Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791525

RESUMO

Our molecular understanding of the early stages of human inner ear development has been limited by the difficulty in accessing fetal samples at early gestational stages. As an alternative, previous studies have shown that inner ear morphogenesis can be partially recapitulated using induced pluripotent stem cells directed to differentiate into inner ear organoids (IEOs). Once validated and benchmarked, these systems could represent unique tools to complement and refine our understanding of human otic differentiation and model developmental defects. Here, we provide the first direct comparisons of the early human embryonic otocyst and fetal sensory organs with human IEOs. We use multiplexed immunostaining and single-cell RNA-sequencing to characterize IEOs at three key developmental steps, providing a new and unique signature of in vitro-derived otic placode, epithelium, neuroblasts and sensory epithelia. In parallel, we evaluate the expression and localization of crucial markers at these equivalent stages in human embryos. Together, our data indicate that the current state-of-the-art protocol enables the specification of bona fide otic tissue, supporting the further application of IEOs to inform inner ear biology and disease.


Assuntos
Orelha Interna , Células-Tronco Pluripotentes , Humanos , Gravidez , Feminino , Epitélio/metabolismo , Diferenciação Celular , Organoides
2.
Dev Dyn ; 251(11): 1798-1815, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35710880

RESUMO

BACKGROUND: The vitamin A derivative all-trans retinoic acid (RA) regulates early stages of inner ear development. As the early disruption of the RA pathway results in profound mispatterning of the developing inner ear, this confounds analyses of specific roles in later stages. Therefore, we used the temporal-specific exposure of all-trans RA or diethylaminobenzaldehyde to evaluate RA functions in late otic development. RESULTS: Perturbing late RA signaling causes behavioral defects analogous to those expected in larvae suffering from vestibular dysfunction. These larvae also demonstrate malformations of the semi-circular canals, as visualized through (a) use of the transgenic strain nkhspdmc12a, a fluorescent reporter expressed in otic epithelium; and (b) injection of the fluorescent lipophilic dye DiI. We also noted the altered expression of genes encoding ECM proteins or modifying enzymes. Other malformations of the inner ear observed in our work include the loss or reduced size of the utricular and saccular otoliths, suggesting a role for RA in otolith maintenance. CONCLUSION: Our work has identified a previously undescribed late phase of RA activity in otic development, demonstrating that vestibular defects observed in human patients in relation to perturbed RA signaling are not solely due to its early disruption in otic development.


Assuntos
Tretinoína , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Membrana dos Otólitos , Desenvolvimento Embrionário , Canais Semicirculares , Morfogênese
3.
Dev Biol ; 457(1): 91-103, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550482

RESUMO

Little is known about the role of TBX1 in post-otocyst stages of inner ear development. Here, we report on mice with a missense mutation of Tbx1 that are viable with fully developed but abnormally formed inner ears. Mutant mice are deaf due to an undeveloped stria vascularis and show vestibular dysfunction associated with abnormal semicircular canal formation. We show that TBX1 is expressed in endolymph-producing strial marginal cells and vestibular dark cells of the inner ear and is an upstream regulator of Esrrb, which previously was shown to control the developmental fate of these cells. We also show that TBX1 is expressed in sensory cells of the crista ampullaris, which may relate to the semicircular canal abnormalities observed in mutant mice. Inner ears of mutant embryos have a non-resorbed fusion plate in the posterior semicircular canal and a single ampulla connecting anterior and lateral canals. We hypothesize that the TBX1 missense mutation prevents binding with specific co-regulatory proteins. These findings reveal previously unknown functions of TBX1 during later stages of inner ear development.


Assuntos
Orelha Interna/embriologia , Mutação de Sentido Incorreto , Canais Semicirculares/embriologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Orelha Interna/citologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Morfogênese , Receptores de Estrogênio/metabolismo , Canais Semicirculares/anormalidades , Estria Vascular/citologia , Proteínas com Domínio T/química , Técnicas do Sistema de Duplo-Híbrido , Sequenciamento do Exoma
4.
Dev Dyn ; 249(7): 867-883, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384225

RESUMO

BACKGROUND: Sensorineural hearing loss is an understudied consequence of congenital Zika syndrome, and balance disorders are essentially unreported to date. Also lacking is information about the susceptibility and the pathogenesis of the developing inner ear following Zika virus (ZIKV) exposure. To address this, ZIKV was delivered directly into the otic cup/otocyst of chicken embryos and infection of inner ear tissues was evaluated using immunohistochemistry. RESULTS: After injections on embryonic days 2 to 5, ZIKV infection was observed in 90% of the samples harvested 2 to 8 days later; however, the degree of infection was highly variable across individuals. ZIKV was detected in all regions of the inner ear, associated ganglia, and in the surrounding periotic mesenchyme. Detection of virus peaked earlier in the ganglion and vestibular compartments, and later in the cochlea. ZIKV infection increased cell death robustly in the auditory ganglion, and modestly in the auditory sensory organ. Macrophage accumulation was found to overlap with dense viral infection in some tissues. Additionally, dysmorphogenesis of the semicircular canals and ganglion was observed for a subset of injection conditions. CONCLUSIONS: This article presents evidence of direct ZIKV infection of developing inner ear epithelium and shows previously unknown inner ear dysmorphogenesis phenotypes.


Assuntos
Orelha Interna/embriologia , Orelha Interna/virologia , Perda Auditiva Neurossensorial/embriologia , Infecção por Zika virus/virologia , Zika virus/metabolismo , Animais , Morte Celular , Embrião de Galinha , Galinhas , Cóclea , Orelha Interna/metabolismo , Epitélio/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Macrófagos/metabolismo , Fenótipo , Canais Semicirculares/embriologia , Canais Semicirculares/metabolismo , Fatores de Tempo , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
5.
Semin Cell Dev Biol ; 65: 69-79, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27836639

RESUMO

The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict inner ear sensory hair cell regeneration.


Assuntos
Epigênese Genética , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Organogênese/genética , Fatores de Transcrição Otx/genética , Animais , Diferenciação Celular , Embrião de Galinha , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/citologia , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Fatores de Transcrição Otx/metabolismo , Regeneração/genética
6.
Dev Biol ; 443(2): 153-164, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217595

RESUMO

Hundreds of thousands of cis-regulatory DNA sequences are predicted in vertebrate genomes, but unlike genes themselves, few have been characterized at the functional level or even unambiguously paired with a target gene. Here we serendipitously identified and started investigating the first reported long-range regulatory region for the Nr2f1 (Coup-TFI) transcription factor gene. NR2F1 is temporally and spatially regulated during development and required for patterning and regionalization in the nervous system, including sensory hair cell organization in the auditory epithelium of the cochlea. Analyzing the deaf wanderer (dwnd) spontaneous mouse mutation, we traced back the cause of its associated circling behavior to a 53 kb deletion removing five exons and adjacent intronic regions of the poorly characterized Mctp1 gene. Interestingly, loss of Mctp1 function cannot account for the hearing loss, inner ear dysmorphology and sensory hair cell disorganization observed in dwnd mutants. Instead, we found that the Mctp1dwnd deletion affects the Nr2f1 gene located 1.4 Mb away, downregulating transcription and protein expression in the embryonic cochlea. Remarkably, the Mctp1dwnd allele failed to complement a targeted inactivation allele of Nr2f1, and transheterozygotes or Mctp1dwnd homozygotes exhibit the same morphological defects observed in inner ears of Nr2f1 mutants without sharing their early life lethality. Defects include improper separation of the utricle and saccule in the vestibule not described previously, which can explain the circling behavior that first brought the spontaneous mutation to attention. By contrast, mice homozygous for a targeted inactivation of Mctp1 have normal hearing and inner ear structures. We conclude that the 53 kb Mctp1dwnd deletion encompasses a long-range cis-regulatory region essential for proper Nr2f1 expression in the embryonic inner ear, providing a first opportunity to investigate Nr2f1 function in postnatal inner ears. This work adds to the short list of long-range regulatory regions characterized as essential to drive expression of key developmental control genes.


Assuntos
Fator I de Transcrição COUP/genética , Fator I de Transcrição COUP/metabolismo , Orelha Interna/embriologia , Animais , Fator I de Transcrição COUP/fisiologia , Surdez/genética , Orelha Interna/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
7.
Biochem Biophys Res Commun ; 512(4): 896-901, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929920

RESUMO

The cochlea in the mammalian inner ear is a sensitive and sharply organized sound-detecting structure. The proper specification of neurosensory-competent domain in the otic epithelium is required for the formation of mature neuronal and sensory domains. Genetic studies have provided many insights into inner ear development, but there have been few epigenetic studies of inner ear development. CTCF is an epigenetic factor that plays a pivotal role in the organization of global chromatin conformation. To determine the role of CTCF in the otic sensory formation, we made a conditional knockout of Ctcf in the developing otic epithelium by crossing Ctcffl/fl mice with Pax2-Cre mice. Ctcf deficiency resulted in extra rows of auditory hair cells in the shortened cochlea on mouse embryonic day 14.5 (E14.5) and E17.5. The massive and ectopic expression of sensory specifiers such as Jag1 and Sox2 indicated that the sensory domain was expanded in the Ctcf-deficient cochlea. Other regulators of the sensory domain such as Bmp4, Gata3, and Fgf10 were not affected. These results suggest that CTCF plays a role in the regulation of the sensory domain in mammalian cochlear development.


Assuntos
Fator de Ligação a CCCTC/genética , Cóclea/embriologia , Cóclea/fisiopatologia , Animais , Proteína Morfogenética Óssea 4/genética , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Fator 10 de Crescimento de Fibroblastos/genética , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Proteína Jagged-1/genética , Camundongos Knockout , Fator de Transcrição PAX2/genética , Fatores de Transcrição SOXB1/genética
8.
Development ; 142(20): 3529-36, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26487780

RESUMO

In the developing cochlea, sensory hair cell differentiation depends on the regulated expression of the bHLH transcription factor Atoh1. In mammals, if hair cells die they do not regenerate, leading to permanent deafness. By contrast, in non-mammalian vertebrates robust regeneration occurs through upregulation of Atoh1 in the surviving supporting cells that surround hair cells, leading to functional recovery. Investigation of crucial transcriptional events in the developing organ of Corti, including those involving Atoh1, has been hampered by limited accessibility to purified populations of the small number of cells present in the inner ear. We used µChIP and qPCR assays of FACS-purified cells to track changes in the epigenetic status of the Atoh1 locus during sensory epithelia development in the mouse. Dynamic changes in the histone modifications H3K4me3/H3K27me3, H3K9ac and H3K9me3 reveal a progression from poised, to active, to repressive marks, correlating with the onset of Atoh1 expression and its subsequent silencing during the perinatal (P1 to P6) period. Inhibition of acetylation blocked the increase in Atoh1 mRNA in nascent hair cells, as well as ongoing hair cell differentiation during embryonic organ of Corti development ex vivo. These results reveal an epigenetic mechanism of Atoh1 regulation underlying hair cell differentiation and subsequent maturation. Interestingly, the H3K4me3/H3K27me3 bivalent chromatin structure observed in progenitors persists at the Atoh1 locus in perinatal supporting cells, suggesting an explanation for the latent capacity of these cells to transdifferentiate into hair cells, and highlighting their potential as therapeutic targets in hair cell regeneration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Cóclea/embriologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Separação Celular , Cromatina/química , Células-Tronco Embrionárias/citologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/química , Histonas/química , Masculino , Camundongos , Camundongos Transgênicos , Órgão Espiral/patologia , Fatores de Tempo
9.
Dev Biol ; 414(1): 21-33, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27083418

RESUMO

The inner ear is a complex organ comprised of various specialized sensory organs for detecting sound and head movements. The timing of specification for these sensory organs, however, is not clear. Previous fate mapping results of the inner ear indicate that vestibular and auditory ganglia and two of the vestibular sensory organs, the utricular macula (UM) and saccular macula (SM), are lineage related. Based on the medial-lateral relationship where respective auditory and vestibular neuroblasts exit from the otic epithelium and the subsequent formation of the medial SM and lateral UM in these regions, we hypothesized that specification of the two lateral structures, the vestibular ganglion and the UM are coupled and likewise for the two medial structures, the auditory ganglion and the SM. We tested this hypothesis by surgically inverting the primary axes of the otic cup in ovo and investigating the fate of the vestibular neurogenic region, which had been spotted with a lipophilic dye. Our results showed that the laterally-positioned, dye-associated, vestibular ganglion and UM were largely normal in transplanted ears, whereas both auditory ganglion and SM showed abnormalities suggesting the lateral but not the medial-derived structures were mostly specified at the time of transplantation. Both of these results are consistent with a temporal coupling between neuronal and macular fate specifications.


Assuntos
Nervo Coclear/citologia , Orelha Interna/embriologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Sáculo e Utrículo/citologia , Nervo Vestibular/citologia , Animais , Biomarcadores , Linhagem da Célula , Embrião de Galinha , Nervo Coclear/crescimento & desenvolvimento , Orelha Interna/transplante , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Luminescentes/análise , Sáculo e Utrículo/crescimento & desenvolvimento , Células Receptoras Sensoriais , Fatores de Tempo , Nervo Vestibular/crescimento & desenvolvimento
10.
Bioessays ; 36(11): 1102-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154354

RESUMO

Although music and other forms of art can develop in diverse directions, they are linked to the genetic profiles of populations. Hearing music is a strong environmental trigger that serves as an excellent model to study the crosstalk between genes and the environment. We propose that the ability to enjoy and practice music requires musical aptitude, which is a common and innate trait facilitating the enjoyment and practice of music. The innate drive for music can only have arisen by exposure to music, and it develops with motivation and training in musically rich environments. Recent genomic approaches have shown that the genes responsible for inner ear development, auditory pathways and neurocognitive processes may underlay musical aptitude. It is expected that genomic approaches can be applied to musical traits and will reveal new biological mechanisms that affect human evolution, brain function, and civilisation.


Assuntos
Aptidão/fisiologia , Cognição/fisiologia , Genômica , Música/psicologia , Vias Auditivas/embriologia , Vias Auditivas/crescimento & desenvolvimento , Orelha Interna/embriologia , Orelha Interna/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Humanos , Gêmeos Monozigóticos/genética
11.
J Neurosci ; 34(30): 10072-7, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057208

RESUMO

In mammals, formation of the auditory sensory organ (the organ of Corti) is restricted to a specialized area of the cochlea. However, the molecular mechanisms limiting sensory formation to this discrete region in the ventral cochlear duct are not well understood, nor is it known whether other regions of the cochlea have the competence to form the organ of Corti. Here we identify LMO4, a LIM-domain-only nuclear protein, as a negative regulator of sensory organ formation in the cochlea. Inactivation of Lmo4 in mice leads to an ectopic organ of Corti (eOC) located in the lateral cochlea. The eOC retains the features of the native organ, including inner and outer hair cells, supporting cells, and other nonsensory specialized cell types. However, the eOC shows an orientation opposite to the native organ, such that the eOC appears as a mirror-image duplication to the native organ of Corti. These data demonstrate a novel sensory competent region in the lateral cochlear duct that is regulated by LMO4 and may be amenable to therapeutic manipulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genética , Órgão Espiral/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Cóclea/crescimento & desenvolvimento , Feminino , Técnicas de Introdução de Genes , Proteínas com Domínio LIM/antagonistas & inibidores , Proteínas com Domínio LIM/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Órgãos dos Sentidos/crescimento & desenvolvimento
12.
Biochem Biophys Res Commun ; 448(1): 28-32, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24732355

RESUMO

Connexin 26 (Cx26, GJB2) mutations are the major cause of hereditary deafness and are responsible for >50% of nonsyndromic hearing loss. Mouse models show that Cx26 deficiency can cause congenital deafness with cochlear developmental disorders, hair cell degeneration, and the reduction of endocochlear potential (EP) and active cochlear amplification. However, the underlying deafness mechanism still remains undetermined. Our previous studies revealed that hair cell degeneration is not a primary cause of hearing loss. In this study we investigated the role of EP reduction in Cx26 deficiency-induced deafness. We found that the EP reduction is not associated with congenital deafness in Cx26 knockout (KO) mice. The threshold of auditory brainstem response (ABR) in Cx26 KO mice was even greater than 110 dB SPL, demonstrating complete hearing loss. However, the EP in Cx26 KO mice varied and not completely abolished. In some cases, the EP could still remain at higher levels (>70 mV). We further found that the deafness in Cx26 KO mice is associated with cochlear developmental disorders. Deletion of Cx26 in the cochlea before postnatal day 5 (P5) could cause congenital deafness. The cochlea had developmental disorders and the cochlear tunnel was not open. However, no congenital deafness was found when Cx26 was deleted after P5. The cochlea also displayed normal development and the cochlear tunnel was open normally. These data suggest that congenital deafness induced by Cx26 deficiency is not determined by EP reduction and may result from cochlear developmental disorders.


Assuntos
Cóclea/crescimento & desenvolvimento , Conexinas/deficiência , Surdez/congênito , Animais , Animais Recém-Nascidos , Cóclea/fisiologia , Conexina 26 , Conexinas/genética , Camundongos , Camundongos Knockout
13.
Adv Biol (Weinh) ; : e2400223, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051423

RESUMO

Inner ear organoids play a crucial role in hearing research. In comparison to other animal models and 2D cell culture systems, inner ear organoids offer significant advantages for studying the mechanisms of inner ear development and exploring novel approaches to disease treatment. Inner ear organoids derived from human cells are more closely resemble normal human organs in development and function. The 3D culture system of the inner ear organoid enhances cell-cell interactions and mimics the internal environment. In this review, the progress and limitations of organoid culture methods derived from tissue-specific progenitors and pluripotent stem cells (PSCs) are summarized, which may offer new insights into generating organoids that closely resemble the inner ear in terms of morphology and function.

14.
Cell Rep ; 43(3): 113822, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393948

RESUMO

Hearing starts, at the cellular level, with mechanoelectrical transduction by sensory hair cells. Sound information is then transmitted via afferent synaptic connections with auditory neurons. Frequency information is encoded by the location of hair cells along the cochlear duct. Loss of hair cells, synapses, or auditory neurons leads to permanent hearing loss in mammals. Birds, in contrast, regenerate auditory hair cells and functionally recover from hearing loss. Here, we characterized regeneration and reinnervation in sisomicin-deafened chickens and found that afferent neurons contact regenerated hair cells at the tips of basal projections. In contrast to development, synaptic specializations are established at these locations distant from the hair cells' bodies. The protrusions then contracted as regenerated hair cells matured and became functional 2 weeks post-deafening. We found that auditory thresholds recovered after 4-5 weeks. We interpret the regeneration-specific synaptic reestablishment as a location-preserving process that might be needed to maintain tonotopic fidelity.


Assuntos
Galinhas , Perda Auditiva , Animais , Células Ciliadas Auditivas/fisiologia , Audição , Som , Mamíferos
15.
Genes (Basel) ; 14(7)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37510276

RESUMO

BACKGROUND: In vertebrates, the development of the inner ear is a delicate process, whereas its relating molecular pathways are still poorly understood. LMO4, an LIM domain-only transcriptional regulator, is drawing an increasing amount of interest for its multiple roles regarding human embryonic development and the modulation of ototoxic side effects of cisplatin including cochlear apoptosis and hearing loss. The aim of the present study is to further explore the role of lmo4a in zebrafish inner ear development and thus explore its functional role. METHODS: The Spatial Transcript Omics DataBase was referred to in order to evaluate the expression of lmo4a during the first 24 h of zebrafish development. In situ hybridization was applied to validate and extend the expression profile of lmo4a to 3 days post-fertilization. The morpholino (MO) knockdown and CRISPR/Cas9 knockout (KO) of lmo4a was applied. Morphological analyses of otic vesical, hair cells, statoacoustic ganglion and semicircular canals were conducted. The swimming pattern of lmo4a KO and MO zebrafish was tracked. In situ hybridization was further applied to verify the expression of genes of the related pathways. Rescue of the phenotype was attempted by blockage of the bmp pathway via heat shock and injection of Dorsomorphin. RESULTS: lmo4a is constitutively expressed in the otic placode and otic vesicle during the early stages of zebrafish development. Knockdown and knockout of lmo4a both induced smaller otocysts, less hair cells, immature statoacoustic ganglion and malformed semicircular canals. Abnormal swimming patterns could be observed in both lmo4a MO and KO zebrafish. eya1 in preplacodal ectoderm patterning was downregulated. bmp2 and bmp4 expressions were found to be upregulated and extended in lmo4a morphants, and blockage of the Bmp pathway partially rescued the vestibular defects. CONCLUSIONS: We concluded that lmo4a holds a regulative effect on the Bmp pathway and is required for the normal development of zebrafish inner ear. Our study pointed out the conservatism of LMO4 in inner ear development between mammals and zebrafish as well as shed more light on the molecular mechanisms behind it. Further research is needed to distinguish the relationships between lmo4 and the Bmp pathway, which may lead to diagnostic and therapeutic approaches towards human inner ear malformation.


Assuntos
Orelha Interna , Peixe-Zebra , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cóclea/metabolismo , Orelha Interna/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas com Domínio LIM/genética , Mamíferos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Neurosci Lett ; 802: 137172, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898654

RESUMO

The EYA1 gene is essential for normal inner ear development and affects the development and function of the inner ear in a dose-dependent manner. However, the mechanisms regulating EYA1 gene expression are not well understood. Recently, miRNAs have become recognized as important regulators of gene expression. In this study, we identified miR-124-3p through a microRNA (miRNA) target prediction website and found that miR-124-3p and its target site in the EYA1 3' untranslated region (3'UTR) are conserved in most vertebrates. Both in vivo and in vitro, the interaction of miR-124-3p with the EYA1 3'UTR exerts a negative regulatory effect. Microinjection of agomiR-124-3p into zebrafish embryos resulted in a phenotype of reduced auricular area, suggesting inner ear dysplasia. In addition, injection of agomiR-124-3p or antagomiR-124-3p caused abnormal hearing function in zebrafish. In conclusion, our results suggest that miR-124-3p can affect inner ear development and hearing function in zebrafish by regulating EYA1.


Assuntos
Orelha Interna , MicroRNAs , Animais , Peixe-Zebra/metabolismo , Regulação para Baixo , Regiões 3' não Traduzidas , Orelha Interna/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Audição , Expressão Gênica
17.
Biology (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37106825

RESUMO

Dentin matrix protein 1 (Dmp1) is a highly phosphorylated, extracellular matrix protein that is extensively expressed in bone and teeth but also found in soft tissues, including brain and muscle. However, the functions of Dmp1 in the mice cochlea are unknown. Our study showed that Dmp1 was expressed in auditory hair cells (HCs), with the role of Dmp1 in those cells identified using Dmp1 cKD mice. Immunostaining and scanning electron microscopy of the cochlea at P1 revealed that Dmp1 deficiency in mice resulted in an abnormal stereociliary bundle morphology and the mispositioning of the kinocilium. The following experiments further demonstrated that the cell-intrinsic polarity of HCs was affected without apparent effect on the tissue planer polarity, based on the observation that the asymmetric distribution of Vangl2 was unchanged whereas the Gαi3 expression domain was enlarged and Par6b expression was slightly altered. Then, the possible molecular mechanisms of Dmp1 involvement in inner ear development were explored via RNA-seq analysis. The study suggested that the Fgf23-Klotho endocrine axis may play a novel role in the inner ear and Dmp1 may regulate the kinocilium-stereocilia interaction via Fgf23-Klotho signaling. Together, our results proved the critical role of Dmp1 in the precise regulation of hair bundle morphogenesis in the early development of HCs.

18.
Biomedicines ; 11(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672706

RESUMO

It has been established for almost 30 years that the retinoic acid receptor (RAR) signalling pathway plays essential roles in the morphogenesis of a large variety of organs and systems. Here, we used a temporally controlled genetic ablation procedure to precisely determine the time windows requiring RAR functions. Our results indicate that from E8.5 to E9.5, RAR functions are critical for the axial rotation of the embryo, the appearance of the sinus venosus, the modelling of blood vessels, and the formation of forelimb buds, lung buds, dorsal pancreatic bud, lens, and otocyst. They also reveal that E9.5 to E10.5 spans a critical developmental period during which the RARs are required for trachea formation, lung branching morphogenesis, patterning of great arteries derived from aortic arches, closure of the optic fissure, and growth of inner ear structures and of facial processes. Comparing the phenotypes of mutants lacking the 3 RARs with that of mutants deprived of all-trans retinoic acid (ATRA) synthesising enzymes establishes that cardiac looping is the earliest known morphogenetic event requiring a functional ATRA-activated RAR signalling pathway.

19.
Front Cell Dev Biol ; 11: 1245330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900277

RESUMO

The Notch and Wnt signalling pathways play key roles in the formation of inner ear sensory organs, but little is known about their transcriptional effectors and targets in this context. Here, we perturbed Notch and Wnt activities in the embryonic chicken otic vesicle using pharmacological treatment or in ovo electroporation of plasmid DNA, and used RNA-Seq to analyse the resulting changes in gene expression. Compared to pharmacological treatments, in ovo electroporation changed the expression of fewer genes, a likely consequence of the variability and mosaicism of transfection. The pharmacological inhibition of Notch activity induced a rapid change in the expression of known effectors of this pathway and genes associated with neurogenesis, consistent with a switch towards an otic neurosensory fate. The Wnt datasets contained many genes associated with a neurosensory biological function, confirming the importance of this pathway for neurosensory specification in the otocyst. Finally, the results of a preliminary gain-of-function screening of selected transcription factors and Wnt signalling components suggest that the endogenous programs of otic neurosensory specification are very robust, and in general unaffected by the overexpression of a single factor. Altogether this work provides new insights into the effectors and candidate targets of the Notch and Wnt pathways in the early developing inner ear and could serve as a useful reference for future functional genomics experiments in the embryonic avian inner ear.

20.
Front Cell Dev Biol ; 10: 867153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372344

RESUMO

Intermediate cells of the stria vascularis are neural crest derived melanocytes. They are essential for the establishment of the endocochlear potential in the inner ear, which allows mechanosensory hair cells to transduce sound into nerve impulses. Despite their importance for normal hearing, how these cells develop and migrate to their position in the lateral wall of the cochlea has not been studied. We find that as early as E10.5 some Schwann cell precursors in the VIIIth ganglion begin to express melanocyte specific markers while neural crest derived melanoblasts migrate into the otic vesicle. Intermediate cells of both melanoblast and Schwann cell precursor origin ingress into the lateral wall of the cochlea starting at around E15.5 following a basal to apical gradient during embryonic development, and continue to proliferate postnatally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA