Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Pharm Fr ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685473

RESUMO

OBJECTIVE: Cardiovascular risk is increased in patients with diabetes. Little is known about glycemic and lipid control in patients with diabetes. We aimed to assess glycemic and lipid controls in patients with diabetes at time of their myocardial infarction. METHOD: All known patients with type 2 diabetes consecutively admitted for a myocardial infarction in our coronary care unit between March 1st and December 31st, 2021 were included in this retrospective study. Glycemic and lipid control was assessed through individualized target of glycated haemoglobin (HbA1c) and low-density lipoprotein cholesterol (LDL-c), respectively. At admission, the comprehensive list of chronic medications was obtained through medication reconciliation. RESULTS: This study included 112 patients with a median age of 72 years. Most of patients had an individualized target of HbA1c and LDL-c of 7.0% (67%) and 0.55g/L (96%), respectively. The rate of uncontrolled patients for HbA1c and LDL-c and both was 46%, 90%, and 42% respectively. The rate of patients with non-optimal glucose- and lipid-lowering medications in uncontrolled patients was 63% and 87%, respectively. The rate of inappropriate glucose- and lipid-lowering medications was 73% and 91%, respectively. CONCLUSION: We highlighted the poor glycemic and lipid control in high-risk CV patients. There is an urgent need to develop multidisciplinary approaches to optimize CV risk factors control to reduce myocardial infarction and strokes.

2.
Can J Physiol Pharmacol ; 100(3): 210-219, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34910610

RESUMO

Our current investigation comprises the synthesis and pharmacological impact of bromelain copper nanoparticles (BrCuNP) against diabetes mellitus (DM) and associated ischemia/reperfusion (I/R) - induced myocardial infarction. Bromelain is a proteolytic enzyme obtained from Ananas comosus L. Merr., which has blood platelet aggregation inhibiting and arterial thrombolytic potential. Moreover, copper is well-known to facilitate glucose metabolism and strengthen cardiac muscle and antioxidant activity; although, chronic or long-term exposure to high doses of copper may lead to copperiedus. To restrict these potential hazards, we synthesized herbal nano-formulation which convincingly indicated the improved primordial therapeutic potential of copper by reformulating the treatment carrier with bromelain, resulting in facile synthesis of BrCuNP. DM was induced by administration of double cycle repetitive dose of low dose streptozotocin (20 mg/kg, i.p.) in high-fat diet- fed animals. DM and associated myocardial I/R injury were estimated by increased serum levels of total cholesterol, low-density lipoprotein, very low-density lipoprotein, lactate dehydrogenase, creatine kinase myocardial band, cardiac troponin, thiobarbituric acid reactive substances, tumor necrosis factor α, interleukin 6, and reduced serum level of high-density lipoprotein and nitrite/nitrate concentration. However, treatment with BrCuNP ameliorates various serum biomarkers by approving cardioprotective potential against DM- and I/R-associated injury. Furthermore, upturn of histopathological changes were observed in cardiac tissue of BrCuNP-treated rats in comparison to disease models.


Assuntos
Bromelaínas/síntese química , Bromelaínas/uso terapêutico , Cobre/química , Cobre/uso terapêutico , Complicações do Diabetes/complicações , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/etiologia , Traumatismo por Reperfusão Miocárdica/complicações , Animais , Bromelaínas/farmacologia , Cobre/farmacologia , Modelos Animais de Doenças , Feminino , Ratos Wistar
3.
Can J Physiol Pharmacol ; 100(3): 252-258, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34990309

RESUMO

This study was designed to assess the effect of soya phosphatidylcholine (SPC) against ischemia/reperfusion (I/R) injury and the possible underlying mechanism using experimental and computational studies. I/R injury was induced by global ischemia for 30 min followed by reperfusion for 120 min. The perfusion of the SPC was performed for 10 min before inducing global ischemia. In the mechanistic study, the involvement of specific cellular pathways was identified using various inhibitors such as ATP-dependent potassium channel (KATP) inhibitor (glibenclamide), protein kinase C (PKC) inhibitor (chelerythrine), non-selective nitric oxide synthase inhibitor (L-NAME), and endothelium remover (Triton X-100). The computational study of various ligands was performed on toll-like receptor 4 (TLR4) protein using AutoDock version 4.0. SPC (100 µM) significantly decreased the levels of cardiac damage markers and %infarction compared with the vehicle control (VC). Furthermore, cardiodynamics (indices of left ventricular contraction (dp/dtmax), indices of left ventricular relaxation (dp/dtmin), coronary flow, and antioxidant enzyme levels were significantly improved as compared with VC. This protective effect was attenuated by glibenclamide, chelerythrine, and Triton X-100, but it was not attenuated by L-NAME. The computational study showed a significant bonding affinity of SPC to the TLR4-MD2 complex. Thus, SPC reduced myocardial I/R injury in isolated perfused rat hearts, which might be governed by the KATP channel, PKC, endothelium response, and TLR4-MyD88 signaling pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Fosfatidilcolinas/uso terapêutico , Animais , Cardiotônicos , Simulação por Computador , Técnicas In Vitro , Masculino , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/farmacologia , Ratos Wistar , Receptor 4 Toll-Like
4.
Biochem Cell Biol ; 99(5): 655-665, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33939927

RESUMO

Increasing evidence has shown that the NOD-like receptor protein 3 (NLRP3) inflammasome and pyroptotic cell death play vital roles in the pathophysiology of myocardial infarction (MI), a common cardiovascular disease characterized by cardiac dysfunction. C-type lectin member 5A (CLEC5A) has been reported to be strongly associated with activation of the NLRP3 inflammasome and pyroptosis. In this study, an in vivo MI model was established by ligation of the left anterior descending coronary artery in male C57BL/6 mice, and CLEC5A knockdown was further achieved by intra-myocardial injection of adenovirus delivering shRNA-CLEC5A. CLEC5A was found to be highly expressed in the left ventricle of MI mice, while CLEC5A knockdown alleviated cardiac dysfunction in MI mice. In addition, MI-induced classical activation of macrophages was significantly inhibited after CLEC5A silencing. Additionally, CLEC5A knockdown dramatically inhibited MI-triggered activation of NLRP3 inflammasome, pyroptosis, and NF-κB signaling in the left ventricle of mice. In vitro experiments further validated that CLEC5A knockdown suppressed M1 polarization in LPS/IFNγ-stimulated RAW264.7 cells and inhibited the polarized RAW264.7-induced activation of NLRP3 inflammasome/pyroptosis signaling in co-cultured cardiomyocytes. In conclusion, CLEC5A knockdown protects against MI-induced cardiac dysfunction by regulating macrophage polarization, NLRP3 inflammasome, and cell pyroptosis.


Assuntos
Cardiomiopatias/metabolismo , Inflamassomos/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Cardiomiopatias/patologia , Células Cultivadas , Lectinas Tipo C/deficiência , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Piroptose , Células RAW 264.7 , Receptores de Superfície Celular/deficiência
5.
Can J Physiol Pharmacol ; 99(10): 1007-1015, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33852805

RESUMO

Sepsis often leads to systemic multiple organ dysfunction, with the majority of deaths attributable to acute myocardial injury (AMI). In this study, we aimed to explore the functional role of miR-365a-3p in sepsis-induced AMI. The sepsis myocardial injury model was constructed using lipopolysaccharide (LPS) both in vitro and in vivo with selective regulation of miR-365a-3p expression. Real-time PCR or Western blot was employed to detect the expressions of miR-365a-3p, inflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), and IL-6), and inflammation-related proteins (nuclear factor-κB (NF-κB), I-κB, myeloid differentiation factor 88 (MyD88)) in myocardial tissues and cells. Also, cell counting kit-8 (CCK8) and flow cytometry assays were used to measure cardiomyocyte proliferation and apoptosis, respectively. Furthermore, the targeting relationship between miR-365a-3p and MyD88 was verified with the dual luciferase activity assay. miR-365a-3p was downregulated in LPS-induced myocardial injury model. miR-365a-3p overexpression attenuated cardiomyocyte apoptosis and suppressed the expressions of inflammatory cytokines and proteins. Inhibiting miR-365a-3p, however, produced the opposite effects. Mechanistically, miR-365a-3p targeted the 3'-untranslated region of MyD88, thereby inactivating MyD88-mediated NF-κB pathway. miR-365a-3p overexpression mitigated sepsis-mediated myocardial injury by inhibiting MyD88-mediated NF-κB activation.


Assuntos
MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Infarto do Miocárdio/metabolismo , NF-kappa B/antagonistas & inibidores , Sepse/metabolismo , Animais , Apoptose/fisiologia , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sepse/genética , Sepse/patologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
Can J Physiol Pharmacol ; 99(7): 720-728, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33211546

RESUMO

The aim of the present study was to analyze the effect of neuromuscular electrical stimulation (NMES) and photobiomodulation (PBMT) on the cardiovascular parameters, hemodynamic function, arterial baroreflex sensitivity (BRS), and autonomic balance (ANS) of rats with heart failure (HF). Male Wistar rats (220-290 g) were organized into five groups: Sham (n = 6), Control-HF (n = 5), NMES-HF (n = 6), PBMT-HF (n = 6), and NMES + PBMT-HF (n = 6). Myocardial infarction (MI) was induced by left coronary artery ligation. Animals were subjected to an eight-week NMES and PBMT protocol. Statistical analysis included the General Linear Model (GLM) followed by a Bonferroni post-hoc test. Rats of the NMES-HF group showed a higher MI area than the Control-HF (P = 0.003), PBMT-HF (P = 0.002), and NMES + PBMT-HF (P = 0.012) groups. NMES-HF and NMES + PBMT-HF showed higher pulmonary congestion (P = 0.004 and P = 0.02) and lower systolic pressure (P = 0.019 and P = 0.002) than the Sham group. NMES + PBMT-HF showed lower mean arterial pressure (P = 0.02) than the Sham group. Control-HF showed a higher heart rate than the NMES-HF and NMES + PBMT-HF (P = 0.017 and P = 0.013) groups. There was no difference in the BRS and ANS variables between groups. In conclusion, eight-week NMES isolated or associated with PBMT protocol reduced basal heart rate, systolic and mean arterial pressure, without influence on baroreflex sensibility and autonomic control, and no effect of PBMT was seen in rats with HF.


Assuntos
Insuficiência Cardíaca , Animais , Barorreflexo , Frequência Cardíaca , Hemodinâmica , Masculino , Ratos , Ratos Wistar
7.
Can J Physiol Pharmacol ; 99(2): 129-139, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32937086

RESUMO

The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.


Assuntos
Cardiopatias/metabolismo , Miocárdio/patologia , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-kit
8.
Can J Physiol Pharmacol ; 99(2): 218-223, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33546576

RESUMO

This study examined the effects of ischemic preconditioning (IP) on the ischemia/reperfusion (I/R) induced injury in normal and hypertrophied hearts. Cardiac hypertrophy in rabbits was induced by L-thyroxine (0.5 mg/kg/day for 16 days). Hearts with or without IP (3 cycles of 5 min ischemia and 10 min reperfusion) were subjected to I/R (60 min ischemia followed by 60 min reperfusion). IP reduced the I/R-induced infarct size from 68% to 24% and 57% to 33% in the normal and hypertrophied hearts, respectively. Leakage of creatine phosphokinase in the perfusate from the hypertrophied hearts due to I/R was markedly less than that form the normal hearts; IP prevented these changes. Although IP augmented the increase in phosphorylated p38-mitogen-activated protein kinase (p38-MAPK) content due to I/R, this effect was less in the hypertrophied than in the normal heart. These results suggest that reduced cardioprotection by IP of the I/R-induced injury in hypertrophied hearts may be due to reduced activation of p38-MAPK in comparison with normal hearts.


Assuntos
Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Masculino , Traumatismo por Reperfusão Miocárdica/complicações , Coelhos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Can J Physiol Pharmacol ; 98(6): 391-399, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31999473

RESUMO

Increased inflammation is found in cardiac sympathetic neural remodeling with malignant ventricular arrhythmia (VA) following myocardial infarction (MI). Butyrate, as a microbiota-derived short-chain fatty acid, can inhibit inflammation and myocardial hypertrophy. However, the role of butyrate in sympathetic neural remodeling after MI is unknown. This study aimed to investigate whether butyrate could improve cardiac dysfunction and VA following MI by regulating inflammation and sympathetic neural remodeling. MI rats were randomized to administrate the butyrate or vehicle through intraperitoneal injection to undergo the study. Our data demonstrated that butyrate treatment preserved the partial cardiac function at 7 days post-MI. Butyrate downregulated the expression of essential for inflammatory response in the infarct border zone at 3 days post-MI. Particularly, butyrate promoted expression of M2 macrophage markers. Increased expressions of nerve growth factor and norephinephrine at 7 days after MI were inhibited in butyrate-treated rats. Furthermore, butyrate significantly decreased the density of nerve fibers for growth-associated protein-43 and tyrosine hydroxylase and resulted in fewer episodes of inducible VA. In conclusion, butyrate administration ameliorated cardiac function and VA after MI possibly through promoting M2 macrophage polarization to suppress inflammatory responses and inhibit sympathetic neural remodeling and may present an effective pharmacological strategy for the prevention of MI-related remodeling.


Assuntos
Butiratos/farmacologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Fator de Crescimento Neural/biossíntese , Fator de Crescimento Neural/genética , Ratos , Ratos Sprague-Dawley
10.
Can J Physiol Pharmacol ; 97(10): 989-998, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31464528

RESUMO

The current study was carried out to evaluate the effect of pretreatment and co-treatment with a newly synthesized coumarin hydrazone, (E)-4-hydroxy-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide (hereinafter EK6), against isoproterenol-induced myocardial infarction in rats. Changes in biochemistry, cardiac biomarkers, electrocardiography, and histopathology after treatment with EK6 or acenocoumarol (Sintrom) were studied. Animals were randomly divided into 4 groups: vehicle control (C), isoproterenol + Sintrom (ISO + Sin), isoproterenol + EK6 (ISO + EK6), and isoproterenol (ISO). Myocardial infarction was induced by subcutaneous ISO administration at a dose of 85 mg·kg-1·day-1 with a drug-free interval of 24 h on days 6 and 7. Treatment with ISO led to significant elevation (p < 0.05) in serum levels of cardiac injury biomarkers, namely cardiac troponin-T, lactate dehydrogenase, creatine kinase-MB, alanine aminotransferase, and aspartate aminotransferase compared with levels in the vehicle control. A change in the lipid profile was also observed as a significant increase in total cholesterol and triglycerides. Furthermore, ISO caused significant alterations in the electrocardiogram pattern, including significant ST-segment elevation, significant decreased R wave amplitude, and significant increase in heart rate (16%) as well as marked changes in the histopathology of the heart tissue. Pretreatment and co-treatment with newly synthesized coumarin hydrazone restored all ISO-induced biochemical, lipid, cardiac, and histopathological changes in rats with myocardial infarction.


Assuntos
Benzopiranos/administração & dosagem , Cardiotônicos/administração & dosagem , Cumarínicos/administração & dosagem , Hidrazonas/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Animais , Benzopiranos/síntese química , Biomarcadores/análise , Cardiotônicos/síntese química , Cumarínicos/síntese química , Modelos Animais de Doenças , Eletrocardiografia , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hidrazonas/síntese química , Isoproterenol/toxicidade , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/diagnóstico , Miocárdio/patologia , Ratos , Ratos Wistar , Resultado do Tratamento
11.
Can J Physiol Pharmacol ; 97(11): 1053-1063, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31116952

RESUMO

Angiogenesis is regulated in a tissue-specific manner in all patients, especially those with diabetes. In this study, we describe a novel molecular pathway of angiogenesis regulation in diabetic rats with myocardial infarction (MI) and examine the cardioprotective effects of different doses of sitagliptin. Male rats were divided into 5 groups: normal vehicle group, diabetic group, diabetic + MI, diabetic + MI + 5 mg/kg sitagliptin, and diabetic + MI + 10 mg/kg sitagliptin. Isoproterenol in diabetic rats resulted in significant (p < 0.05) disturbance to the electrocardiogram, cardiac histopathological manifestations, and an increase in inflammatory markers compared with the vehicle and diabetic groups. Treatment with sitagliptin improved the electrocardiogram and histopathological sections, upregulated vascular endothelial growth factor (VEGF) and transmembrane phosphoglycoprotein protein (CD34) in cardiac tissues, and increased serum insulin-like growth factor 1 (IGF-1) and decreased cardiac tissue homogenate for interleukin 6 (IL-6) and cyclooxygenase 2 (COX-2). A relationship was found between serum IGF-1 and cardiac VEGF and CD34 accompanied by an improvement in cardiac function of diabetic rats with MI. Therefore, the observed effects of sitagliptin occurred at least partly through an improvement in angiogenesis and the mitigation of inflammation. Consequently, these data suggest that sitagliptin may contribute, in a dose-dependent manner, to protection against acute MI in diabetic individuals.


Assuntos
Diabetes Mellitus Experimental/complicações , Fator de Crescimento Insulin-Like I/metabolismo , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Fosfato de Sitagliptina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Doença Aguda , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Eletrocardiografia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Interleucina-6/metabolismo , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ratos
12.
Can J Physiol Pharmacol ; 97(7): 661-674, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31157553

RESUMO

Diabetes increases the sensitivity of myocardium to ischemic damage and impairs response of the myocardium to cardioprotective interventions. The present study aimed to elucidate the potential cardioprotective effect provided by ranolazine during myocardial infarction in nondiabetic and diabetic male rats. As AMP-activated protein kinase (AMPK) has been shown to be involved in the cellular response to ischemic injury, in this context, the present animal study evaluated the modulating role of ranolazine in the AMPK expression in isoprenaline-induced myocardial ischemic rat model. Male rats were divided into 2 experiments: experiment I and II (nondiabetic and diabetic rats) and assigned to normal control, saline control for isoprenaline, isoprenaline control, and ranolazine-treated groups. Ranolazine administration revealed effectiveness in attenuating the severity of isoprenaline-induced myocardial injury in both nondiabetic and diabetic rats as revealed by ECG signs, histopathological score, and apoptotic markers via abrogating the increments in the inflammatory and oxidative stress markers and modulating AMPK expression. Therefore, the current cardioprotective effect of ranolazine was, at least in part, mediated through inhibition of apoptosis and modulation of AMPK expression, encouraging considering the utility of ranolazine in protection from acute myocardial infarction.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/complicações , Isoproterenol/efeitos adversos , Infarto do Miocárdio/patologia , Ranolazina/farmacologia , Doença Aguda , Animais , Glicemia/metabolismo , Eletrocardiografia , Hemoglobinas Glicadas/metabolismo , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
13.
Can J Physiol Pharmacol ; 97(12): 1152-1158, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31398293

RESUMO

Cardiovascular diseases remain a major public health burden worldwide. It was reported that vitamin D protects the cardiovascular system through several mechanisms mainly by hindering atherosclerosis development. Genetic variations in vitamin D metabolic pathway were found to affect vitamin D levels. This study aimed at investigating the association between single nucleotide polymorphisms in genes involved in vitamin D metabolism, CYP27B and CYP24A1; 25-hydroxyvitamin D (25(OH)D) levels; and susceptibility to acute coronary syndrome (ACS). One hundred and eighty-five patients and 138 healthy controls were recruited. CYP24A1 rs2762939 was genotyped using fast real-time PCR, while CYP24A1 rs4809960 and CYP27B1 rs703842 were genotyped using polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). 25(OH)D3 and 25(OH)D2 levels were measured using ultra-performance liquid chromatography tandem mass spectrum. Vitamin D level was significantly lower in patients than controls (p < 0.05). The GG genotype of rs2762939 was significantly associated with the risk of ACS development, but not correlated to the vitamin D level. rs4809960 and rs703842 genetic variations were not associated with ACS nor with 25(OH)D level. The genetic variant rs2762939 of CYP24A1 is remarkably associated with ACS. Meanwhile, the variants rs4809960 and rs703842 are not associated with ACS incidence.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/genética , Polimorfismo de Nucleotídeo Único , Vitamina D3 24-Hidroxilase/genética , Vitamina D/sangue , Síndrome Coronariana Aguda/epidemiologia , Feminino , Frequência do Gene , Predisposição Genética para Doença/genética , Humanos , Incidência , Masculino , Pessoa de Meia-Idade
14.
Can J Physiol Pharmacol ; 97(7): 638-646, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30840489

RESUMO

Myocardial infarction is a major cause of cardiac dysfunction. All components of the cardiac renin-angiotensin system (RAS) are upregulated in myocardial infarction. Angiotensin-converting enzyme (ACE) and ACE2 are key enzymes involved in synthesis of components of RAS and provide a counter-regulatory mechanism within RAS. We compared the cardioprotective effect of the ACE2 activator diminazene aceturate (DIZE) versus the ACE inhibitor enalapril on post acute myocardial infarction (AMI) ventricular dysfunction in rats. Adult male rats received subcutaneous injections of either saline (control) or isoproterenol (85 mg/kg) to induce AMI. Rats with AMI confirmed biochemically and by ECG, were either left untreated (AMI) or administered DIZE (AMI + DIZE) or enalapril (AMI + enalapril) daily for 4 weeks. DIZE caused a significant activation of cardiac ACE2 compared with enalapril. DIZE caused a significantly greater enhancement of cardiac hemodynamics. DIZE also caused greater reductions in heart-type fatty acid binding protein (H-FABP), ß-myosin heavy chain (ß-MYH), and in heart mass to total body mass ratio. These results indicated that activation of cardiac ACE2 by DIZE enhanced the protective axis of RAS and improved myocardial function following AMI, whereas enalapril was not sufficient to restore all cardiac parameters back to normal.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cardiotônicos/farmacologia , Diminazena/análogos & derivados , Enalapril/farmacologia , Infarto do Miocárdio/fisiopatologia , Peptidil Dipeptidase A/metabolismo , Doença Aguda , Enzima de Conversão de Angiotensina 2 , Animais , Diminazena/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Direita/complicações , Masculino , Infarto do Miocárdio/complicações , Ratos , Ratos Wistar
15.
Can J Physiol Pharmacol ; 97(8): 753-765, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30998852

RESUMO

Myocardial infarction (MI) in mice results in cardiac rupture at 4-7 days after MI, whereas cardiac fibrosis and dysfunction occur later. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic, and pro-angiogenic properties. We hypothesized that Ac-SDKP reduces cardiac rupture and adverse cardiac remodeling, and improves function by promoting angiogenesis and inhibiting detrimental reactive fibrosis and inflammation after MI. C57BL/6J mice were subjected to MI and treated with Ac-SDKP (1.6 mg/kg per day) for 1 or 5 weeks. We analyzed (1) intercellular adhesion molecule-1 (ICAM-1) expression; (2) inflammatory cell infiltration and angiogenesis; (3) gelatinolytic activity; (4) incidence of cardiac rupture; (5) p53, the endoplasmic reticulum stress marker CCAAT/enhancer binding protein homology protein (CHOP), and cardiomyocyte apoptosis; (6) sarcoplasmic reticulum Ca2+ ATPase (SERCA2) expression; (7) interstitial collagen fraction and capillary density; and (8) cardiac remodeling and function. Acutely, Ac-SDKP reduced cardiac rupture, decreased ICAM-1 expression and the number of infiltrating macrophages, decreased gelatinolytic activity, p53 expression, and myocyte apoptosis, but increased capillary density in the infarction border. Chronically, Ac-SDKP improved cardiac structures and function, reduced CHOP expression and interstitial collagen fraction, and preserved myocardium SERCA2 expression. Thus, Ac-SDKP decreased cardiac rupture, ameliorated adverse cardiac remodeling, and improved cardiac function after MI, likely through preserved SERCA2 expression and inhibition of endoplasmic reticulum stress.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/prevenção & controle , Traumatismos Cardíacos/prevenção & controle , Coração/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Remodelamento Atrial/efeitos dos fármacos , Capilares/efeitos dos fármacos , Capilares/metabolismo , Colágeno/metabolismo , Eletrocardiografia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Remodelação Ventricular/efeitos dos fármacos
16.
Can J Physiol Pharmacol ; 97(10): 932-938, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30958967

RESUMO

This study aimed to assess serum irisin level in myocardial infarction (MI) with or without heart failure (HF) and the possible relation between irisin and cardiac markers, tumor necrosis factor-α (TNF-α) and lipid profile. Eighty-six subjects were included (33 patients had MI, 33 patients had MI with HF, and 20 controls). Body mass index (BMI), waist/hip ratio (WHR), systolic and diastolic blood pressure (SBP and DBP), heart rate, and left ventricular ejection fraction (LVEF) were measured. Blood samples were withdrawn on admission for measuring irisin, cardiac markers, TNF-α, total cholesterol (TC), triglycerides (TGs), low-density lipoprotein-cholesterol concentration (LDL-C), and high-density lipoprotein-cholesterol concentration (HDL-C). Patients with MI and HF had reduced serum irisin, LVEF, and HDL-C and higher levels of BMI, WHR, SBP, DBP, troponin-I, creatine kinase-MB (CK-MB), TNF-α, TC, TGs, and LDL-C compared with control. Negative correlations were observed between irisin and BMI, WHR, SBP, DBP, troponin-I, CK-MB, TNF-α, TC, TGs, and LDL-C. However, positive association was noticed between irisin and LVEF and HDL-C. Irisin might be a useful biomarker in diagnosis of MI with or without HF. It could have anti-inflammatory and hypolipidemic effects. Further studies are needed to elucidate the role of irisin as a promising prophylactic or therapeutic agent in cardiovascular diseases.


Assuntos
Fibronectinas/sangue , Insuficiência Cardíaca/diagnóstico , Infarto do Miocárdio/diagnóstico , Adulto , Idoso , Biomarcadores/sangue , HDL-Colesterol/sangue , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/etiologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/complicações , Volume Sistólico/fisiologia
17.
Biochem Cell Biol ; 96(5): 646-654, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29671338

RESUMO

Myocardial infarction (MI), a type of ischemic heart disease, is generally accompanied by apoptosis of cardiomyocytes. MicroRNAs play the vital roles in the development and physiology of MI. Here, we established a downregulation model of miR-182-5p in H9c2 cells under hypoxic conditions to investigate the potential molecular mechanisms for miR-182-5p in hypoxia-induced cardiomyocyte apoptosis (HICA). RT-qPCR indicated that miR-182-5p levels exhibit a time-dependent increase in the rate of apoptosis induced by hypoxia. The results from the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays indicated that cardiomyocyte injury noticeably increased after exposure to hypoxia. Meanwhile, hypoxia dramatically increased the apoptosis rate [which was reflected in the results from the annexin V - propidium iodide (PI) assay], enhanced caspase-3 activity, and reduced the expression of Bcl-2. Downregulation of miR-182-5p can significantly reverse hypoxia-induced cardiomyocyte injury or apoptosis. Importantly, bioinformatic analysis and dual-luciferase reporter assay revealed that CIAPIN1 (cytokine-induced apoptosis inhibitor 1) was a direct functional target of miR-182-5p, and that inhibition of miR-182-5p can lead to an increase in CIAPIN1 expression at both the mRNA and protein levels. Furthermore, the knockdown of CIAPIN1 with small interfering RNAs (siRNAs) efficiently abolished the protective effects of miR-182-5p inhibitor on HICA, demonstrating that miR-182-5p plays a pro-apoptotic role in cardiomyocytes under hypoxic conditions by downregulating CIAPIN1. Collectively, our results demonstrate that miR-182-5p may serve an underlying target to prevent cardiomyocytes from hypoxia-induced injury or apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Apoptose , Regulação para Baixo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Hipóxia Celular , Linhagem Celular , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Miócitos Cardíacos/patologia , Ratos
18.
Can J Physiol Pharmacol ; 96(12): 1318-1327, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30383982

RESUMO

Gold nanoparticles (AuNPs) are widely used for drug delivery because of their unique biological properties, such as their safety and ability to prolong drug action. Some studies have demonstrated that AuNPs accumulate in the heart, especially during pathological processes. Therefore, it is very important to understand the effect of AuNPs on the heart. Myocardial infarction (MI) is a major cause of morbidity and mortality; however, the effect of AuNPs on MI remains unclear. In the present study, we carried out a comprehensive evaluation of AuNPs on acute MI. The results showed that AuNPs accumulated in infarcted hearts, decreased infarction size, improved systolic function, and inhibited cardiac fibrosis and TNF-α accumulation. Our work indicated that AuNPs have cardioprotective effects and can be used in drug delivery systems for the treatment of cardiac diseases.


Assuntos
Ouro/farmacologia , Coração/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Polietilenoglicóis/química , Animais , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Fibrose/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C
19.
Can J Physiol Pharmacol ; 96(6): 541-549, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29120671

RESUMO

Myocardial remodeling includes inappropriate collagen deposition in the interstitium. Erythropoietin (EPO) may have cardioprotective effects. We aimed to assess the role of EPO on myocardial remodeling during the chronic phase. We studied 60 Wistar rats divided into the following groups: control (CT), control + EPO (CT + EPO), myocardial infarction + EPO (MI + EPO), and myocardial infarction (MI). The interstitial collagen volume fraction (ICVF) was quantified and echocardiography was performed. We quantified asymmetric dimethylarginine and glutathione by ELISA, and used real-time PCR to assess apoptosis and inflammation. Western blotting was used to evaluate inflammatory proteins and tissue inhibitors of metalloproteinases (TIMPs), and TUNEL staining was used to detect apoptosis. For matrix metalloproteinases (MMPs), we performed zymography. Parametric and nonparametric analyses were performed according to normality testing. ICVF was greater in MI groups (p < 0.001) and was attenuated by EPO (p = 0.05). The MMP-2 did not show any difference between groups. The TIMP-1 and TIMP-2 did not have difference between groups. The MI groups had worse fraction shortening (p < 0.001), without EPO protection (p = 0.666). The MI groups had increased left ventricle diastolic dimension (p < 0.001) without EPO attenuation (p = 0.79). EPO did not act on oxidative stress. Apoptosis and inflammation were not modulated by EPO. We concluded that EPO attenuated interstitial collagen accumulation, but did not protect from heart dilation or dysfunction.


Assuntos
Colágeno/metabolismo , Eritropoetina/farmacologia , Coração/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Arginina/análogos & derivados , Arginina/metabolismo , Diástole/efeitos dos fármacos , Glutationa/metabolismo , Coração/fisiopatologia , Hematócrito , Hemoglobinas/metabolismo , Masculino , Infarto do Miocárdio/patologia , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
20.
Can J Physiol Pharmacol ; 96(9): 916-921, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29806983

RESUMO

The present study was designed to ascertain the effects of 3 diets with different omega-3/6 fatty acid ratios on infarct size and the modifications that these diets induce in the lipid composition of cardiac tissue. Sprague-Dawley rats were fed omega-3/6 fatty acid diets with 1:1, 1:5, or 1:20 ratios for at least 10 days, followed by occlusion of the left anterior descending artery for 40 min and 24 h of reperfusion. Infarct size was significantly smaller in the 1:1 group than in the other groups. Significantly higher concentrations of the omega-3 fatty acids eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid were found in the 1:1 group than in the other groups. Omega-6 polyunsaturated fatty acid levels were similar between groups, although they were higher in the 1:5 and 1:20 groups than in the 1:1 group. Margaric acid concentrations were higher in the 1:1 group than in the other groups. Docosahexaenoic acid levels in cardiac tissue and infarct size were significantly correlated with no other significant links being apparent. The present study indicated that a 1:1 omega-3/6 fatty acid ratio protected against ischemia and was associated with increased omega-3 fatty acid composition of cardiac tissue.


Assuntos
Cardiotônicos/farmacologia , Dieta , Ácidos Graxos Ômega-3/farmacologia , Lipídeos/química , Miocárdio/metabolismo , Animais , Hemodinâmica/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Miocárdio/citologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA