Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Appl Microbiol Biotechnol ; 105(16-17): 6315-6332, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423407

RESUMO

The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.


Assuntos
COVID-19 , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunização Passiva , Imunoterapia , SARS-CoV-2
2.
Pulm Pharmacol Ther ; 53: 27-32, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30201410

RESUMO

BACKGROUND: Delivery of inhaled respiratory medications have been associated with variable delivery of drug due to errors in device operations and have not been designed to monitor true delivery of medication. A fully digital breath-activated inhaled (DBAI) delivery platform has been developed with integrated firmware and software to address these limitations. METHODS: the device was designed to produce similar aerosol particle output to a marketed albuterol MDI and to the albuterol/ipratropium combination in a soft mist inhaler (SMI). Cascade impactor studies were conducted to demonstrate comparable aerodynamic particle size distribution (APSD) metrics. Efficacy was evaluated by pharmacodynamic studies involving spirometry in two separate protocols with adult subjects having COPD (albuterol DBAI vs. albuterol MDI - Study A, albuterol/ipratropium DBAI single arm - Study B). RESULTS: The total emitted doses (TED) were 81.9 ±â€¯10.3, 109.3 ±â€¯15.0 and 121.9 ±â€¯7.0 µg/actuation for the DBAI, SMI and MDI respectively, and the fine (respirable) particle doses (FPD) were 56.2 ±â€¯6.0, 61.7 ±â€¯5.5 and 79.4 ±â€¯2.7 µg/actuation. MMADs for albuterol sulfate were 1.93 ±â€¯0.11, 1.75 ±â€¯0.19, and 2.65 ±â€¯0.05 µm for the DBAI, Respimat soft mist inhaler (SMI) and MDI respectively. The corresponding GSDs were 1.96 ±â€¯0.16, 2.79 ±â€¯0.25, and 1.48 ±â€¯0.02 µm. The corresponding respirable fractions were 68.7 ±â€¯3.2%, 57.3 ±â€¯10.5%, and 65.2 ±â€¯2.4%. Spirometric study A enrolled 23 subjects (age 64 ±â€¯7.3 years, 39% male, FEV1 45 ±â€¯14% predicted). Study B enrolled 23 subjects (age 65 ±â€¯8.6 years, 43% male, FEV1 47 ±â€¯10% predicted). For Study A, FEV1 at 20 min post-dose improved by 120 (167) mL (p = 0.002) for the DBAI device and 109 (183) mL (p = 0.008) for the MDI device (p = 0.86 for between group differences). For Study B, FEV1 (20 min post-dose) improved by 216 (126) mL (p < 0.001). CONCLUSION: The DBAI generated highly respirable aerosols containing albuterol sulfate that were similar to the MDI and SMI in respirable fraction but lower in dose. Subsequent pharmacodynamic studies delivering albuterol sulfate alone and in combination with ipratropium bromide confirmed similar responses for the DBAI compared with the other inhalers, which could possibly be related to a response ceiling. The DBAI breath-activated capability combined with the ability to monitor actual delivery of medication may improve effectiveness by overcoming patient miscoordination.


Assuntos
Albuterol/administração & dosagem , Sistemas de Liberação de Medicamentos , Ipratrópio/administração & dosagem , Inaladores Dosimetrados , Administração por Inalação , Aerossóis , Idoso , Broncodilatadores/administração & dosagem , Combinação de Medicamentos , Desenho de Equipamento , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Espirometria , Resultado do Tratamento
3.
Bioeng Transl Med ; 9(4): e10650, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036085

RESUMO

Soluble angiotensin-converting enzyme 2 (ACE2) can act as a decoy molecule that neutralizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by blocking spike (S) proteins on virions from binding ACE2 on host cells. Based on structural insights of ACE2 and S proteins, we designed a "muco-trapping" ACE2-Fc conjugate, termed ACE2-(G4S)6-Fc, comprised of the extracellular segment of ACE2 (lacking the C-terminal collectrin domain) that is linked to mucin-binding IgG1-Fc via an extended glycine-serine flexible linker. ACE2-(G4S)6-Fc exhibits substantially greater binding affinity and neutralization potency than conventional full length ACE2-Fc decoys or similar truncated ACE2-Fc decoys without flexible linkers, possessing picomolar binding affinity and strong neutralization potency against pseudovirus and live virus. ACE2-(G4S)6-Fc effectively trapped fluorescent SARS-CoV-2 virus like particles in fresh human airway mucus and was stably nebulized using a commercial vibrating mesh nebulizer. Intranasal dosing of ACE2-(G4S)6-Fc in hamsters as late as 2 days postinfection provided a 10-fold reduction in viral load in the nasal turbinate tissues by Day 4. These results strongly support further development of ACE2-(G4S)6-Fc as an inhaled immunotherapy for COVID-19, as well as other emerging viruses that bind ACE2 for cellular entry.

4.
Adv Drug Deliv Rev ; 198: 114858, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178928

RESUMO

Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.


Assuntos
Antiasmáticos , Asma , Humanos , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Pulmão , Anticorpos Monoclonais/uso terapêutico , Administração por Inalação
5.
Ann Am Thorac Soc ; 20(10): 1389-1396, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499210

RESUMO

It can be challenging for healthcare professionals (HCPs) to prescribe inhaled therapy for patients with chronic obstructive pulmonary disease (COPD) because of the multiple individual and combinations of inhaled medications available in numerous delivery systems. Guidance on the selection of an inhaled delivery system has received limited attention compared with the emphasis on prescribing the class of the inhaled molecule(s). Although numerous recommendations and algorithms have been proposed to guide the selection of an inhaled delivery system for patients with COPD, no specific approach has been endorsed in COPD guidelines/strategies or by professional organizations. To provide recommendations for an inhaler selection strategy at initial and follow-up appointments, we examined the impact of patient errors using handheld inhalers on clinical outcomes and performed a focused narrative review to consider patient factors (continuity of the inhaled delivery system, cognitive function, manual function/dexterity, and peak inspiratory flow) when selecting an inhaled delivery system. On the basis of these findings, five questions are proposed for HCPs to consider in the initial selection of an inhaler delivery system and three questions to consider at follow-up. We propose that HCPs consider the inhaled medication delivery system as a unit and to match appropriate medication(s) with the unique features of the delivery system to individual patient factors. Assessment of inhaler technique and adherence together with patient outcomes/satisfaction at each visit is essential to determine whether the inhaled medication delivery system is providing benefits. Continued and repeated education on device features and correct technique is warranted to optimize efficacy.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Nebulizadores e Vaporizadores , Preparações Farmacêuticas , Satisfação do Paciente , Administração por Inalação , Broncodilatadores/uso terapêutico
6.
Acta Pharm Sin B ; 13(5): 1828-1846, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36168329

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.

7.
Bioeng Transl Med ; : e10391, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36248234

RESUMO

The respiratory tract represents the key target for antiviral delivery in early interventions to prevent severe COVID-19. While neutralizing monoclonal antibodies (mAb) possess considerable efficacy, their current reliance on parenteral dosing necessitates very large doses and places a substantial burden on the healthcare system. In contrast, direct inhaled delivery of mAb therapeutics offers the convenience of self-dosing at home, as well as much more efficient mAb delivery to the respiratory tract. Here, building on our previous discovery of Fc-mucin interactions crosslinking viruses to mucins, we showed that regdanvimab, a potent neutralizing mAb already approved for COVID-19 in several countries, can effectively trap SARS-CoV-2 virus-like particles in fresh human airway mucus. IN-006, a reformulation of regdanvimab, was stably nebulized across a wide range of concentrations, with no loss of activity and no formation of aggregates. Finally, nebulized delivery of IN-006 resulted in 100-fold greater mAb levels in the lungs of rats compared to serum, in marked contrast to intravenously dosed mAbs. These results not only support our current efforts to evaluate the safety and efficacy of IN-006 in clinical trials, but more broadly substantiate nebulized delivery of human antiviral mAbs as a new paradigm in treating SARS-CoV-2 and other respiratory pathologies.

8.
Int Immunopharmacol ; 112: 109180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030690

RESUMO

Remarkable progress has recently been achieved to identify the biological function and potential value of novel therapeutic targets for the effective control of allergic asthma. Interferon (IFN)-λ has been suggested to restrict chronic inflammation in the lungs of asthmatic mice and we sought to determine the contribution of IFN-λ as an asthma therapeutic. We show that inhaled IFN-λ can restrict Th2 and Th17 inflammation in the lungs of asthmatic mice, accompanied with alteration of IL-10 secretion. BALB/C mice were used for an asthmatic mouse model with OVA. Recombinant IFN-λs (IFN-λ2: 2 µg, IFN-λ3: 2 µg) were inoculated into asthmatic mice after OVA challenge by intranasal delivery. Lungs of asthmatic mice were severely inflamed, with extensive inflammatory cell infiltration and increased goblet cell metaplasia with higher total lung resistance. Transcription of IL-4, IL-5, IL-13, and IL-17A was significantly higher until five days after the final OVA challenge. Asthmatic mice were administered recombinant IFN-λ via inhalation three times after the last challenge and the asthmatic mice showed improvement in lung histopathologic findings, and total lung resistance was maintained under normal range. IFN-λ inhalation exhibited significant decreases in Th2 and Th17 cytokine levels, and the populations of Th2 and Th17 cells were recovered from the lungs of asthmatic mice. Additionally, increase in IL-10 secretion from CD4 + Th cells population was observed in response to inhaled delivery of IFN-λ along with alterations in Th2 and Th17 cell-derived inflammation. Our findings show that inhaled delivery of IFN-λ can restrict airway inflammation in the lungs of asthmatic mice by controlling Th2- and Th17-mediated responses accompanied by regulation of IL-10 secretion even after asthma development.


Assuntos
Asma , Células Th17 , Camundongos , Animais , Interleucina-17 , Interleucina-13 , Interleucina-10/uso terapêutico , Interleucina-5 , Interleucina-4 , Ovalbumina , Camundongos Endogâmicos BALB C , Líquido da Lavagem Broncoalveolar , Asma/tratamento farmacológico , Inflamação/tratamento farmacológico , Citocinas , Modelos Animais de Doenças , Interferons/uso terapêutico , Imunidade , Células Th2
9.
Acta Pharm Sin B ; 10(8): 1576-1585, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963951

RESUMO

Efficient mucosal delivery remains a major challenge for the reason of the respiratory tract mucus act as a formidable barrier to nanocarriers by trapping and clearing foreign particulates. The surface property of nanoparticles determines their retention and penetration ability within the respiratory tract mucus. However, the interaction between nanoparticles and mucus, and how these interactions impact distribution has not been extensively investigated. In this study, polymeric nanoparticles loaded with a baicalein-phospholipid complex were modified with two kinds of polymers, mucoadhesive and mucus-penetrative polymer. Systematic investigations on the physicochemical property, mucus penetration, transepithelial transport, and tissue distribution were performed to evaluate the interaction of nanoparticles with the respiratory tract. Both nanoparticles had a similar particle size and good biocompatibility, exhibited a sustained-release profile, but showed a considerable difference in zeta potential. Interestingly, mucus-penetrative nanoparticles exhibited a higher diffusion rate in mucus, deeper penetration across the mucus layer, enhanced in vitro cellular uptake, increased drug distribution in airways, and superior local distribution and bioavailability as compared to mucoadhesive nanoparticles. These results indicate the potential of mucus-penetrative nanoparticles in design of a rational delivery system to improve the efficiency of inhaled therapy by promoting mucus penetration and increasing local distribution and bioavailability.

10.
J Aerosol Med Pulm Drug Deliv ; 32(1): 1-12, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29878860

RESUMO

BACKGROUND: Predicting local lung tissue pharmacodynamic (PD) responses of inhaled drugs is a longstanding challenge related to the lack of experimental techniques to determine local free drug concentrations. This has prompted the use of physiologically based pharmacokinetic (PBPK) modeling to potentially predict local concentration and response. A unique opportunity for PBPK model evaluation is provided by the clinical PD data for salbutamol, which in its inhaled dosage form (400 µg), produces a higher bronchodilatory effect than in its oral dosage form (2 mg) despite lower drug concentrations in blood. The present study aimed at evaluating whether inhalation PBPK model predictions of free drug in tissue would be predictive of these observations. METHODS: A PBPK model, including 24 airway generations, was parameterized to describe lung, plasma, and epithelial lining fluid concentrations of salbutamol administered intratracheally and intravenously to rats (100 nmol/kg). Plasma and lung tissue concentrations of unbound (R)-salbutamol, the active enantiomer, were predicted with a humanized version of the model and related to effect in terms of forced expiratory volume in 1 second (FEV1). RESULTS: In contrast to oral dosing, the model predicted inhalation to result in spatial heterogeneity in the target site concentrations (subepithelium) with higher free drug concentrations in the lung as compared with the plasma. FEV1 of inhaled salbutamol was accurately predicted from the PK/PD relationship derived from oral salbutamol and PBPK predictions of free concentration in airway tissue of high resistance (e.g., 6th generation). CONCLUSION: An inhalation PBPK-PD model was developed and shown predictive of local pharmacology of inhaled salbutamol, thus conceptually demonstrating the validity of PBPK model predictions of free drug concentrations in lung tissue. This achievement unlocks the power of inhalation PBPK modeling to interrogate local pharmacology and guide optimization and development of inhaled drugs and their formulations.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/farmacocinética , Albuterol/administração & dosagem , Albuterol/farmacocinética , Broncodilatadores/administração & dosagem , Broncodilatadores/farmacocinética , Pulmão/efeitos dos fármacos , Modelos Biológicos , Administração por Inalação , Administração Intravenosa , Administração Oral , Agonistas de Receptores Adrenérgicos beta 2/sangue , Albuterol/sangue , Animais , Broncodilatadores/sangue , Simulação por Computador , Volume Expiratório Forçado , Humanos , Pulmão/metabolismo , Masculino , Modelos Animais , Ratos Wistar , Absorção pelo Trato Respiratório , Distribuição Tecidual
11.
J Aerosol Med Pulm Drug Deliv ; 29(4): 362-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26859446

RESUMO

BACKGROUND: Understanding the relationship between dose, lung exposure, and drug efficacy continues to be a challenging aspect of inhaled drug development. An experimental inhalation platform was developed using mometasone furoate to link rodent lung exposure to its in vivo pharmacodynamic (PD) effects. METHODS: We assessed the effect of mometasone delivered directly to the lung in two different rodent PD models of lung inflammation. The data obtained were used to develop and evaluate a mathematical model to estimate drug dissolution, transport, distribution, and efficacy, following inhaled delivery in rodents and humans. RESULTS: Mometasone directly delivered to the lung, in both LPS and Alternaria alternata rat models, resulted in dose dependent inhibition of BALf cellular inflammation. The parameters for our mathematical model were calibrated to describe the observed lung and systemic exposure profiles of mometasone in humans and in animal models. We found that physicochemical properties, such as lung fluid solubility and lipophilicity, strongly influenced compound distribution and lung retention. CONCLUSIONS: Presently, we report on a novel and sophisticated mathematical model leading to improvements in a current inhaled drug development practices by providing a quantitative understanding of the relationship between PD effects and drug concentration in lungs.


Assuntos
Alternariose/tratamento farmacológico , Anti-Inflamatórios/administração & dosagem , Cálculos da Dosagem de Medicamento , Pneumopatias Fúngicas/tratamento farmacológico , Pulmão/efeitos dos fármacos , Modelos Biológicos , Furoato de Mometasona/administração & dosagem , Pneumonia/tratamento farmacológico , Administração por Inalação , Aerossóis , Alternaria , Alternariose/metabolismo , Alternariose/microbiologia , Alternariose/fisiopatologia , Animais , Anti-Inflamatórios/farmacocinética , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/fisiopatologia , Pneumopatias Fúngicas/metabolismo , Pneumopatias Fúngicas/microbiologia , Pneumopatias Fúngicas/fisiopatologia , Masculino , Furoato de Mometasona/farmacocinética , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Especificidade da Espécie , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA