

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , Evasão da Resposta Imune , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Variação Antigênica/genética , COVID-19/imunologia , COVID-19/virologia , Especificidade de Hospedeiro , Humanos , Evasão da Resposta Imune/genética , Camundongos , Vison , Mutação , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
9.
Immunity ; 54(6): 1276-1289.e6, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33836142

RESUMO

Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , COVID-19/diagnóstico , Reações Cruzadas/imunologia , Epitopos/química , Epitopos/genética , Humanos , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica/imunologia , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Relação Estrutura-Atividade
10.
Immunity ; 52(1): 17-35, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940268

RESUMO

Cancer immunotherapy is a validated and critically important approach for treating patients with cancer. Given the vast research and clinical investigation efforts dedicated to advancing both endogenous and synthetic immunotherapy approaches, there is a need to focus on crucial questions and define roadblocks to the basic understanding and clinical progress. Here, we define ten key challenges facing cancer immunotherapy, which range from lack of confidence in translating pre-clinical findings to identifying optimal combinations of immune-based therapies for any given patient. Addressing these challenges will require the combined efforts of basic researchers and clinicians, and the focusing of resources to accelerate understanding of the complex interactions between cancer and the immune system and the development of improved treatment options for patients with cancer.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral/imunologia
11.
Immunity ; 53(3): 564-580.e9, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750334

RESUMO

Tumor immune escape limits durable responses to T cell therapy. Here, we examined how regulation and function of gene products that provide the target epitopes for CD8+ T cell anti-tumor immunity influence therapeutic efficacy and resistance. We used a CRISPR-Cas9-based method (CRISPitope) in syngeneic melanoma models to fuse the same model CD8+ T cell epitope to the C-termini of different endogenous gene products. Targeting melanosomal proteins or oncogenic CDK4R24C (Cyclin-dependent kinase 4) by adoptive cell transfer (ACT) of the same epitope-specific CD8+ T cells revealed diverse genetic and non-genetic immune escape mechanisms. ACT directed against melanosomal proteins, but not CDK4R24C, promoted melanoma dedifferentiation, and increased myeloid cell infiltration. CDK4R24C antigen persistence was associated with an interferon-high and T-cell-rich tumor microenvironment, allowing for immune checkpoint inhibition as salvage therapy. Thus, the choice of target antigen determines the phenotype and immune contexture of recurrent melanomas, with implications to the design of cancer immunotherapies.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/transplante , Epitopos de Linfócito T/imunologia , Melanoma/imunologia , Melanoma/terapia , Evasão Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Epitopos de Linfócito T/genética , Técnicas de Inativação de Genes , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia
12.
Immunity ; 53(4): 824-839.e10, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053331

RESUMO

CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Proteínas com Domínio T/imunologia , Animais , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Transcriptoma/imunologia , Microambiente Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
13.
Immunity ; 50(2): 520-532.e3, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30709739

RESUMO

Anti-HIV broadly neutralizing antibodies (bnAbs) have revealed vaccine targets on the virus's envelope (Env) protein and are themselves promising immunotherapies. The efficacy of bnAb-based therapies and vaccines depends in part on how readily the virus can escape neutralization. Although structural studies can define contacts between bnAbs and Env, only functional studies can define mutations that confer escape. Here, we mapped how all possible single amino acid mutations in Env affect neutralization of HIV by nine bnAbs targeting five epitopes. For most bnAbs, mutations at only a small fraction of structurally defined contact sites mediated escape, and most escape occurred at sites near, but not in direct contact with, the antibody. The Env mutations selected by two pooled bnAbs were similar to those expected from the combination of the bnAbs's independent action. Overall, our mutation-level antigenic atlas provides a comprehensive dataset for understanding viral immune escape and refining therapies and vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Evasão da Resposta Imune/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/genética , Epitopos/metabolismo , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Evasão da Resposta Imune/genética , Mutação , Testes de Neutralização , Ligação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(22): e2322479121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771871

RESUMO

The significance of biochemical cues in the tumor immune microenvironment in affecting cancer metastasis is well established, but the role of physical factors in the microenvironment remains largely unexplored. In this article, we investigated how the mechanical interaction between cancer cells and immune cells, mediated by extracellular matrix (ECM), influences immune escape of cancer cells. We focus on the mechanical regulation of macrophages' targeting ability on two distinct types of colorectal carcinoma (CRC) cells with different metastatic potentials. Our results show that macrophages can effectively target CRC cells with low metastatic potential, due to the strong contraction exhibited by the cancer cells on the ECM, and that cancer cells with high metastatic potential demonstrated weakened contractions on the ECM and can thus evade macrophage attack to achieve immune escape. Our findings regarding the intricate mechanical interactions between immune cells and cancer cells can serve as a crucial reference for further exploration of cancer immunotherapy strategies.


Assuntos
Neoplasias Colorretais , Matriz Extracelular , Macrófagos , Evasão Tumoral , Microambiente Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Macrófagos/imunologia , Humanos , Microambiente Tumoral/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/imunologia , Linhagem Celular Tumoral , Metástase Neoplásica , Animais , Camundongos , Comunicação Celular/imunologia
15.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38742520

RESUMO

The dynamic evolution of the severe acute respiratory syndrome coronavirus 2 virus is primarily driven by mutations in its genetic sequence, culminating in the emergence of variants with increased capability to evade host immune responses. Accurate prediction of such mutations is fundamental in mitigating pandemic spread and developing effective control measures. This study introduces a robust and interpretable deep-learning approach called PRIEST. This innovative model leverages time-series viral sequences to foresee potential viral mutations. Our comprehensive experimental evaluations underscore PRIEST's proficiency in accurately predicting immune-evading mutations. Our work represents a substantial step in utilizing deep-learning methodologies for anticipatory viral mutation analysis and pandemic response.


Assuntos
COVID-19 , Evasão da Resposta Imune , Mutação , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Humanos , COVID-19/virologia , COVID-19/imunologia , COVID-19/genética , Evasão da Resposta Imune/genética , Aprendizado Profundo , Evolução Molecular , Pandemias
16.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701420

RESUMO

The relationship between genotype and fitness is fundamental to evolution, but quantitatively mapping genotypes to fitness has remained challenging. We propose the Phenotypic-Embedding theorem (P-E theorem) that bridges genotype-phenotype through an encoder-decoder deep learning framework. Inspired by this, we proposed a more general first principle for correlating genotype-phenotype, and the P-E theorem provides a computable basis for the application of first principle. As an application example of the P-E theorem, we developed the Co-attention based Transformer model to bridge Genotype and Fitness model, a Transformer-based pre-train foundation model with downstream supervised fine-tuning that can accurately simulate the neutral evolution of viruses and predict immune escape mutations. Accordingly, following the calculation path of the P-E theorem, we accurately obtained the basic reproduction number (${R}_0$) of SARS-CoV-2 from first principles, quantitatively linked immune escape to viral fitness and plotted the genotype-fitness landscape. The theoretical system we established provides a general and interpretable method to construct genotype-phenotype landscapes, providing a new paradigm for studying theoretical and computational biology.


Assuntos
COVID-19 , Aprendizado Profundo , Genótipo , Fenótipo , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Humanos , COVID-19/virologia , COVID-19/genética , COVID-19/imunologia , Biologia Computacional/métodos , Algoritmos , Aptidão Genética
17.
Trends Biochem Sci ; 46(4): 270-283, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33303320

RESUMO

RNA G-quadruplexes (RG4s) are four-stranded structures known to control gene expression mechanisms, from transcription to protein synthesis, and DNA-related processes. Their potential impact on RNA biology allows these structures to shape cellular processes relevant to disease development, making their targeting for therapeutic purposes an attractive option. We review here the current knowledge on RG4s, focusing on the latest breakthroughs supporting the notion of transient structures that fluctuate dynamically in cellulo, their interplay with RNA modifications, their role in cell compartmentalization, and their deregulation impacting the host immune response. We emphasize RG4-binding proteins as determinants of their transient conformation and effectors of their biological functions.


Assuntos
Quadruplex G , Biologia , DNA , Biossíntese de Proteínas , RNA/metabolismo
18.
J Biol Chem ; 300(8): 107563, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002680

RESUMO

CD8+ T cell immunity, mediated by human leukocyte antigen (HLA) and T cell receptor (TCR), plays a critical role in conferring immune memory and protection against viral pathogens. The emergence of SARS-CoV-2 variants poses a serious challenge to the efficacy of current vaccines. Whereas numerous SARS-CoV-2 mutations associated with immune escape from CD8+ T cells have been documented, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored. Here, we studied an HLA-A24-restricted NYN epitope (Spike448-456) that elicits broad CD8+ T cell responses in COVID-19 patients characterized by a common TCR repertoire. Four natural mutations, N450K, L452Q, L452R, and Y453F, arose within the NYN epitope and have been transmitted in certain viral lineages. Our findings indicate that these mutations have minimal impact on the epitope's presentation by cell surface HLA, yet they diminish the affinities of their respective peptide-HLA complexes (pHLAs) for NYN peptide-specific TCRs, particularly L452R and Y453F. Furthermore, we determined the crystal structure of HLA-A24 loaded with the Y453F peptide (NYNYLFRLF), and subsequently a ternary structure of the public TCRNYN-I complexed to the original NYN-HLA-A24 (NYNYLYRLF). Our structural analysis unveiled that despite competent presentation by HLA, the mutant Y453F peptide failed to establish a stable TCR-pHLA ternary complex due to reduced peptide: TCR contacts. This study supports the idea that cellular immunity restriction is an important driving force behind viral evolution.

19.
Eur J Immunol ; 54(2): e2350635, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059519

RESUMO

Tumor immune escape is a major factor contributing to cancer progression and unresponsiveness to cancer therapies. Tumors can produce prostaglandin E2 (PGE2 ), an inflammatory mediator that directly acts on Natural killer (NK) cells to inhibit antitumor immunity. However, precisely how PGE2 influences NK cell tumor-restraining functions remains unclear. Here, we report that following PGE2 treatment, human NK cells exhibited altered expression of specific activating receptors and a reduced ability to degranulate and kill cancer targets. Transcriptional analysis uncovered that PGE2 also differentially modulated the expression of chemokine receptors by NK cells, inhibiting CXCR3 but increasing CXCR4. Consistent with this, PGE2-treated NK cells exhibited decreased migration to CXCL10 but increased ability to migrate toward CXCL12. Using live cell imaging, we showed that in the presence of PGE2 , NK cells were slower and less likely to kill cancer target cells following conjugation. Imaging the sequential stages of NK cell killing revealed that PGE2 impaired NK cell polarization, but not the re-organization of synaptic actin or the release of perforin itself. Together, these findings demonstrate that PGE2 affects multiple but select NK cell functions. Understanding how cancer cells subvert NK cells is necessary to more effectively harness the cancer-inhibitory function of NK cells in treatments.


Assuntos
Dinoprostona , Células Matadoras Naturais , Humanos , Dinoprostona/metabolismo , Linhagem Celular Tumoral , Imunidade
20.
J Virol ; 98(1): e0117623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054609

RESUMO

The ubiquitin-proteasome system is one of the most important protein stability regulation systems. It can precisely regulate host immune responses by targeting signaling proteins. TRAF6 is a crucial E3 ubiquitin ligase in host antiviral signaling pathway. Here, we discovered that EF-hand domain-containing protein D2 (EFHD2) collaborated with the E3 ubiquitin ligase Smurf1 to potentiate the degradation of TRAF6, hence facilitating RNA virus Siniperca chuatsi rhabdovirus infection. The mechanism analysis revealed that EFHD2 interacted with Smurf1 and enhanced its protein stability by impairing K48-linked polyubiquitination of Smurf1, thereby promoting Smurf1-catalyzed degradation of TRAF6. This study initially demonstrated a novel mechanism by which viruses utilize host EFHD2 to achieve immune escape and provided a new perspective on the exploration of mammalian innate immunity.IMPORTANCEViruses induce host cells to activate several antiviral signaling pathways. TNF receptor-associated factor 6 (TRAF6) plays an essential role in these pathways. Numerous studies have been done on the mechanisms of TRAF6-mediated resistance to viral invasion. However, little is known about the strategies that viruses employ to antagonize TRAF6-mediated antiviral signaling pathway. Here, we discovered that EFHD2 functions as a host factor to promote viral replication. Mechanistically, EFHD2 potentiates Smurf1 to catalyze the ubiquitin-proteasomal degradation of TRAF6 by promoting the deubiquitination and stability of Smurf1, which in turn inhibits the production of proinflammatory cytokines and interferons. Our study also provides a new perspective on mammalian resistance to viral invasion.


Assuntos
Proteínas de Ligação ao Cálcio , Doenças dos Peixes , Rhabdoviridae , Fator 6 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Viroses , Animais , Antivirais , Mamíferos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Viroses/metabolismo , Viroses/virologia , Rhabdoviridae/metabolismo , Peixes , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Proteínas de Ligação ao Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA