Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38979931

RESUMO

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Assuntos
1-Desoxinojirimicina , Doença de Alzheimer , Resistência à Insulina , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Humanos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 3/genética , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Biomarcadores/metabolismo
2.
Diabetologia ; 66(5): 884-896, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36884057

RESUMO

AIMS/HYPOTHESIS: Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets. METHODS: Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis. Antisera were generated to detect insulin variants in human pancreatic tissue using immunohistochemistry, electron microscopy and single-cell western blot to confirm the expression of insulin variants. Cytotoxic T lymphocyte (CTL) activation was determined by MIP-1ß release. RESULTS: We identified an alternatively spliced INS product. This variant encodes the complete insulin signal peptide and B chain and an alternative C-terminus that largely overlaps with a previously identified defective ribosomal product of INS. Immunohistochemical analysis revealed that the translation product of this INS-derived splice transcript was detectable in somatostatin-producing delta cells but not in beta cells; this was confirmed by light and electron microscopy. Expression of this alternatively spliced INS product activated preproinsulin-specific CTLs in vitro. The exclusive presence of this alternatively spliced INS product in delta cells may be explained by its clearance from beta cells by insulin-degrading enzyme capturing its insulin B chain fragment and a lack of insulin-degrading enzyme expression in delta cells. CONCLUSIONS/INTERPRETATION: Our data demonstrate that delta cells can express an INS product derived from alternative splicing, containing both the diabetogenic insulin signal peptide and B chain, in their secretory granules. We propose that this alternative INS product may play a role in islet autoimmunity and pathology, as well as endocrine or paracrine function or islet development and endocrine destiny, and transdifferentiation between endocrine cells. INS promoter activity is not confined to beta cells and should be used with care when assigning beta cell identity and selectivity. DATA AVAILABILITY: The full EM dataset is available via www.nanotomy.org (for review: http://www.nanotomy.org/OA/Tienhoven2021SUB/6126-368/ ). Single-cell RNA-seq data was made available by Segerstolpe et al [13] and can be found at https://sandberglab.se/pancreas . The RNA and protein sequence of INS-splice was uploaded to GenBank (BankIt2546444 INS-splice OM489474).


Assuntos
Insulisina , Ilhotas Pancreáticas , Humanos , Células Secretoras de Somatostatina/metabolismo , Insulisina/metabolismo , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA , Sinais Direcionadores de Proteínas
3.
J Neuroinflammation ; 20(1): 233, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817156

RESUMO

The insulin-degrading enzyme (IDE) is an evolutionarily conserved zinc-dependent metallopeptidase highly expressed in the brain, where its specific functions remain poorly understood. Besides insulin, IDE is able to cleave many substrates in vitro, including amyloid beta peptides, making this enzyme a candidate pathophysiological link between Alzheimer's disease (AD) and type 2 diabetes (T2D). These antecedents led us to address the impact of IDE absence in hippocampus and olfactory bulb. A specific induction of microgliosis was found in the hippocampus of IDE knockout (IDE-KO) mice, without any effects in neither hippocampal volume nor astrogliosis. Performance on hippocampal-dependent memory tests is influenced by IDE gene dose in 12-month-old mice. Furthermore, a comprehensive characterization of the impact of IDE haploinsufficiency and total deletion in metabolic, behavioral, and molecular parameters in the olfactory bulb, a site of high insulin receptor levels, reveals an unambiguous barcode for IDE-KO mice at that age. Using wildtype and IDE-KO primary microglial cultures, we performed a functional analysis at the cellular level. IDE absence alters microglial responses to environmental signals, resulting in impaired modulation of phenotypic states, with only transitory effects on amyloid-ß management. Collectively, our results reveal previously unknown physiological functions for IDE in microglia that, due to cell-compartment topological reasons, cannot be explained by its enzymatic activity, but instead modulate their multidimensional response to various damaging conditions relevant to aging and AD conditions.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Insulisina , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Insulisina/genética , Insulisina/metabolismo , Insulisina/farmacologia , Microglia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Encéfalo/metabolismo , Fenótipo
4.
Nutr Neurosci ; 26(12): 1172-1182, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342068

RESUMO

ABSTRACTThe deposition of ß-amyloid plaques, either due to their over-production or insufficient clearance, is an important pathological process in cognitive impairment and dementia. Icariin (ICA), a flavonoid compound extracted from Epimedium, has recently gained attention for numerous age-related diseases, such as neurodegenerative diseases. We aimed to explore the possible neuro-protective effect of ICA supplementation in colchicine-induced cognitive deficit rat model and exploring its effect on the ß-amyloid proteolytic enzymes. The study included four groups (10 rats each): normal control, untreated colchicine, colchicine + 10 mg/kg ICA, and colchicine + 30 mg/ kg ICA. Results revealed that intra-cerebro-ventricular colchicine injection produced neuronal morphological damage, ß amyloid deposition, and evident cognitive impairment in the behavioral assessment. Icariin supplementation in the two doses for 21 days attenuated neuronal death, reduced the ß amyloid levels, and improved memory consolidation. This was associated with modulation of the proteolytic enzymes (Neprilysin, Matrix Metalloproteinase-2, and insulin-degrading enzyme) concluding that ß-amyloid enzymatic degradation may be the possible therapeutic target for ICA.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ratos , Animais , Peptídeos beta-Amiloides/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Cognição , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo
5.
J Clin Lab Anal ; 37(13-14): e24949, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37515308

RESUMO

BACKGROUND: Insulin-degrading enzyme (IDE) is an important gene in studies of the pathophysiology of type 2 diabetes mellitus (T2DM). Recent studies have suggested a possible link between type 2 diabetes mellitus (T2DM) and the pathophysiology of schizophrenia (SZ). At the same time, significant changes in insulin-degrading enzyme (IDE) gene expression have been found in the brains of people with schizophrenia. These findings highlight the need to further investigate the role of IDE in schizophrenia pathogenesis. METHODS: We enrolled 733 participants from the Czech Republic, including 383 patients with schizophrenia and 350 healthy controls. Our study focused on the single nucleotide polymorphism (SNP) rs2421943 in the IDE gene, which has previously been associated with the pathogenesis of Alzheimer's disease. The SNP was analyzed using the PCR-RFLP method. RESULTS: The G allele of the rs2421943 polymorphism was found to significantly increase the risk of developing SZ (p < 0.01) when a gender-based analysis showed that both AG and GG genotypes were associated with a more than 1.55 times increased risk of SZ in females (p < 0.03) but not in males. Besides, we identified a potential binding site at the G allele locus for has-miR-7110-5p, providing a potential mechanism for the observed association. CONCLUSION: Our results confirm the role of the IDE gene in schizophrenia pathogenesis and suggest that future research should investigate the relationship between miRNA and estrogen influence on IDE expression in schizophrenia pathogenesis.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Insulisina , Esquizofrenia , Masculino , Feminino , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Esquizofrenia/genética , Insulisina/genética , Insulisina/metabolismo , Genótipo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Polimorfismo de Nucleotídeo Único/genética
6.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675244

RESUMO

Sleeve gastrectomy (SG) successfully recovers metabolic homeostasis in obese humans and rodents while also resulting in the normalization of insulin sensitivity and insulinemia. Reduced insulin levels have been attributed to lower insulin secretion and increased insulin clearance in individuals submitted to SG. Insulin degradation mainly occurs in the liver in a process controlled, at least in part, by the insulin-degrading enzyme (IDE). However, research has yet to explore whether liver IDE expression or activity is altered after SG surgery. In this study, C57BL/6 mice were fed a chow (CTL) or high-fat diet (HFD) for 10 weeks. Afterward, the HFD mice were randomly assigned to two groups: sham-surgical (HFD-SHAM) and SG-surgical (HFD-SG). Here, we confirmed that SG improves glucose-insulin homeostasis in obese mice. Additionally, SG reduced insulinemia by reducing insulin secretion, assessed by the analysis of plasmatic C-peptide content, and increasing insulin clearance, which was evaluated through the calculation of the plasmatic C-peptide:insulin ratio. Although no changes in hepatic IDE activity were observed, IDE expression was higher in the liver of HFD-SG compared with HFD-SHAM mice. These results indicate that SG may be helpful to counteract obesity-induced hyperinsulinemia by increasing insulin clearance, likely through enhanced liver IDE expression.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Humanos , Camundongos , Animais , Insulina/metabolismo , Camundongos Obesos , Peptídeo C , Camundongos Endogâmicos C57BL , Redução de Peso , Obesidade/etiologia , Obesidade/cirurgia , Insulina Regular Humana , Hiperinsulinismo/etiologia , Gastrectomia/métodos , Dieta Hiperlipídica/efeitos adversos
7.
Diabetologia ; 65(8): 1375-1389, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652923

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is characterised by hyperglucagonaemia and perturbed function of pancreatic glucagon-secreting alpha cells but the molecular mechanisms contributing to these phenotypes are poorly understood. Insulin-degrading enzyme (IDE) is present within all islet cells, mostly in alpha cells, in both mice and humans. Furthermore, IDE can degrade glucagon as well as insulin, suggesting that IDE may play an important role in alpha cell function in vivo. METHODS: We have generated and characterised a novel mouse model with alpha cell-specific deletion of Ide, the A-IDE-KO mouse line. Glucose metabolism and glucagon secretion in vivo was characterised; isolated islets were tested for glucagon and insulin secretion; alpha cell mass, alpha cell proliferation and α-synuclein levels were determined in pancreas sections by immunostaining. RESULTS: Targeted deletion of Ide exclusively in alpha cells triggers hyperglucagonaemia and alpha cell hyperplasia, resulting in elevated constitutive glucagon secretion. The hyperglucagonaemia is attributable in part to dysregulation of glucagon secretion, specifically an impaired ability of IDE-deficient alpha cells to suppress glucagon release in the presence of high glucose or insulin. IDE deficiency also leads to α-synuclein aggregation in alpha cells, which may contribute to impaired glucagon secretion via cytoskeletal dysfunction. We showed further that IDE deficiency triggers impairments in cilia formation, inducing alpha cell hyperplasia and possibly also contributing to dysregulated glucagon secretion and hyperglucagonaemia. CONCLUSIONS/INTERPRETATION: We propose that loss of IDE function in alpha cells contributes to hyperglucagonaemia in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células Secretoras de Insulina , Insulisina , Animais , Proliferação de Células/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Hiperplasia/genética , Hiperplasia/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulisina/genética , Insulisina/metabolismo , Camundongos , alfa-Sinucleína/metabolismo
8.
J Pathol ; 255(4): 346-361, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34396529

RESUMO

Insulin-degrading enzyme (IDE) function goes far beyond its known proteolytic role as a regulator of insulin levels. IDE has a wide substrate promiscuity, degrading several proteins such as amyloid-ß peptide, glucagon, islet amyloid polypeptide (IAPP), and insulin-like growth factors, which have diverse physiological and pathophysiological functions. Importantly, IDE plays other non-proteolytic functions such as: a chaperone/dead-end chaperone, an E1-ubiquitin activating enzyme, and a proteasome modulator. It also responds as a heat shock protein, regulating cellular proteostasis. Notably, amyloidogenic proteins such as IAPP, amyloid-ß, and α-synuclein have been reported as substrates for IDE chaperone activity. This is of utmost importance as failure of IDE may result in increased protein aggregation, a key hallmark in the pathogenesis of beta cells in type 2 diabetes mellitus and of neurons in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this review, we focus on the biochemical and biophysical properties of IDE and the regulation of its physiological functions. We further raise the hypothesis that IDE plays a central role in the pathological context of dysmetabolic and neurodegenerative diseases and discuss its potential as a therapeutic target. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Insulisina/metabolismo , Doenças Metabólicas/enzimologia , Doenças Neurodegenerativas/enzimologia , Animais , Humanos
9.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163673

RESUMO

Insulin-degrading enzyme (IDE) is a ubiquitously expressed metallopeptidase that degrades insulin and a large panel of amyloidogenic peptides. IDE is thought to be a potential therapeutic target for type-2 diabetes and neurodegenerative diseases, such as Alzheimer's disease. IDE catalytic chamber, known as a crypt, is formed, so that peptides can be enclosed and degraded. However, the molecular mechanism of the IDE function and peptide recognition, as well as its conformation changes, remains elusive. Our study elucidates IDE structural changes and explains how IDE conformational dynamics is important to modulate the catalytic cycle of IDE. In this aim, a free-substrate IDE crystallographic structure (PDB ID: 2JG4) was used to model a complete structure of IDE. IDE stability and flexibility were studied through molecular dynamics (MD) simulations to witness IDE conformational dynamics switching from a closed to an open state. The description of IDE structural changes was achieved by analysis of the cavity and its expansion over time. Moreover, the quasi-harmonic analysis of the hinge connecting IDE domains and the angles formed over the simulations gave more insights into IDE shifts. Overall, our results could guide toward the use of different approaches to study IDE with different substrates and inhibitors, while taking into account the conformational states resolved in our study.


Assuntos
Insulisina/química , Simulação de Dinâmica Molecular , Humanos , Ligação de Hidrogênio , Termodinâmica , Água/química
10.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232381

RESUMO

Although the COVID-19 disease has developed into a worldwide pandemic, its pathophysiology remains to be fully understood. Insulin-degrading enzyme (IDE), a zinc-metalloprotease with a high affinity for insulin, has been found in the interactomes of multiple SARS-CoV-2 proteins. However, the relevance of IDE in the innate and adaptative immune responses elicited by circulating peripheral blood mononuclear cells is unknown. Here, we show that IDE is highly expressed on the surface of circulating monocytes, T-cells (both CD4+ and CD4-), and, to a lower extent, in B-cells from healthy controls. Notably, IDE's surface expression was upregulated on monocytes from COVID-19 patients at diagnosis, and it was increased in more severe patients. However, IDE's surface expression was downregulated (relative to healthy controls) 3 months after hospital discharge in all the studied immune subsets, with this effect being more pronounced in males than in females, and thus it was sex-dependent. Additionally, IDE levels in monocytes, CD4+ T-cells, and CD4- T-cells were inversely correlated with circulating insulin levels in COVID-19 patients (both at diagnosis and after hospital discharge). Of note, high glucose and insulin levels downregulated IDE surface expression by ~30% in the monocytes isolated from healthy donors, without affecting its expression in CD4+ T-cells and CD4- T-cells. In conclusion, our studies reveal the sex- and metabolism-dependent regulation of IDE in monocytes, suggesting that its regulation might be important for the recruitment of immune cells to the site of infection, as well as for glucometabolic control, in COVID-19 patients.


Assuntos
COVID-19 , Insulisina , Teste para COVID-19 , Feminino , Glucose , Hospitais , Humanos , Insulina/metabolismo , Insulisina/metabolismo , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Masculino , Monócitos/metabolismo , SARS-CoV-2 , Zinco
11.
Biochemistry (Mosc) ; 86(6): 680-692, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34225591

RESUMO

The incidence of Alzheimer's disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic amyloid species and brain damage. The effects of global 15-min ischemia and 120-min reperfusion on the levels of expression of the amyloid precursor protein (APP) and its processing were investigated in the brain cortex (Cx) of male Wistar rats. Additionally, the levels of expression of the amyloid-degrading enzymes neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), and insulin-degrading enzyme (IDE), as well as of some markers of oxidative damage were assessed. It was shown that the APP mRNA and protein levels in the rat Cx were significantly increased after the ischemic insult. Protein levels of the soluble APP fragments, especially of sAPPß produced by ß-secretase, (BACE-1) and the levels of BACE-1 mRNA and protein expression itself were also increased after ischemia. The protein levels of APP and BACE-1 in the Cx returned to the control values after 120-min reperfusion. The levels of NEP and ECE-1 mRNA also decreased after ischemia, which correlated with the decreased protein levels of these enzymes. However, we have not observed any changes in the protein levels of insulin-degrading enzyme. Contents of the markers of oxidative damage (di-tyrosine and lysine conjugates with lipid peroxidation products) were also increased after ischemia. The obtained data suggest that ischemia shifts APP processing towards the amyloidogenic ß-secretase pathway and accumulation of the neurotoxic Aß peptide as well as triggers oxidative stress in the cells. These results are discussed in the context of the role of stress and ischemia in initiation and progression of AD.


Assuntos
Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/enzimologia , Córtex Cerebral/enzimologia , Enzimas Conversoras de Endotelina/genética , Enzimas Conversoras de Endotelina/metabolismo , Regulação da Expressão Gênica , Insulisina/genética , Insulisina/metabolismo , Masculino , Neprilisina/genética , Neprilisina/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/metabolismo
12.
J Enzyme Inhib Med Chem ; 36(1): 183-187, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33401948

RESUMO

We have applied a recently developed HPLC-MS enzymatic assay to investigate the cryptic peptides generated by the action of the insulin-degrading enzyme (IDE) on some neuropeptides (NPs) involved in the development of tolerance and dependence to opioids. Particularly, the tested NPs are generated from the NPFF precursor (pro-NPFF (A)): NPFF (FLFQPQRF) and NPAF (AGEGLSSPFWSLAAPQRF). The results show that IDE is able to cleave NPFF and NPAF, generating specific cryptic peptides. As IDE is also responsible for the processing of many other peptides in the brain (amyloid beta protein among the others), we have also performed competitive degradation assays using mixtures of insulin and the above mentioned NPs. Data show that insulin is able to slow down the degradation of both NPs tested, whereas, surprisingly, NPAF is able to accelerate insulin degradation, hinting IDE as the possible link responsible of the mutual influence between insulin and NPs metabolism.


Assuntos
Insulina/química , Insulisina/química , Antagonistas de Entorpecentes/química , Neuropeptídeos/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Analgésicos Opioides/efeitos adversos , Animais , Cromatografia Líquida de Alta Pressão , Tolerância a Medicamentos , Humanos , Insulina/metabolismo , Espectrometria de Massas , Neuropeptídeos/metabolismo , Fragmentos de Peptídeos/análise , Proteólise , Ratos , Proteínas Recombinantes/química , Soluções
13.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668109

RESUMO

Hepatic insulin clearance, a physiological process that in response to nutritional cues clears ~50-80% of circulating insulin, is emerging as an important factor in our understanding of the pathogenesis of type 2 diabetes mellitus (T2DM). Insulin-degrading enzyme (IDE) is a highly conserved Zn2+-metalloprotease that degrades insulin and several other intermediate-size peptides. Both, insulin clearance and IDE activity are reduced in diabetic patients, albeit the cause-effect relationship in humans remains unproven. Because historically IDE has been proposed as the main enzyme involved in insulin degradation, efforts in the development of IDE inhibitors as therapeutics in diabetic patients has attracted attention during the last decades. In this review, we retrace the path from Mirsky's seminal discovery of IDE to the present, highlighting the pros and cons of the development of IDE inhibitors as a pharmacological approach to treating diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Insulina/metabolismo , Insulisina/antagonistas & inibidores , Animais , Diabetes Mellitus Tipo 2/enzimologia , Humanos
14.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299316

RESUMO

Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer's disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-ß (Aß) have been proposed as one of the major causes of the disease, the mechanism of clearing Aß is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aß in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Proteína ADAM10/metabolismo , Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Humanos , Insulisina/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Metais/metabolismo , Neprilisina/metabolismo , Oxirredução , Proteólise
15.
Semin Cell Dev Biol ; 83: 22-28, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29486236

RESUMO

It is usually assumed that eukaryotic cells secrete only proteins that contain a signal sequence for Sec61 mediated translocation into the lumen of endoplasmic reticulum (ER). Surprisingly however, many proteins, such as superoxide dismutase (SOD)1, acyl-CoA binding protein (Acb1), interleukin 1ß, fibroblast growth factor 2 and the adipokine Unpaired2, to name a few, are secreted even though they lack a signal sequence. The discovery that these proteins are secreted has presented a new challenge and we describe here a common pathway by which SOD1 and Acb1 are specifically secreted upon nutrient starvation. Their secretion follows a type III unconventional pathway, requiring the exposure of a di-acidic motif, which we propose promotes their capture into a membrane compartment called CUPS (compartment for unconventional protein secretion). We suggest that CUPS, composed of membranes derived from the Golgi apparatus and endosomes, serves as a major sorting station prior to release of SOD1 and Acb1 into the extracellular space. The trafficking of these signal sequence lacking proteins therefore has functional similarities to conventional protein secretion in that they rely on membrane bounded compartments for their sorting and transport, but bypass the need of Sec61 for translocating into the ER and COPII and COPI for their intracellular transfers. This review is part of a Special Issue of SCDB on "unconventional protein secretion" edited by Walter Nickel and Catherine Rabouille.


Assuntos
Proteínas de Transporte/metabolismo , Nutrientes/metabolismo , Transporte Proteico/fisiologia , Humanos
16.
FASEB J ; 33(4): 5535-5547, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30649986

RESUMO

Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays a critical role in regulating cell survival, cell growth, and proliferation by antagonizing the PI3K-AKT-mTOR pathway. The regulatory mechanism of PTEN protein is still not completely understood. Here, we found that Sirtuin 4 (SIRT4) interacts with PTEN and regulates its stability. Overexpression of SIRT4 in cells causes down-regulation of PTEN. This regulation is independent of PTEN acetylation and ubiquitination. We further found that SIRT4 degrades PTEN through lysosome pathway mediated by insulin degrading enzyme (IDE). SIRT4 bridges PTEN and IDE for degradation in response to nutritional starvation stresses. Our results suggest that when cells were exposed to nutritional starvation, SIRT4 was induced and cooperated with IDE to degrade PTEN; low levels of PTEN promote cells to survive from cellular stress. Our findings provide a new regulation of PTEN in response to cellular stresses.-Liu, M., Wang, Z., Ren, M., Yang, X., Liu, B., Qi, H., Yu, M., Song, S., Chen, S., Liu, L., Zhang, Y., Zou, J., Zhu, W.-G., Yin, Y., Luo, J. SIRT4 regulates PTEN stability through IDE in response to cellular stresses.


Assuntos
Insulisina/metabolismo , Proteínas Mitocondriais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Sirtuínas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Regulação para Baixo/fisiologia , Células HEK293 , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
17.
Diabetes Obes Metab ; 22(8): 1469-1473, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32227616

RESUMO

Haemolysis of serially collected insulin serum samples frequently causes falsely-low measured concentrations because of the release of intracellular insulin degrading enzyme (IDE). We investigated if bacitracin, an in vitro IDE inhibitor, could prevent haemolysis-induced insulin degradation during insulin sensitivity testing. Blood samples were collected from adults undergoing serial sampling for insulin sensitivity. A dose-finding study measured insulin from experimentally haemolysed samples containing five bacitracin concentrations (0-2.5 g/L) and from non-experimentally haemolysed samples. To confirm the utility of bacitracin in the clinical setting, we compared insulin in samples collected with and without 1 g/L bacitracin from a frequently sampled intravenous glucose tolerance test (FSIVGTT), where haemolysis often occurs accidentally. In the dose-finding study, bacitracin 0.25, 1 and 2.5 g/L all maximally prevented insulin degradation in experimentally haemolysed samples. Among FSIVGTT unintentionally haemolysed samples, insulin concentrations from bacitracin-containing samples were significantly higher than from those without bacitracin (P < .01), and not different from non-haemolysed samples obtained simultaneously from a second intravenous catheter (P = .07). Bacitracin did not significantly alter insulin concentrations in non-haemolysed samples. Bacitracin attenuates haemolysis-associated insulin degradation in clinical samples, enabling a more accurate assessment of insulin sensitivity and glucose homeostasis.


Assuntos
Resistência à Insulina , Preparações Farmacêuticas , Adulto , Bacitracina , Reposicionamento de Medicamentos , Hemólise , Humanos , Insulina
18.
Proc Natl Acad Sci U S A ; 114(14): E2826-E2835, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28325868

RESUMO

Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid ß peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to ∼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.


Assuntos
Endossomos/metabolismo , Fosfatos de Inositol/metabolismo , Insulisina/metabolismo , Fosfatidilinositóis/metabolismo , Androstadienos/farmacologia , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Endossomos/efeitos dos fármacos , Ativação Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Insulisina/química , Insulisina/genética , Lipossomos/química , Lipossomos/metabolismo , Mutação , Wortmanina
19.
Crit Rev Biochem Mol Biol ; 52(5): 554-582, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28635330

RESUMO

Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as ß-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the "aggregopathies" and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin-proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the "quality control" machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.


Assuntos
Insulisina/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulisina/fisiologia , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/patologia , Conformação Proteica
20.
J Cell Physiol ; 234(6): 9802-9809, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30370604

RESUMO

Human life expectancy is increasing faster lately and, consequently, the number of patients with age-related diseases such as type 2 diabetes (T2D) is rising every year. Cases of hyperinsulinemia have been extensively reported in elderly subjects and this alteration in blood insulin concentration is postulated to be a cause of insulin resistance, which in some cases triggers T2D onset. Thus, it is important to know the underlying mechanisms of age-dependent hyperinsulinemia to find new strategies to prevent T2D in elderly subjects. Two processes control blood insulin concentration: Insulin secretion by the endocrine portion of the pancreas and insulin clearance, which occurs mainly in the liver by the action of the insulin-degrading enzyme (IDE). Here, we demonstrated that 10-month-old mice (old) display increased body and fat pad weight, compared with 3-month-old mice (control), and these alterations were accompanied by glucose and insulin intolerance. We also confirm hyperinsulinemia in the old mice, which was related to increased insulin secretion but not to reduced insulin clearance. Although no changes in insulin clearance were observed, IDE activity was lower in the liver of old compared with the control mice. However, this decreased IDE activity was compensated by increased expression of IDE protein in the liver, thus explaining the similar insulin clearance observed in both groups. In conclusion, at the beginning of aging, 10-month-old mice do not display any alterations in insulin clearance. Therefore, hyperinsulinemia is initiated primarily due to a higher insulin secretion in the age-related metabolic dysfunction in mice.


Assuntos
Envelhecimento , Glucose/metabolismo , Hiperinsulinismo/etiologia , Insulina/metabolismo , Animais , Área Sob a Curva , Glicemia , Peso Corporal , Glucose/farmacologia , Homeostase , Hiperinsulinismo/metabolismo , Insulina/sangue , Insulisina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA