Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(3): 713-721.e9, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32778225

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health. The development of a vaccine is urgently needed for the prevention and control of COVID-19. Here, we report the pilot-scale production of an inactivated SARS-CoV-2 vaccine candidate (BBIBP-CorV) that induces high levels of neutralizing antibodies titers in mice, rats, guinea pigs, rabbits, and nonhuman primates (cynomolgus monkeys and rhesus macaques) to provide protection against SARS-CoV-2. Two-dose immunizations using 2 µg/dose of BBIBP-CorV provided highly efficient protection against SARS-CoV-2 intratracheal challenge in rhesus macaques, without detectable antibody-dependent enhancement of infection. In addition, BBIBP-CorV exhibits efficient productivity and good genetic stability for vaccine manufacture. These results support the further evaluation of BBIBP-CorV in a clinical trial.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Avaliação Pré-Clínica de Medicamentos/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas de Produtos Inativados/uso terapêutico , Vacinas Virais/uso terapêutico , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/genética , COVID-19 , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Feminino , Cobaias , Imunogenicidade da Vacina , Macaca fascicularis , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Pneumonia Viral/virologia , Coelhos , Ratos , Ratos Wistar , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos , Células Vero , Vacinas Virais/efeitos adversos
2.
Eur J Immunol ; 54(3): e2350664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088236

RESUMO

COVID-19 is a systemic inflammatory disease initiated by SARS-CoV-2 virus infection. Multiple vaccines against the Wuhan variant of SARS-CoV-2 have been developed including a whole virion beta-propiolactone-inactivated vaccine based on the B.1.1 strain (CoviVac). Since most of the population has been vaccinated by targeting the original or early variants of SARS-CoV-2, the emergence of novel mutant variants raises concern over possible evasion of vaccine-induced immune responses. Here, we report on the mechanism of protection by CoviVac, a whole virion-based vaccine, against the Omicron variant. CoviVac-immunized K18-hACE2 Tg mice were protected against both prototype B.1.1 and BA.1-like (Omicron) variants. Subsequently, vaccinated K18-hACE2 Tg mice rapidly cleared the infection via cross-reactive T-cell responses and cross-reactive, non-neutralizing antibodies recognizing the Omicron variant Spike protein. Thus, our data indicate that efficient protection from SARS-CoV-2 variants can be achieved by the orchestrated action of cross-reactive T cells and non-neutralizing antibodies.


Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , gama-Globulinas , Animais , Humanos , Camundongos , Vacinas de Produtos Inativados , Formação de Anticorpos , COVID-19/prevenção & controle , Linfócitos T , Vírion , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Immunology ; 172(2): 313-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462236

RESUMO

This study longitudinally evaluated the immune response in individuals over a year after receiving three doses of an inactivated SARS-CoV-2 vaccine, focusing on reactions to Omicron breakthrough infections. From 63 blood samples of 37 subjects, results showed that the third booster enhanced the antibody response against Alpha, Beta, and Delta VOCs but was less effective against Omicron. Although antibody titres decreased post-vaccination, SARS-CoV-2-specific T-cell responses, both CD4+ and CD8+, remained stable. Omicron breakthrough infections significantly improved neutralization against various VOCs, including Omicron. However, the boost in antibodies against WT, Alpha, Beta, and Delta variants was more pronounced. Regarding T cells, breakthrough infection predominantly boosted the CD8+ T-cell response, and the intensity of the spike protein-specific T-cell response was roughly comparable between WT and Omicron BA.5.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinas de Produtos Inativados , Humanos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Feminino , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Adulto , Pessoa de Meia-Idade , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD8-Positivos/imunologia , Vacinação/métodos , Imunização Secundária , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T CD4-Positivos/imunologia , Idoso , Linfócitos T/imunologia , Infecções Irruptivas
4.
J Med Virol ; 96(4): e29577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572977

RESUMO

Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Leucócitos Mononucleares , NF-kappa B , SARS-CoV-2 , Vacinas de Produtos Inativados , Imunidade , Análise de Sequência de RNA , Anticorpos Antivirais
5.
Fish Shellfish Immunol ; 144: 109243, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995892

RESUMO

Large yellow croaker (Larimichthys crocea) farm industry in China suffered from huge economic loss caused by Pseudomonas plecoglossicida infection. Due to multi-antibiotic resistance, efficient vaccines are urgent to be developed to combat this pathogen. In this study, an inactivated vaccine was developed with an aluminium adjuvant (Alum) plus ginseng stem and leaf saponins (GSLS). As a result, the relative percentage survival (RPS) against P. plecoglossicida was up to 67.8 %. Comparatively, RPS of groups that vaccinated with only inactivated vaccine and vaccine containing Alum or Montanide™ 763A as adjuvant were 21.8 %, 32.2 % and 62.1 %, respectively. Assays for total serum protein and serum lysozyme activity in group vaccinated with inactivated vaccine plus Alum + GSLS adjuvant were significantly higher than that in control group. Moreover, specific antibody in serum elicited a rapid and persistent level. According to the expression of some immune related genes, inactivated vaccine plus Alum + GSLS adjuvant induced a stronger cellular immune response which was vital to defend against P. plecoglossicida. In conclusion, our study demonstrated that the compound Alum and GSLS adjuvant is a potential adjuvant system to develop LYC vaccine.


Assuntos
Panax , Perciformes , Infecções por Pseudomonas , Saponinas , Animais , Alumínio , Vacinas de Produtos Inativados , Saponinas/farmacologia , Adjuvantes Imunológicos/farmacologia , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/veterinária , Folhas de Planta
6.
Fish Shellfish Immunol ; 144: 109262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040135

RESUMO

Anguillid herpesvirus 1 (AngHV), the causative agent of "mucus sloughing and hemorrhagic septicemia disease", causes serious infectious diseases in farmed eel. Among the effective prevention and control strategies, vaccination is one of the most effective approaches. However, no vaccine for AngHV is available. Our study developed a formalin-inactivated AngHV vaccine and evaluated its performance in American eels. Initially, AngHV-FJ, a strain of AngHV, was inactivated completely by 0.1 % formaldehyde, mixed with adjuvant Montanide ISA 763 A VG (763A). Then, vaccines containing different amount of antigen (3 × 106 PFU, 3 × 105 PFU, 3 × 104 PFU, 3 × 103 PFU) were immunized in each American eels. The results showed that the 3 × 105 PFU/fish was the proper dose. The inactivated AngHV vaccine was proven safe for American eels by back intramuscular injection. The results of twice immunization showed that antibody production peaked in the 8th week after the first immunization, and the antibody titer was 1:64,000. Furthermore, the immunized fishes challenged with AngHV (105 PFU/ml immersion) showed a significantly lower incidence rate (33.33 %) than the control group (95.65 %). The survival of the fish in the vaccine group (94.44 %) was significantly higher than the control group (60.87 %). The relative survival rate of the vaccinated group was 85.80 %. Also, vaccine group tissue collected at 7th d post-challenge showed reduced tissue damage and a lower virus load than the control group. The expression of cytokines of IL-1ß, IFN-α, IFN-γ, Mx1, RIG-1, and IRF-3, were significantly lower in the vaccine group than the control group at the 7th and 14th d post-challenge. Overall, the formalin-inactivated AngHV vaccine was safe and had immune protective effects against AngHV infection.


Assuntos
Anguilla , Doenças dos Peixes , Animais , Vacinas de Produtos Inativados , Formaldeído/farmacologia , Imunidade
7.
Fish Shellfish Immunol ; 145: 109353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184180

RESUMO

In the past decade, the outbreak of Streptococcus agalactiae has caused significant economic losses in tilapia farming. Vaccine immunization methods and strategies have gradually evolved from single-mode to multi-mode overall prevention and control strategies. In this study, an inactivated vaccine of S. agalactiae with a chitosan oligosaccharide (COS) adjuvant was constructed using different administration methods: intraperitoneal injection (Ip), immersion combined with intraperitoneal injection (Im + Ip), immersion combined with oral administration (Im + Or), and oral administration (Or). Safety analysis revealed no adverse effects on tilapia, and the vaccine significantly promoted fish growth and development when administered through Im + Or or Or immunization. Following vaccination, innate immunity parameters including SOD, ACP and CAT activities were all significantly enhanced. Additionally, specific serum IgM antibodies reached their highest level at the 6th week post vaccination. Skin and intestinal mucus IgT antibodies reached peaked at the 6th and 7th week post vaccination, respectively. The relative peak expression values for IL-8, IL-12, MHC-I, MHC-II, IgM, IgT, CD4, CD8, TNFα, IFNγ from Im + Ip group were significantly higher than those in Ip group, Im + Or group and Or group in most cases (p < 0.05). Importantly, the relative protection survival of Im + Ip group was the highest (78.6%), followed by the Ip group (71.4%), the Or group (64.3%) and the Im + Or group (57.1%). In summary, this study encourages further research on multi-channel immunization strategies of other kinds of vaccines in other aquatic economic animals to improve their disease resistance.


Assuntos
Quitosana , Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Streptococcus agalactiae , Vacinas Bacterianas , Vacinação , Imunidade Inata , Imunoglobulina M , Oligossacarídeos
8.
Fish Shellfish Immunol ; 151: 109691, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871138

RESUMO

Viral hemorrhagic septicemia virus (VHSV) poses a significant threat to the aquaculture industry, prompting the need for effective preventive measures. Here, we developed an inactivated VHSV and revealed the molecular mechanisms underlying the host's protective response against VHSV. The vaccine was created by treating VHSV with 0.05 % formalin at 16 °C for 48 h, which was determined to be the most effective inactivation method. Compared with nonvaccinated fish, vaccinated fish exhibited a remarkable increase in survival rate (99 %) and elevated levels of serum neutralizing antibodies, indicating strong immunization. To investigate the gene changes induced by vaccination, RNA sequencing was performed on spleen samples from control and vaccinated fish 14 days after vaccination. The analysis revealed 893 differentially expressed genes (DEGs), with notable up-regulation of immune-related genes such as annexin A1a, coxsackievirus and adenovirus receptor homolog, V-set domain-containing T-cell activation inhibitor 1-like, and heat shock protein 90 alpha class A member 1 tandem duplicate 2, indicating a vigorous innate immune response. Furthermore, KEGG enrichment analysis highlighted significant enrichment of DEGs in processes related to antigen processing and presentation, necroptosis, and viral carcinogenesis. GO enrichment analysis further revealed enrichment of DEGs related to the regulation of type I interferon (IFN) production, type I IFN production, and negative regulation of viral processes. Moreover, protein-protein interaction network analysis identified central hub genes, including IRF3 and HSP90AA1.2, suggesting their crucial roles in coordinating the immune response elicited by the vaccine. These findings not only confirm the effectiveness of our vaccine formulation but also offer valuable insights into the underlying immunological mechanisms, which can be valuable for future vaccine development and disease management in the aquaculture industry.


Assuntos
Bass , Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Novirhabdovirus/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Septicemia Hemorrágica Viral/prevenção & controle , Septicemia Hemorrágica Viral/imunologia , Bass/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Imunidade Inata , Genótipo , Vacinação/veterinária , Imunização/veterinária
9.
Pharmacoepidemiol Drug Saf ; 33(1): e5696, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715471

RESUMO

BACKGROUND AND PURPOSE: Liver injury after Covid-19 vaccine has been described, although the incidence was not well established. We aimed to compare cumulative incidence of new onset liver test alteration after Covid-19 vaccination, and to compare with an historical control of influenza vaccination. METHODS: We conducted a retrospective cohort study which included adults who received at least one dose of Covid-19 vaccine from January 1 to May 30, 2021 and a control group who received a single dose of influenza vaccine during 2019, in a tertiary medical center from Argentina. RESULTS: We included 29 798 patients in Covid-19 vaccine group and 24 605 in influenza vaccine group. Liver function tests were performed in 7833 (26.9%) in Covid-19 vaccine group and 8459 (34.37%) in influenza vaccine group. Cumulative incidence at 90 days of new onset liver enzyme test alteration was 4.7 per 1000 (95% 4.0-5.5) for Covid-19 group, and 5.1 per 1000 (95% 4.3-6.1) for the influenza vaccine group (p value = 0.489). Two patients in the Covid-19 vaccine group developed immune mediated liver injury. CONCLUSIONS: We found no difference in liver test alteration between groups. These findings support the safety of Covid-19 vaccines. While we have identified two cases that are consistent with immune mediated liver injury following COVID-19 vaccination, we believe that the available data is insufficient to attribute them solely to the vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Testes de Função Hepática , Adulto , Humanos , Grupos Controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra Influenza/administração & dosagem , Estudos Retrospectivos , Vacinação/efeitos adversos
10.
BMC Vet Res ; 20(1): 43, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308297

RESUMO

BACKGROUND: Bovine viral diarrhea (BVD) is an acute febrile infectious disease caused by the bovine viral diarrhea virus (BVDV), which has brought huge economic losses to the world's cattle industry. At present, commercial inactivated BVDV vaccines may cause some adverse reactions during use. This study aims to develop a safer and more efficient inactivated BVDV vaccine. METHODS: Here, we described the generation and preclinical efficacy of a hydrogen peroxide (H2O2) inactivated BVDV type 1 vaccine in mice, and administered it separately with commercial vaccine (formaldehyde inactivated) in mice to study its efficacy. RESULTS: The BVDV type 1 IgG, IFN- γ, IL-4 and neutralizing antibody in the serum of the H2O2 inactivated vaccine group can be maintained in mice for 70 days. The IgG level reached its maximum value of 0.67 on the 42nd day, significantly higher than the commercial formaldehyde inactivated BVDV type 1 vaccine. IFN- γ and IL-4 reached their maximum values on the 28th day after immunization, at 123.16 pg/ml and 143.80 pg/ml, respectively, slightly higher than commercial vaccines, but the effect was not significant. At the same time the BVDV-1 neutralizing antibody titer reached a maximum of 12 Nu on the 42nd day post vaccination. CONCLUSIONS: The H2O2 inactivated BVDV vaccine has good safety and immunogenicity, which provides a potential solution for the further development of an efficient and safe BVDV vaccine.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Vacinas Virais , Animais , Bovinos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Diarreia/veterinária , Formaldeído , Peróxido de Hidrogênio , Imunoglobulina G , Interleucina-4 , Vacinas de Produtos Inativados
11.
BMC Vet Res ; 20(1): 267, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902724

RESUMO

BACKGROUND: Scale drop disease virus (SDDV) threatens Asian seabass (Lates calcarifer) aquaculture production by causing scale drop disease (SDD) in Asian seabass. Research on the development of SDDV vaccines is missing an in-depth examination of long-term immunity and the immune reactions it provokes. This study investigated the long-term immune protection and responses elicited by an SDDV vaccine. The research evaluated the effectiveness of a formalin-inactivated SDDV vaccine (SDDV-FIV) using both prime and prime-booster vaccination strategies in Asian seabass. Three groups were used: control (unvaccinated), single-vaccination (prime only), and booster (prime and booster). SDDV-FIV was administered via intraperitoneal route, with a booster dose given 28 days post-initial vaccination. RESULTS: The immune responses in vaccinated fish (single and booster groups) showed that SDDV-FIV triggered both SDDV-specific IgM and total IgM production. SDDV-specific IgM levels were evident until 28 days post-vaccination (dpv) in the single vaccination group, while an elevated antibody response was maintained in the booster group until 70 dpv. The expression of immune-related genes (dcst, mhc2a1, cd4, ighm, cd8, il8, ifng, and mx) in the head kidney and peripheral blood lymphocytes (PBLs) of vaccinated and challenged fish were significantly upregulated within 1-3 dpv and post-SDDV challenge. Fish were challenged with SDDV at 42 dpv (challenge 1) and 70 dpv (challenge 2). In the first challenge, the group that received booster vaccinations demonstrated notably higher survival rates than the control group (60% versus 20%, P < 0.05). However, in the second challenge, while there was an observable trend towards improved survival rates for the booster group compared to controls (42% versus 25%), these differences did not reach statistical significance (P > 0.05). These findings suggest that the SDDV-FIV vaccine effectively stimulates both humoral and cellular immune responses against SDDV. Booster vaccination enhances this response and improves survival rates up to 42 dpv. CONCLUSIONS: This research provides valuable insights into the development of efficient SDDV vaccines and aids in advancing strategies for immune modulation to enhance disease management in the aquaculture of Asian seabass.


Assuntos
Doenças dos Peixes , Imunização Secundária , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Imunização Secundária/veterinária , Iridoviridae/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/imunologia , Formaldeído , Anticorpos Antivirais/sangue , Vacinação/veterinária , Imunoglobulina M/sangue , Perciformes/imunologia , Bass/imunologia
12.
Neurol Sci ; 45(4): 1707-1717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37940750

RESUMO

BACKGROUND AND OBJECTIVES: Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction. No cohort study has investigated the efficacy of inactivated vaccines in patients with MG. MATERIALS AND METHODS: This prospective observational cohort study included healthy controls (HCs) and patients with MG with or without immunosuppressive treatment. Vaccination occurred between May and December 2021. Patients with MG were subjected to a clinical scale assessment for disease severity. The neutralization antibodies (Nabs) levels were measured in all participants using the pseudovirus neutralization assay. RESULTS: Twenty-one patients (Female/Male:10/11); age median [interquartile range (IQR)]: 43 [30, 56]) were included in this study. Two patients (2/21) were lost during follow-up after enrollment. No sustained vaccine-related adverse effects occurred in any visit of patients with MG. No exacerbation of MG was observed. Acetylcholine receptor antibody (AChR-Ab) levels showed no statistically significant changes between the first and second visit (median [IQR]: 2.22 [0.99, 2.63] nmol/L vs. 1.54 [1.07, 2.40] nmol/L, p = 0.424). However, levels of AChR-Ab decreased at the third visit (median [IQR]: 2.22 [0.96, 2.70] nmol/L vs. 1.69 [0.70, 1.85] nmol/L, p = 0.011). No statistically significant difference in Nabs levels was found between HCs and patients with MG (median [IQR]: 102.89 [33.13, 293.86] vs. 79.29 [37.50, 141.93], p = 0.147). DISCUSSION: The safety of the SARS-CoV-2 inactivated vaccine was reconfirmed in this study. No significant difference in Nabs level was found between patients with MG and HCs. Nabs levels correlated with AChR-Ab levels before vaccination and ΔAChR-Ab levels.


Assuntos
COVID-19 , Miastenia Gravis , Adulto , Feminino , Humanos , Masculino , Estudos de Coortes , Vacinas contra COVID-19/efeitos adversos , Miastenia Gravis/tratamento farmacológico , Estudos Prospectivos , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos , Pessoa de Meia-Idade
13.
Biochemistry (Mosc) ; 89(3): 574-582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648774

RESUMO

Rabies is a zoonotic disease with high lethality. Most human deaths are associated with the bites received from dogs and cats. Vaccination is the most effective method of preventing rabies disease in both animals and humans. In this study, the ability of an adjuvant based on recombinant Salmonella typhimurium flagellin to increase protective activity of the inactivated rabies vaccine in mice was evaluated. A series of inactivated dry culture vaccine for dogs and cats "Rabikan" (strain Shchelkovo-51) with addition of an adjuvant at various dilutions were used. The control preparation was a similar series of inactivated dry culture vaccine without an adjuvant. Protective activity of the vaccine preparations was evaluated by the NIH potency test, which is the most widely used and internationally recommended method for testing effectiveness of the inactivated rabies vaccines. The value of specific activity of the tested rabies vaccine when co-administered with the adjuvant was significantly higher (48.69 IU/ml) than that of the vaccine without the adjuvant (3.75 IU/ml). Thus, recombinant flagellin could be considered as an effective adjuvant in the composition of future vaccine preparations against rabies virus.


Assuntos
Adjuvantes Imunológicos , Flagelina , Vacina Antirrábica , Raiva , Vacinas de Produtos Inativados , Vacina Antirrábica/imunologia , Vacina Antirrábica/administração & dosagem , Animais , Flagelina/imunologia , Camundongos , Raiva/prevenção & controle , Raiva/imunologia , Vacinas de Produtos Inativados/imunologia , Cães , Vírus da Raiva/imunologia , Salmonella typhimurium/imunologia , Feminino , Gatos
14.
J Fish Dis ; 47(7): e13945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523313

RESUMO

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.


Assuntos
Doenças dos Peixes , Linguados , Nodaviridae , Infecções por Vírus de RNA , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Linguados/imunologia , Linguados/virologia , Nodaviridae/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/prevenção & controle , Infecções por Vírus de RNA/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinação/veterinária , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas/administração & dosagem
15.
Inflammopharmacology ; 32(2): 1025-1038, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308795

RESUMO

BACKGROUND: This study aimed to evaluate the immunogenicity and safety of different types of poliovirus vaccines. METHODS: A randomized, blinded, single-center, parallel-controlled design was employed, and 360 infants aged ≥ 2 months were selected as study subjects. They were randomly assigned to bOPV group (oral Sabin vaccine) and sIPV group (Sabin strain inactivated polio vaccine), with 180 infants in each group. Adverse reaction events in the vaccinated subjects were recorded. The micro-neutralization test using cell culture was conducted to determine the geometric mean titer (GMT) of neutralizing antibodies against poliovirus types I, II, and III in different groups, and the seroconversion rates were calculated. RESULTS: Both groups exhibited a 100% seropositivity rate after booster immunization. The titers of neutralizing antibodies for the three types were predominantly distributed within the range of 1:128 to 1:512. The fold increase of type I antibodies differed markedly between the two groups (P < 0.05). Moreover, the fold increase of type II and type III antibodies for poliovirus differed slightly between the two groups (P > 0.05). The fourfold increase rate in sIPV group was drastically superior to that in bOPV group (P < 0.05). When comparing the post-immunization GMT levels of type I antibodies in individuals who completed the full course of spinal muscular atrophy vaccination, bOPV group showed greatly inferior levels to sIPV group (P < 0.05). For type II and type III antibodies, individuals in bOPV group demonstrated drastically superior post-immunization GMT levels to those in sIPV group (P < 0.05). The incidence of adverse reactions between the bOPV and sIPV groups differed slightly (P > 0.05). CONCLUSION: These findings indicated that both the oral vaccine and inactivated vaccine had good safety and immunogenicity in infants aged ≥ 2 months. The sIPV group generated higher levels of neutralizing antibodies in serum, particularly evident in the post-immunization GMT levels for types II and III.


Assuntos
Poliomielite , Poliovirus , Humanos , Lactente , Anticorpos Neutralizantes , Anticorpos Antivirais , Esquemas de Imunização , Poliomielite/prevenção & controle , Poliomielite/induzido quimicamente , Vacina Antipólio Oral/efeitos adversos , Observação
16.
BMC Med ; 21(1): 160, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106390

RESUMO

BACKGROUND: The two inactivated SARS-CoV-2 vaccines, CoronaVac and BBIBP-CorV, have been widely used to control the COVID-19 pandemic. The influence of multiple factors on inactivated vaccine effectiveness (VE) during long-term use and against variants is not well understood. METHODS: We selected published or preprinted articles from PubMed, Embase, Scopus, Web of Science, medRxiv, BioRxiv, and the WHO COVID-19 database by 31 August 2022. We included observational studies that assessed the VE of completed primary series or homologous booster against SARS-CoV-2 infection or severe COVID-19. We used DerSimonian and Laird random-effects models to calculate pooled estimates and conducted multiple meta-regression with an information theoretic approach based on Akaike's Information Criterion to select the model and identify the factors associated with VE. RESULTS: Fifty-one eligible studies with 151 estimates were included. For prevention of infection, VE associated with study region, variants, and time since vaccination; VE was significantly decreased against Omicron compared to Alpha (P = 0.021), primary series VE was 52.8% (95% CI, 43.3 to 60.7%) against Delta and 16.4% (95% CI, 9.5 to 22.8%) against Omicron, and booster dose VE was 65.2% (95% CI, 48.3 to 76.6%) against Delta and 20.3% (95% CI, 10.5 to 28.0%) against Omicron; primary VE decreased significantly after 180 days (P = 0.022). For the prevention of severe COVID-19, VE associated with vaccine doses, age, study region, variants, study design, and study population type; booster VE increased significantly (P = 0.001) compared to primary; though VE decreased significantly against Gamma (P = 0.034), Delta (P = 0.001), and Omicron (P = 0.001) compared to Alpha, primary and booster VEs were all above 60% against each variant. CONCLUSIONS: Inactivated vaccine protection against SARS-CoV-2 infection was moderate, decreased significantly after 6 months following primary vaccination, and was restored by booster vaccination. VE against severe COVID-19 was greatest after boosting and did not decrease over time, sustained for over 6 months after the primary series, and more evidence is needed to assess the duration of booster VE. VE varied by variants, most notably against Omicron. It is necessary to ensure booster vaccination of everyone eligible for SARS-CoV-2 vaccines and continue monitoring virus evolution and VE. TRIAL REGISTRATION: PROSPERO, CRD42022353272.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Análise de Regressão , Vacinas de Produtos Inativados
17.
J Virol ; 96(8): e0016922, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35343762

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Assuntos
Vacinas contra COVID-19 , Infecções por Coronavirus , Proteção Cruzada , Glicoproteína da Espícula de Coronavírus , Vacinas de Produtos Inativados , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Quirópteros , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Proteção Cruzada/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Produtos Inativados/imunologia , Zoonoses Virais/prevenção & controle
18.
J Med Virol ; 95(1): e28378, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478410

RESUMO

BACKGROUND: To investigate the safety of inactivated COVID-19 vaccine in Chinese pregnant women and their fetuses when inoculated during the peri-pregnancy period. METHODS: Eligible pregnant women were prospectively collected and divided into a vaccine group (n = 93) and control group (n = 160) according to whether they had been vaccinated against COVID-19 within 3 months before their last menstruation period (LMP) and after pregnancy. Demographic data of couples, complications during pregnancy and delivery of pregnant women, and data of newborns at birth were collected. RESULTS: Sixty-six women were vaccinated with a median time of 35.5 (range = 0-91) days before LMP, and 27 women were vaccinated with a median time of 17 (range = 1-72) days after LMP. The incidence of premature rupture of membrane (PROM) in the vaccine group was significantly higher than that in the control group (16.13% vs. 6.88%, p = 0.019). Multivariate logistic regression analysis revealed that maternal peri-pregnancy COVID-19 vaccination was not an independent risk factor for PROM (odds ratio: 2.407, 95% confidence interval: 0.932-6.216, p = 0.069). There was no difference in the incidence of other complications during pregnancy and delivery between the two groups. A total of 253 neonates were delivered, including two cases with congenital abnormalities in each group. The incidence of congenital abnormalities between the two groups was similar (2.15% vs. 1.25%, p = 0.626). There was no difference in neonatal length, weight, head circumference, and Apgar score between the two groups (p > 0.05), but the incidence of neonatal jaundice in the vaccine group was significantly higher than that in the control group (20.43% vs. 7.5%, p = 0.002). Multivariate logistic regression analysis revealed that maternal peri-pregnancy vaccination, postpartum blood loss, cesarean section, 1-min Apgar score, and paternal smoking were independent risk factors for neonatal jaundice. CONCLUSIONS: It is safe for pregnant women and their fetuses to be inoculated the inactivated COVID-19 vaccine during the peri-pregnancy period, but attention should be paid to neonatal jaundice.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Icterícia Neonatal , Complicações Infecciosas na Gravidez , Feminino , Humanos , Recém-Nascido , Gravidez , Cesárea , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/prevenção & controle , Resultado da Gravidez/epidemiologia , Estudos Prospectivos
19.
J Med Virol ; 95(8): e29051, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621030

RESUMO

Reports of rare but severe thrombotic events after receiving some COVID-19 vaccines brought concerns for the possibility of vaccine-induced coagulation abnormality. However, no study has reported the impacts of COVID-19 vaccination on coagulation function in pregnant women. We aimed to explore whether vaccination with inactivated COVID-19 vaccines before pregnancy was associated with coagulation changes in pregnant women. We conducted a retrospective cohort study in a tertiary-care hospital in Shanghai, China. A total of 5166 pregnant women were included, of whom 2721 (52.7%) completed vaccination before conception. Compared with unvaccinated women, the mean serum levels of prothrombin time (PT) and fibrinogen (FIB) were lower in vaccinated women by 0.09 (ß = -0.09, 95% confidence interval [CI], -0.13, -0.05) mg/L and 0.11 (ß = -0.11, 95% CI, -0.15, -0.07) mg/L, and the mean D-Dimer (D-D) levels were higher by 0.12 (ß = 0.12, 95% CI, 0.09, 0.15) mg/L. However, no significant association was observed between COVID-19 vaccination and serum levels of activated partial thromboplastin time (APTT), fibrinogen degradation product (FDP) or thrombin time (TT). Our findings suggested that inactivated COVID-19 vaccination before conception resulted in a small change in maternal coagulation function, but this might not have clinical significance.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Gravidez , Feminino , Humanos , Estudos Retrospectivos , COVID-19/prevenção & controle , China , Vacinação , Fibrinogênio
20.
J Med Virol ; 95(8): e28998, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548149

RESUMO

Over 3 years, humans have experienced multiple rounds of global transmission of SARS-CoV-2 and its variants. In addition, the widely used vaccines against SARS-CoV-2 involve multiple strategies of development and inoculation. Thus, the acquired immunity established among humans is complicated, and there is a lack of understanding within a panoramic vision. Here, we provided the special characteristics of the cellular and humoral responses in 2-year convalescents after inactivated vaccines, in parallel to vaccinated COVID-19 naïve persons and unvaccinated controls. The decreasing trends of the IgG, IgA, and NAb, but not IgM of the convalescents were reversed by the vaccination. Both cellular and humoral immunity in convalescents after vaccination were higher than the vaccinated COVID-19 naïve persons. Notably, inoculation with inactivated vaccine fueled the NAb to BA.1, BA.2, BA.4, and BA.5 in 2-year convalescents, much higher than the NAb during 6 months and 1 year after symptoms onset. And no obvious T cell escaping to the S protein was observed in 2-year convalescents after inoculation. The study provides insight into the complicated features of human acquired immunity to SARS-CoV-2 and variants in the real world, indicating that promoting vaccine inoculation is essential for achieving herd immunity against emerging variants, especially in convalescents.


Assuntos
COVID-19 , Imunidade Humoral , Humanos , COVID-19/prevenção & controle , Vacinas de Produtos Inativados , SARS-CoV-2 , Vacinas contra COVID-19 , Anticorpos Antivirais , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA