Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 39-71, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36525691

RESUMO

Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.


Assuntos
Doenças do Sistema Imunitário , Imunidade , Fenótipo , Animais , Humanos , Camundongos , Imunidade/genética , Doenças do Sistema Imunitário/genética
2.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736301

RESUMO

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Assuntos
COVID-19 , Mycobacterium , Criança , Humanos , Interferon gama , SARS-CoV-2 , Interferon-alfa , Fator Regulador 1 de Interferon
3.
Cell ; 183(7): 1826-1847.e31, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296702

RESUMO

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Interferon gama/imunologia , Mycobacterium/imunologia , Proteínas com Domínio T/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem da Célula , Pré-Escolar , Cromatina/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Células Dendríticas/metabolismo , Epigênese Genética , Feminino , Homozigoto , Humanos , Mutação INDEL/genética , Lactente , Interferon gama/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Mutação com Perda de Função/genética , Masculino , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/microbiologia , Linhagem , Proteínas com Domínio T/química , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Linfócitos T Auxiliares-Indutores/imunologia , Transcriptoma/genética
4.
Immunity ; 57(7): 1457-1465, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986441

RESUMO

Regardless of microbial virulence (i.e., the global infection-fatality ratio), age generally drives the prevalence of death from infection in unvaccinated humans. Four mortality patterns are recognized: the common U- and L-shaped curves of endemic infections and the unique W- and J-shaped curves of pandemic infections. We suggest that these patterns result from different sets of human genetic and immunological determinants. In this model, it is the interplay between (1) monogenic genotypes affecting immunity to primary infection that preferentially manifest early in life and related genotypes or their phenocopies, including auto-antibodies, which manifest later in life and (2) the occurrence and persistence of adaptive, acquired immunity to primary or cross-reactive infections, which shapes the age-dependent pattern of human deaths from infection.


Assuntos
Doenças Transmissíveis , Humanos , Fatores Etários , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/epidemiologia , Imunidade Adaptativa/genética , Envelhecimento/imunologia , Envelhecimento/genética , Pandemias
5.
Annu Rev Genet ; 56: 41-62, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35697043

RESUMO

Since the identification of sickle cell trait as a heritable form of resistance to malaria, candidate gene studies, linkage analysis paired with sequencing, and genome-wide association (GWA) studies have revealed many examples of genetic resistance and susceptibility to infectious diseases. GWA studies enabled the identification of many common variants associated with small shifts in susceptibility to infectious diseases. This is exemplified by multiple loci associated with leprosy, malaria, HIV, tuberculosis, and coronavirus disease 2019 (COVID-19), which illuminate genetic architecture and implicate pathways underlying pathophysiology. Despite these successes, most of the heritability of infectious diseases remains to be explained. As the field advances, current limitations may be overcome by applying methodological innovations such as cellular GWA studies and phenome-wide association (PheWA) studies as well as by improving methodological rigor with more precise case definitions, deeper phenotyping, increased cohort diversity, and functional validation of candidate loci in the laboratory or human challenge studies.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Estudo de Associação Genômica Ampla , COVID-19/genética , Doenças Transmissíveis/genética , Genética Humana
6.
Immunity ; 53(3): 672-684.e11, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750333

RESUMO

Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.


Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Janus Quinase 1/genética , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adolescente , COVID-19/mortalidade , Domínio Catalítico/genética , Linhagem Celular , Citocinas/metabolismo , Feminino , Mutação com Ganho de Função/genética , Genótipo , Células HEK293 , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Humanos , Janus Quinase 1/antagonistas & inibidores , Mosaicismo , Piperidinas/uso terapêutico , Medicina de Precisão/métodos , Pirimidinas/uso terapêutico , Transdução de Sinais/imunologia , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico
7.
Immunol Rev ; 322(1): 113-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009321

RESUMO

Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.


Assuntos
Sarampo , Rubéola (Sarampo Alemão) , Humanos , Vírus da Rubéola/genética , Doença Crônica , Fenótipo , Carcinogênese
8.
Immunol Rev ; 322(1): 53-70, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329267

RESUMO

Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.


Assuntos
Genômica , Humanos , Síndrome
9.
Immunol Rev ; 322(1): 157-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233996

RESUMO

Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.


Assuntos
Agamaglobulinemia , Doenças Genéticas Ligadas ao Cromossomo X , Enteropatias , Humanos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Enteropatias/genética , Enteropatias/terapia , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Terapia Genética
10.
Immunol Rev ; 322(1): 28-52, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069482

RESUMO

Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.


Assuntos
Síndromes de Imunodeficiência , Micoses , Humanos , Genômica , Fungos , Autoanticorpos
11.
Immunol Rev ; 322(1): 148-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38033164

RESUMO

Severe combined immune deficiency due to adenosine deaminase deficiency (ADA SCID) is an inborn error of immunity with pan-lymphopenia, due to accumulated cytotoxic adenine metabolites. ADA SCID has been treated using gene therapy with a normal human ADA gene added to autologous hematopoietic stem cells (HSC) for over 30 years. Iterative improvements in vector design, HSC processing methods, and clinical HSC transplant procedures have led nearly all ADA SCID gene therapy patients to achieve consistently beneficial immune restoration with stable engraftment of ADA gene-corrected HSC over the duration of observation (as long as 20 years). One gene therapy for ADA SCID is approved by the European Medicines Agency (EMA) in the European Union (EU) and another is being advanced to licensure in the U.S. and U.K. Despite the clear-cut benefits and safety of this curative gene and cell therapy, it remains challenging to achieve sustained availability and access, especially for rare disorders like ADA SCID.


Assuntos
Agamaglobulinemia , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/genética , Terapia Genética/métodos
12.
Semin Immunol ; 67: 101761, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37062181

RESUMO

Inborn errors of immunity (IEI) are a diverse group of monogenic disorders of the immune system due to germline variants in genes important for the immune response. Over the past decade there has been increasing recognition that acquired somatic variants present in a subset of cells can also lead to immune disorders or 'phenocopies' of IEI. Discovery of somatic mosaicism causing IEI has largely arisen from investigation of seemingly sporadic cases of IEI with predominant symptoms of autoinflammation and/or autoimmunity in which germline disease-causing variants are not detected. Disease-causing somatic mosaicism has been identified in genes that also cause germline IEI, such as FAS, and in genes without significant corresponding germline disease, such as UBA1 and TLR8. There are challenges in detecting low-level somatic variants, and it is likely that the extent of the somatic mosaicism causing IEI is largely uncharted. Here we review the field of somatic mosaicism leading to IEI and discuss challenges and methods for somatic variant detection, including diagnostic approaches for molecular diagnoses of patients.


Assuntos
Autoimunidade , Mosaicismo , Humanos , Fenótipo
13.
Semin Immunol ; 66: 101732, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863139

RESUMO

The thymus is the crucial tissue where thymocytes develop from hematopoietic precursors that originate from the bone marrow and differentiate to generate a repertoire of mature T cells able to respond to foreign antigens while remaining tolerant to self-antigens. Until recently, most of the knowledge on thymus biology and its cellular and molecular complexity have been obtained through studies in animal models, because of the difficulty to gain access to thymic tissue in humans and the lack of in vitro models able to faithfully recapitulate the thymic microenvironment. This review focuses on recent advances in the understanding of human thymus biology in health and disease obtained through the use of innovative experimental techniques (eg. single cell RNA sequencing, scRNAseq), diagnostic tools (eg. next generation sequencing), and in vitro models of T-cell differentiation (artificial thymic organoids) and thymus development (eg. thymic epithelial cell differentiation from embryonic stem cells or induced pluripotent stem cells).


Assuntos
Linfócitos T , Timo , Animais , Humanos , Diferenciação Celular , Células Epiteliais , Biologia
14.
Semin Immunol ; 67: 101763, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075586

RESUMO

Consanguineous marriages in Middle Eastern and North African (MENA) countries are deeply-rooted tradition and highly prevalent resulting into increased prevalence of autosomal recessive diseases including Inborn Errors of Immunity (IEIs). Molecular genetic testing is an important diagnostic tool for IEIs since it provides a definite diagnosis, genotype-phenotype correlation, and guide therapy. In this review, we will discuss the current state and challenges of genomic and variome studies in MENA region populations, as well as the importance of funding advanced genome projects. In addition, we will review the MENA underlying molecular genetic defects of over 2457 patients published with the common IEIs, where autosomal recessive mode of inheritance accounts for 76% of cases with increased prevalence of combined immunodeficiency diseases (50%). The efforts made in the last three decades in terms of international collaboration and of in situ capacity building in MENA region countries led to the discovery of more than 150 novel genes involved in IEIs. Expanding sequencing studies within the MENA will undoubtedly be a unique asset for the IEI genetics which can advance research, and support precise genomic diagnostics and therapeutics.


Assuntos
Consanguinidade , Doenças do Sistema Imunitário , População do Oriente Médio , População do Norte da África , Humanos , África do Norte/epidemiologia , População do Norte da África/genética , População do Oriente Médio/genética , Doenças do Sistema Imunitário/genética
15.
Semin Immunol ; 66: 101731, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863140

RESUMO

Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Humanos , Edição de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos/genética
16.
Trends Immunol ; 44(11): 902-916, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37813732

RESUMO

Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.


Assuntos
Autoimunidade , Hipersensibilidade , Humanos , Autoimunidade/genética , Epigênese Genética , Epigenômica , Mutação/genética
17.
Proc Natl Acad Sci U S A ; 120(26): e2301186120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307437

RESUMO

In 1955, René Dubos famously expressed his "second thoughts on the germ theory", attributing infectious diseases to various "changing circumstances" that weaken the host by unknown mechanisms. He rightly stressed that only a small minority of individuals infected by almost any microbe develop clinical disease. Intriguingly, though, he did not mention the abundant and elegant findings reported from 1905 onward that unambiguously pointed to host genetic determinants of infection outcome in plants and animals, including human inborn errors of immunity. Diverse findings over the next 50 y corroborated and extended these earlier genetic and immunological observations that René Dubos had neglected. Meanwhile, the sequential advent of immunosuppression- and HIV-driven immunodeficiencies unexpectedly provided a mechanistic basis for his own views. Collectively, these two lines of evidence support a host theory of infectious diseases, with inherited and acquired immunodeficiencies as the key determinants of severe infection outcome, relegating the germ to an environmental trigger that reveals an underlying and preexisting cause of disease and death.


Assuntos
Síndrome da Imunodeficiência Adquirida , Cocaína , Animais , Masculino , Humanos , Terapia de Imunossupressão , Grupos Minoritários
18.
Eur J Immunol ; : e2451189, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292205

RESUMO

Mucosal-associated invariant T cells (MAIT) are innate-like lymphocytes enriched in mucosal organs where they contribute to antimicrobial defense. APECED is an inborn error of immunity characterized by immune dysregulation and chronic mucocutaneous candidiasis. Reduction in the frequency of circulating MAITs has been reported in many inborn errors of immunity, but only in a few of them, the functional competence of MAITs has been assessed. Here, we show in a cohort of 24 patients with APECED, that the proportion of circulating MAITs was reduced compared with healthy age and sex-matched controls (1.1% vs. 2.6% of CD3+ T cells; p < 0.001) and the MAIT cell immunophenotype was more activated. Functionally the IFN-γ secretion of patient MAITs after stimulation was comparable to healthy controls. We observed in the patients elevated serum IFN-γ (46.0 vs. 21.1 pg/mL; p = 0.01) and IL-18 (42.6 vs. 13.7 pg/mL; p < 0.001) concentrations. Lower MAIT proportion did not associate with the levels of neutralizing anti-IL-22 or anti-IL-12/23 antibodies but had a clear negative correlation with serum concentrations of IFN-γ, IL-18, and protein C-reactive protein. Our data suggest that reduction of circulating MAITs in patients with APECED correlates with chronic type 1 inflammation but the remaining MAITs are functionally competent.

19.
J Allergy Clin Immunol ; 153(1): 335-340.e1, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802474

RESUMO

BACKGROUND: Racial and ethnic disparities in life expectancy in the United States have been widely documented. To date, there remains a paucity of similar data in patients with inborn errors of immunity (IEIs). OBJECTIVE: Our aim was to examine racial and ethnic differences in mortality due to an IEI in the United States. METHODS: We analyzed National Center for Health Statistics national mortality data from 2003 to 2018. We quantified age-adjusted death rate and age-specific death rate as a result of an IEI for each major racial and ethnic group in the United States and examined the association of race and ethnicity with death at a younger age. RESULTS: From 2003 to 2018, IEIs were reported as the underlying or contributing cause of death in 14,970 individuals nationwide. The age-adjusted death rate was highest among Black patients (4.25 per 1,000,000 person years), compared with 2.01, 1.71, 1.50, and 0.92 per 1,000,000 person years for White, American Indian/Alaska Native, Hispanic, and Asian/Pacific Islander patients, respectively. The odds of death before age 65 years were greatest among Black patients (odds ratio [OR] = 5.15 [95% CI = 4.61-5.76]), followed by American Indian/Alaska Native patients (OR = 3.58 [95% CI = 2.30-5.82]), compared with White patients. The odds of death before age 24 years were greater among Hispanic patients than among non-Hispanic patients (OR = 3.60 [95% CI = 3.08-4.18]). CONCLUSION: Our study highlights racial and ethnic disparities in mortality due to an IEI and the urgent need to further identify and systematically remove barriers in care for historically marginalized patients with IEIs.


Assuntos
Etnicidade , Disparidades nos Níveis de Saúde , Doenças do Sistema Imunitário , Grupos Raciais , Humanos , Estados Unidos/epidemiologia , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/mortalidade
20.
J Allergy Clin Immunol ; 153(1): 67-76, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977527

RESUMO

Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.


Assuntos
Anemia Hemolítica Autoimune , Doenças Autoimunes , Síndrome Linfoproliferativa Autoimune , Imunodeficiência de Variável Comum , Doenças do Sistema Imunitário , Transtornos Linfoproliferativos , Humanos , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Síndrome Linfoproliferativa Autoimune/terapia , Fenótipo , Receptor fas/genética , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA