Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 1): 128899, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141706

RESUMO

Paraoxonase 2 (PON2) is an intracellular anti-oxidant protein ubiquitously expressed in all cells and reduces reactive oxygen species, endoplasmic reticulum (ER) stress, further improves mitochondrial function and thereby shows anti-apoptotic function. In diabetes and its complications this PON gets glycated and becomes in effective. The PON activity is reported to be reduced in diabetic retinopathy and we have earlier showed Carboxy methyl lysine (AGE) decreased PON2 expression and activity in Human retinal endothelial cells (HREC) . In this study, we have designed and developed a mutated PON2 by in silico and in vitro approach which can resist glycation. Where in glycation-prone residues in PON2 was predicted using in silico analyses and a mutated PON2 was developed using in vitro site directed mutagenesis (SDM) assay mPON2 (mutant PON2-PON2-K70A) and its efficacy was compared with wPON2 (wild type PON2). CML glycated wPON2 and reduced its activity when compared with mPON2 in HREC confirmed by immunoprecipitation and in vitro experiments. Additionally, mPON2 interaction efficiency with its substrates was higher than wPON2 by insilico assay and demonstrated enhanced inhibition against CML-induced oxidative stress, ER stress, pro-inflammation, and mitochondrial fission than wPON2 by invitro assay. Further mPON2 showed increased inhibition of phosphorylation of NFĸB induced by CML. Our investigation establishes that the over expression of mPON2 in HREC can defy glycation and therefore mitigate ER stress and inflammation against CML than endogenous wPON2. These findings imply that mPON2 can be a beneficial therapeutic target against diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Reação de Maillard , Arildialquilfosfatase/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Diabetes Mellitus/metabolismo
2.
J Clin Med ; 11(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36556135

RESUMO

A kinetic analysis of the transport assays on the purified rat brain 2-oxoglutarate/malate carrier (OGC) was performed starting from our recent results reporting about a competitive inhibitory behavior of hemin, a physiological porphyrin derivative, on the OGC reconstituted in an active form into proteoliposomes. The newly provided transport data and the elaboration of the kinetic equations show evidence that hemin exerts a mechanism of partially competitive inhibition, coupled with the formation of a ternary complex hemin-carrier substrate, when hemin targets the OGC from the matrix face. A possible interpretation of the provided kinetic analysis, which is supported by computational studies, could indicate the existence of a binding region responsible for the inhibition of the OGC and supposedly involved in the regulation of OGC activity. The proposed regulatory binding site is located on OGC mitochondrial matrix loops, where hemin could establish specific interactions with residues involved in the substrate recognition and/or conformational changes responsible for the translocation of mitochondrial carrier substrates. The regulatory binding site would be placed about 6 Å below the substrate binding site of the OGC, facing the mitochondrial matrix, and would allow the simultaneous binding of hemin and 2-oxoglutarate or malate to different regions of the carrier. Overall, the presented experimental and computational analyses help to shed light on the possible existence of the hemin-carrier substrate ternary complex, confirming the ability of the OGC to bind porphyrin derivatives, and in particular hemin, with possible consequences for the mitochondrial redox state mediated by the malate/aspartate shuttle led by the mitochondrial carriers OGC and AGC.

3.
Biomolecules ; 11(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439841

RESUMO

The mitochondrial 2-oxoglutarate carrier (OGC), isolated and purified from rat brain mitochondria, was reconstituted into proteoliposomes to study the interaction with hemin, a porphyrin derivative, which may result from the breakdown of heme-containing proteins and plays a key role in several metabolic pathways. By kinetic approaches, on the basis of the single binding centre gated pore mechanism, we analyzed the effect of hemin on the transport rate of OGC in uptake and efflux experiments in proteoliposomes reconstituted in the presence of the substrate 2-oxoglutarate. Overall, our experimental data fit the hypothesis that hemin operates a competitive inhibition in the 0.5-10 µM concentration range. As a consequence of the OGC inhibition, the malate/aspartate shuttle might be impaired, causing an alteration of mitochondrial function. Hence, considering that the metabolism of porphyrins implies both cytoplasmic and mitochondrial processes, OGC may participate in the regulation of porphyrin derivatives availability and the related metabolic pathways that depend on them (such as oxidative phosphorylation and apoptosis). For the sake of clarity, a simplified model based on induced-fit molecular docking supported the in vitro transport assays findings that hemin was as good as 2-oxoglutarate to bind the carrier by engaging specific ionic hydrogen bond interactions with a number of key residues known for participating in the similarly located mitochondrial carrier substrate binding site.


Assuntos
Encéfalo/metabolismo , Hemina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Ligação Proteica , Proteolipídeos/metabolismo , Ratos
4.
J Biomol Struct Dyn ; 37(11): 2753-2765, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30052140

RESUMO

Seven new quinoline-based bioorganic compounds were prepared by solvent-free synthesis and characterized using spectral techniques. The binding of these compounds with human serum albumin (HSA) was investigated by multi-spectroscopic methods. The quenching of Trp fluorescence upon addition of these compounds to HSA confirmed their significant binding. The quenching analysis at three different temperatures revealed that the complex formation is static and the reaction is entropy driven, spontaneous, and exothermic. Hydrogen bonds and van der Waals forces mainly contributed in the interactions as confirmed by the negative ΔH and ΔS values as well as molecular docking. The results from the circular dichroism (CD) spectroscopy indicated the minimal conformational changes of the protein upon binding with these quinoline compounds. The specific binding site and mode of interactions with HSA were also modeled using induced fit molecular docking procedure and their binding site was found to be in the interface of domains II and III, which is similar to the binding of the drug iodipamide with serum albumin. Communicated by Ramaswamy H. Sarma.


Assuntos
Aminas/metabolismo , Simulação de Acoplamento Molecular , Quinolinas/metabolismo , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência/métodos , Aminas/química , Sítios de Ligação , Humanos , Ligação Proteica , Conformação Proteica , Quinolinas/química , Albumina Sérica Humana/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA