Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Heart Lung Transplant ; 43(2): 284-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37852513

RESUMO

BACKGROUND: No proven treatment after the development of primary graft dysfunction (PGD) is currently available. Here, we established a novel strategy of in vivo lung perfusion (IVLP) for the treatment of PGD. IVLP involves the application of an in vivo isolated perfusion circuit to an implanted lung. This study aimed to explore the effectiveness of IVLP vs conventional post-lung transplant (LTx) extracorporeal membrane oxygenation (ECMO) treatment using an experimental swine LTx PGD model. METHODS: After 1.5-hour warm ischemia of the donor lungs, a left LTx was performed. Following the confirmation of PGD development, pigs were divided into 3 groups (n = 5 each): control (no intervention), ECMO, and IVLP. After 2 hours of treatment, a 4-hour functional assessment was conducted, and samples were obtained. RESULTS: Significantly better oxygenation was achieved in the IVLP group (p ≤ 0.001). Recovery was confirmed immediately and maintained during the following 4-hour observation. The IVLP group also demonstrated better lung compliance than the control group (p = 0.045). A histologic evaluation showed that the lung injury score and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed significantly fewer injuries and a better result in the wet-to-dry weight ratio in the IVLP group. CONCLUSIONS: A 2-hour IVLP is technically feasible and allows for prompt recovery from PGD after LTx. The posttransplant short-duration IVLP strategy can complement or overcome the limitations of the current practice for donor assessment and PGD management.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Disfunção Primária do Enxerto , Animais , Suínos , Pulmão , Transplante de Pulmão/efeitos adversos , Perfusão , Lesão Pulmonar/patologia
2.
J Pharm Anal ; 13(10): 1195-1204, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38024854

RESUMO

In vivo lung perfusion (IVLP) is a novel isolated lung technique developed to enable the local, in situ administration of high-dose chemotherapy to treat metastatic lung cancer. Combination therapy using folinic acid (FOL), 5-fluorouracil (F), and oxaliplatin (OX) (FOLFOX) is routinely employed to treat several types of solid tumours in various tissues. However, F is characterized by large interpatient variability with respect to plasma concentration, which necessitates close monitoring during treatments using of this compound. Since plasma drug concentrations often do not reflect tissue drug concentrations, it is essential to utilize sample-preparation methods specifically suited to monitoring drug levels in target organs. In this work, in vivo solid-phase microextraction (in vivo SPME) is proposed as an effective tool for quantitative therapeutic drug monitoring of FOLFOX in porcine lungs during pre-clinical IVLP and intravenous (IV) trials. The concomitant extraction of other endogenous and exogenous small molecules from the lung and their detection via liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) enabled an assessment of FOLFOX's impact on the metabolomic profile of the lung and revealed the metabolic pathways associated with the route of administration (IVLP vs. IV) and the therapy itself. This study also shows that the immediate instrumental analysis of metabolomic samples is ideal, as long-term storage at -80 °C results in changes in the metabolite content in the sample extracts.

3.
J Thorac Cardiovasc Surg ; 165(1): e5-e20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577593

RESUMO

OBJECTIVES: Acute respiratory distress syndrome represents the devastating result of acute lung injury, with high mortality. Limited methods are available for rehabilitation of lungs affected by acute respiratory distress syndrome. Our laboratory has demonstrated rehabilitation of sepsis-injured lungs via normothermic ex vivo and in vivo perfusion with Steen solution (Steen). However, mechanisms responsible for the protective effects of Steen remain unclear. This study tests the hypothesis that Steen directly attenuates pulmonary endothelial barrier dysfunction and inflammation induced by lipopolysaccharide. METHODS: Primary pulmonary microvascular endothelial cells were exposed to lipopolysaccharide for 4 hours and then recovered for 8 hours in complete media (Media), Steen, or Steen followed by complete media (Steen/Media). Oxidative stress, chemokines, permeability, interendothelial junction proteins, and toll-like receptor 4-mediated pathways were assessed in pulmonary microvascular endothelial cells using standard methods. RESULTS: Lipopolysaccharide treatment of pulmonary microvascular endothelial cells and recovery in Media significantly induced reactive oxygen species, lipid peroxidation, expression of chemokines (eg, chemokine [C-X-C motif] ligand 1 and C-C motif chemokine ligand 2) and cell adhesion molecules (P-selectin, E-selectin, and vascular cell adhesion molecule 1), permeability, neutrophil transmigration, p38 mitogen-activated protein kinase and nuclear factor kappa B signaling, and decreased expression of tight and adherens junction proteins (zonula occludens-1, zonula occludens-2, and vascular endothelial-cadherin). All of these inflammatory pathways were significantly attenuated after recovery of pulmonary microvascular endothelial cells in Steen or Steen/Media. CONCLUSIONS: Steen solution preserves pulmonary endothelial barrier function after lipopolysaccharide exposure by promoting an anti-inflammatory environment via attenuation of oxidative stress, toll-like receptor 4-mediated signaling, and conservation of interendothelial junctions. These protective mechanisms offer insight into the advancement of methods for in vivo lung perfusion with Steen for the treatment of severe acute respiratory distress syndrome.


Assuntos
Lipopolissacarídeos , Síndrome do Desconforto Respiratório , Humanos , Células Endoteliais/metabolismo , Receptor 4 Toll-Like , Ligantes , Pulmão/metabolismo
4.
Semin Thorac Cardiovasc Surg ; 34(1): 337-346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33713831

RESUMO

Sepsis is the leading cause of acute respiratory distress syndrome (ARDS) in adults and carries a high mortality. Utilizing a previously validated porcine model of sepsis-induced ARDS, we sought to refine our novel therapeutic technique of in vivo lung perfusion (IVLP). We hypothesized that 2 hours of IVLP would provide non-inferior lung rehabilitation compared to 4 hours of treatment. Adult swine (n = 8) received lipopolysaccharide to develop ARDS and were placed on central venoarterial extracorporeal membrane oxygenation. Animals were randomized to 2 vs 4 hours of IVLP. The left pulmonary vessels were cannulated to IVLP using antegrade Steen solution. After IVLP treatment, the left lung was decannulated and reperfused for 4 hours. Total lung compliance and pulmonary venous gases from the right lung (control) and left lung (treatment) were sampled hourly. Biochemical analysis of tissue and bronchioalveolar lavage was performed along with tissue histologic assessment. Throughout IVLP and reperfusion, treated left lung PaO2/FiO2 ratio was significantly higher than the right lung control in the 2-hour group (332.2 ± 58.9 vs 264.4 ± 46.5, P = 0.01). In the 4-hour group, there was no difference between treatment and control lung PaO2/FiO2 ratio (258.5 ± 72.4 vs 253.2 ± 90.3, P = 0.58). Wet-to-dry weight ratios demonstrated reduced edema in the treated left lungs of the 2-hour group (6.23 ± 0.73 vs 7.28 ± 0.61, P = 0.03). Total lung compliance was also significantly improved in the 2-hour group. Two hours of IVLP demonstrated superior lung function in this preclinical model of sepsis-induced ARDS. Clinical translation of IVLP may shorten duration of mechanical support and improve outcomes.


Assuntos
Síndrome do Desconforto Respiratório , Sepse , Animais , Oxigenação por Membrana Extracorpórea , Pulmão/patologia , Perfusão/métodos , Soluções Farmacêuticas/administração & dosagem , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , Sepse/complicações , Sepse/patologia , Sepse/terapia , Suínos , Resultado do Tratamento
5.
Front Cell Dev Biol ; 10: 928152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092704

RESUMO

Adjuvant chemotherapy after pulmonary metastasectomy for colorectal cancer may reduce recurrence and improve survival rates; however, the benefits of this treatment are limited by the significant side effects that accompany it. The development of a novel in vivo lung perfusion (IVLP) platform would permit the localized delivery of high doses of chemotherapeutic drugs to target residual micrometastatic disease. Nonetheless, it is critical to continuously monitor the levels of such drugs during IVLP administration, as lung injury can occur if tissue concentrations are not maintained within the therapeutic window. This paper presents a simple chemical-biopsy approach based on sampling with a small nitinol wire coated with a sorbent of biocompatible morphology and evaluates its applicability for the near-real-time in vivo determination of oxaliplatin (OxPt) in a 72-h porcine IVLP survival model. To this end, the pigs underwent a 3-h left lung IVLP with 3 doses of the tested drug (5, 7.5, and 40 mg/L), which were administered to the perfusion circuit reservoir as a bolus after a full perfusion flow had been established. Along with OxPt levels, the biocompatible solid-phase microextraction (SPME) probes were employed to profile other low-molecular-weight compounds to provide spatial and temporal information about the toxicity of chemotherapy or lung injury. The resultant measurements revealed a rather heterogeneous distribution of OxPt (over the course of IVLP) in the two sampled sections of the lung. In most cases, the OxPt concentration in the lung tissue peaked during the second hour of IVLP, with this trend being more evident in the upper section. In turn, OxPt in supernatant samples represented ∼25% of the entire drug after the first hour of perfusion, which may be attributable to the binding of OxPt to albumin, its sequestration into erythrocytes, or its rapid nonenzymatic biotransformation. Additionally, the Bio-SPME probes also facilitated the extraction of various endogenous molecules for the purpose of screening biochemical pathways affected during IVLP (i.e., lipid and amino acid metabolism, steroidogenesis, or purine metabolism). Overall, the results of this study demonstrate that the minimally invasive SPME-based sampling approach presented in this work can serve as (pre)clinical and precise bedside medical tool.

6.
J Thorac Cardiovasc Surg ; 161(5): 1626-1635, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32354628

RESUMO

OBJECTIVES: To determine the dose-limiting toxicity of oxaliplatin chemotherapy delivered by in vivo lung perfusion (IVLP). To allow assessment of subacute toxicities, we aimed to develop a 72-hour porcine IVLP survival model. METHODS: In total, 12 Yorkshire male pigs were used. Left lung IVLP was performed for 3 hours. At 72 hours postoperatively, computed tomography imaging of the lungs was performed before the pigs were killed. Lung physiology, airway dynamics, gross appearance, and histology were assessed before and during IVLP, at reperfusion, and when the pigs were euthanized. An accelerated titration dose-escalation study design was employed whereby oxaliplatin doses were sequentially doubled provided no clinically significant toxicity was observed, defined as an arterial partial pressure of oxygen to fraction of inspired oxygen ratio <300 mm Hg or severe acute lung injury on biopsy. RESULTS: After an initial training phase, no mortality or adverse events related to the procedure were observed. There was no lung injury observed at the time of IVLP for any case. At sacrifice, clinically significant lung injury was observed at 80 mg/L oxaliplatin, with an arterial partial pressure of oxygen to fraction of inspired oxygen ratio of 112 mm Hg. Mild and subclinical lung injury was observed at 40 mg/L, with this dose being repeated to confirm safety. CONCLUSIONS: A stable and reproducible porcine 3-day IVLP survival model was established that will allow toxicity assessment of agents delivered by IVLP. Oxaliplatin delivered by IVLP showed delayed-onset toxicity that was not apparent at the time of reperfusion, with a maximal-tolerated dose of 40 mg/L. This information will inform initiation of a clinical trial examining IVLP delivery of oxaliplatin at our institution.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/efeitos dos fármacos , Oxaliplatina/toxicidade , Perfusão/métodos , Animais , Modelos Animais de Doenças , Pulmão/fisiopatologia , Masculino , Suínos , Testes de Toxicidade Subaguda
7.
J Thorac Cardiovasc Surg ; 155(1): 440-448.e2, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29033043

RESUMO

BACKGROUND: Sepsis is the leading cause of lung injury in adults and can lead to acute respiratory distress syndrome (ARDS). Using a novel technique of isolated in vivo lung perfusion (IVLP), we hypothesized that normothermic IVLP will improve oxygenation and compliance in a porcine model of sepsis-induced lung injury. METHODS: Mature adult swine (n = 8) were administered lipopolysaccharide (LPS; 50 µg/kg over 2 hours) via the external jugular vein, followed by sternotomy and central extracorporeal membrane oxygenation (ECMO) cannulation (right atrium to ascending aorta). The left pulmonary artery (inflow) and left superior and inferior pulmonary veins (outflow) were dissected out and cannulated to deliver isolated perfusion to the left lung. After 4 hours of normothermic IVLP with Steen solution, the left lung then underwent 4 hours of reperfusion after IVLP decannulation. Airway pressures and lung-specific pulmonary vein blood gases from the right lung (LPS control) and left lung (LPS + IVLP) of the same animal were compared. RESULTS: All animals demonstrated a significant reduction in the ratio of partial pressure of oxygen in arterial blood (PaO2)/fraction of inspired oxygen (FiO2) (P/F ratio) and total lung compliance at 2 hours after the start of LPS infusion (mean, 469 ± 19.7 mm Hg vs 222.2 ± 21.4 mm Hg; P < .0001). After reperfusion, 6 animals (75%) exhibited improved lung function, allowing for ECMO decannulation. Lung-specific oxygenation was superior in the left lung after 4 hours of reperfusion (mean, 310.5 ± 54.7 mm Hg vs 201.1 ± 21.7 mm Hg; P = .01). Similarly, total lung compliance improved after IVLP of the left lung. The lung wet weight to dry weight ratio demonstrated reduced edema in rehabilitated left lungs (mean, 6.5 ± 0.3 vs 7.5 ± 0.4; P = .04). CONCLUSIONS: IVLP successfully rehabilitated LPS-injured lungs compared to ECMO support alone in this preclinical porcine model.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Lesão Pulmonar/terapia , Pulmão , Perfusão/métodos , Síndrome do Desconforto Respiratório/terapia , Sepse/complicações , Animais , Gasometria/métodos , Modelos Animais de Doenças , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Complacência Pulmonar , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Consumo de Oxigênio , Troca Gasosa Pulmonar , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/fisiopatologia , Suínos
8.
J Thorac Cardiovasc Surg ; 147(2): 774-81: discussion 781-2, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24290703

RESUMO

OBJECTIVES: In vivo lung perfusion (IVLP) is an emergent strategy to treat lung metastases because it allows localized delivery of chemotherapy with minimal systemic exposure. Previously, short-term (± 30 minutes) IVLP resulted in variable efficacy and significant lung toxicity. We hypothesize that a modified IVLP strategy derived from an ex vivo lung perfusion technique could minimize lung injury. Our objective was to demonstrate the feasibility and safety of a modified prolonged (4 hours) IVLP. METHODS: Six Yorkshire pigs were used for the experiments. A thoracotomy was performed, the left pulmonary artery and pulmonary veins were cannulated, and the left lung was isolated in situ. IVLP was performed at normothermia for 4 hours using Steen Solution (XVIVO Perfusion, Göteburg, Sweden) as perfusate. The flow rate was 16% of estimated cardiac output and left atrial pressure was maintained between 3 and 5 mm Hg. Perfusate was deoxygenated and supplied with CO2 to physiologic levels before entering the lungs. A protective mode of ventilation was used. After IVLP, the left lung was allowed to reperfuse for additional 4 hours. Airway dynamics, gas exchange, and pulmonary vascular resistance were used to assess left lung physiology. Histologic signs of lung injury were assessed before and after IVLP, and 4 hours after reperfusion. RESULTS: Lung function parameters were stable throughout the 4-hour IVLP and during reperfusion. No significant histologic evidence of acute lung injury was observed. CONCLUSIONS: Four hours of IVLP is feasible without adding significant lung injury. Prolonged perfusion time and a protective protocol might provide safer and more efficacious treatment of pulmonary metastases.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Pulmão/irrigação sanguínea , Perfusão/métodos , Circulação Pulmonar , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Função do Átrio Esquerdo , Pressão Atrial , Débito Cardíaco , Estudos de Viabilidade , Pulmão/patologia , Pulmão/fisiopatologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Modelos Animais , Perfusão/efeitos adversos , Troca Gasosa Pulmonar , Respiração Artificial , Testes de Função Respiratória , Mecânica Respiratória , Suínos , Fatores de Tempo , Resistência Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA