Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Environ Manage ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294479

RESUMO

Dense beds of water plants can be perceived as nuisance, but this perception, however, may not be similar for different user categories, and this may affect their willingness-to-pay (WTP) for plant removal. A questionnaire survey was used to test this for residents and visitors and find underlying socio-cultural or economic drivers. We studied five cases where nuisance water plant growth is managed: the rivers Otra (Norway) and Spree (Germany), and the lakes Kemnade (Germany), Grand-Lieu (France), and Hartbeespoort Dam (South Africa). We used a different payment vehicle for residents (annual household tax) and visitors (tourist tax). The survey included questions on days spent on specific types of activity per year, the importance attached to different functions and activities, overall environmental attitude, perception of the plants, socio-demographic respondent characteristics and WTP for increased plant removal. We observed no increase in WTP for increased removal in most sites. The two most important drivers of variation in current WTP were income, and whether respondents were engaged in boating and angling and thus perceived the plants negatively. Variation in WTP among sites was considerable, and mainly related to the mixture of activities among respondents. Differences between residents and visitors were less important than those among sites. Our observations bear importance for water management: information on differences in experienced nuisance among user categories and the frequency of use by these categories is useful as guidance for the design and implementation of any plant removal plan.

2.
Am J Bot ; 110(12): e16258, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38031455

RESUMO

Agricultural weeds frequently hybridize with each other or with related crop species. Some hybrid weeds exhibit heterosis (hybrid vigor), which may be stabilized through mechanisms like genome duplication or vegetative reproduction. Even when heterosis is not stabilized, hybridization events diversify weed gene pools and often enable adaptive introgression. Consequently, hybridization may promote weed evolution and exacerbate weed-crop competition. However, hybridization does not always increase weediness. Even when viable and fertile, hybrid weeds sometimes prove unsuccessful in crop fields. This review provides an overview of weed hybridization and its management implications. We describe intrinsic and extrinsic factors that influence hybrid fitness in agroecosystems. We also survey the rapidly growing literature on crop-weed hybridization and the link between hybridization and invasiveness. These topics are increasingly relevant in this era of genetic tools for crop improvement, intensive and simplified cropping systems, and globalized trade. The review concludes with suggested research priorities, including hybridization in the context of climate change, plant-insect interactions, and redesigned weed management programs. From a weed management perspective, hybridization is one of many reasons that researchers and land managers must diversify their weed control toolkits.


Assuntos
Agricultura , Produtos Agrícolas , Produtos Agrícolas/genética , Plantas Daninhas/genética , Controle de Plantas Daninhas , Hibridização Genética
3.
Glob Chang Biol ; 27(11): 2416-2425, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33759302

RESUMO

Weeds represent a significant threat to crop yields and global food security. We analysed data on weed competition from the world's longest running agricultural experiment to ask whether potential yield losses from weeds have increased in response to management and environmental change since the advent of the Green Revolution in the 1960s. On plots where inorganic nitrogen fertiliser has been applied, potential yield losses from weeds have consistently increased since 1969. This was explained by a warming climate, measured as air temperature averaged over the growing season for the weeds, and a shift towards shorter crop cultivars. Weeds also reduced yield proportionally more on plots with higher rates of nitrogen which had higher yields when weeds were controlled; the relative benefit of herbicides was, therefore, proportional to potential crop yield. Reducing yield losses from weed competition is increasingly challenging because of the evolution of herbicide resistance. Our results demonstrate that weeds now represent a greater inherent threat to crop production than before the advent of herbicides and integrated, sustainable solutions to weed management are urgently needed to protect the high yield potential of modern crop genotypes.


Assuntos
Mudança Climática , Controle de Plantas Daninhas , Produtos Agrícolas , Resistência a Herbicidas , Plantas Daninhas
4.
Field Crops Res ; 259: 107961, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34149151

RESUMO

In many parts of Eastern India that have a very high prevalence of rural poverty and food insecurity, the prevailing rice establishment practice of 'beushening' is characterized by low yields and modest profitability, while labor and energy inputs are high. Beushening consists of broadcasting ungerminated rice seed at high rates (>100 kg ha-1) prior to the onset of monsoon rain, followed by ploughing at 4-6 weeks after crop emergence to control weeds with subsequent manual gap filling through seedling redistribution to ensure stand uniformity. Dry-direct seeding of rice (DSR), both drill-DSR and precision broadcast-DSR in combination with integrated weed management (IWM) may offer a pathway for simultaneously reducing costs and markedly increasing productivity. On-farm trials were conducted from 2016 to 2018 in four districts of Odisha (Mayurbhanj, Cuttack, Bhadrak, and Puri) to evaluate the yield and economic performance of dry-DSR (drill and precision broadcast), coupled with herbicide-based IWM strategies, in comparison with conventional beushening. Drill-DSR with IWM increased grain yield by 1.7 t ha-1 in Mayurbhanj and 1.3 t ha-1 in Cuttack, but not in Bhadrak, compared to beushening. The combination of increased yield and lower variable cost in drill-DSR increased net benefit by 550, 395, and 166 US$ ha-1 in Mayurbhanj, Cuttack, and Bhadrak, respectively. For farmers without access to seed drills, precision broadcast-DSR with IWM increased yields by 0.91, 1.22 and 0.60 t ha-1, and net benefits by 270, 312, and 188 US$ ha-1 in Mayurbhanj, Puri, and Bhadrak, respectively. Among the IWM practices evaluated in dry-DSR, application of pretilachlor + safener @ 500 g ai ha-1 as pre-emergence, followed by bispyribac-sodium @ 20 g ai ha-1 at 15-25 days after sowing as post-emergence, and then one spot hand weeding at 30-35 days after sowing was effective in controlling weeds. These results suggest that rice yield gaps in eastern India can be reduced, and farmers' income from rice can be increased by more than 50 % by replacing beushening with drill-DSR or precision broadcast-DSR. The results could be applicable to approximately 6.4 million ha of lowland rice where beushening is currently practiced in Eastern India.

5.
Crop Prot ; 138: 105334, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33273751

RESUMO

In South Asia's rice-based cropping systems, most farmers flood and repetitively till their fields before transplanting. This establishment method, commonly termed puddled transplanted rice (TPR), is costly. In addition, it is labor and energy intensive. To increase labor and energy efficiency in rice production, reduced or zero-tilled direct seeded rice (ZT-DSR) is commonly proposed as an alternative tillage and crop establishment (TCE) option. Effective management of weeds in ZT-DSR however remains a major challenge. We conducted a four-year experiment under a rice-maize rotation in Northwestern Bangladesh in the eastern Gangetic Plains to examine the performance of two TCE methods and three weed management regimes (WMR) on the diversity and competitiveness of weed communities in the rice phase of the rotation. The Shannon-Weiner Diversity Index, a measure of species diversity, was significantly greater under ZT-DSR than puddled TPR. It was also greater under no weed control (Weedy) and two manual weeding (MW) treatments compared to chemical herbicide with manual weeding (C + MW). In DSR Weedy plots, weed communities began shifting from grasses to sedges from the rotation's second year, while in the ZT-DSR and C + MW treatments, sedges were consistently predominant. In both puddled TPR Weedy and TPR C + MW treatments, broadleaves and grasses were dominant in the initial year, while sedges dominated in the final year. There were significant main effects of year (Y) and weed management regime (WMR), but not of TCE. Significant Y × TCE and TCE × WMR interaction effects on rice yield were also observed. Grain yields under ZT-DSR were similar to puddled TPR. ZT-DSR with one application of pre-emergence herbicide followed by one hand weeding at 28 days after establishment however resulted in significantly higher grain yield (5.34 t ha-1) compared the other weed management regimes. Future research should address methods to effectively manage weed community composition shifts in both ZT-DSR and TPR under rice-maize rotations utilizing integrated and low-cost strategies that can be readily applied by farmers in the eastern Gangetic Plains.

6.
Molecules ; 25(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575453

RESUMO

The bioherbicidal potential of Thymbra capitata (L.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth of Erigeron canadensis L., Sonchus oleraceus (L.) L., and Chenopodium album L. at 0.125 µL/mL, of Setaria verticillata (L.) P.Beauv., Avena fatua L., and Solanum nigrum L. at 0.5 µL/mL, of Amaranthus retroflexus L. at 1 µL/mL and of Portulaca oleracea L., and Echinochloa crus-galli (L.) P.Beauv. at 2 µL/mL. Under greenhouse conditions, T. capitata EO was tested towards the emergent weeds from a soil seedbank in pre and post emergence, showing strong herbicidal potential in both assays at 4 µL/mL. In addition, T. capitata EO, applied by spraying, was tested against P. oleracea, A. fatua and E. crus-galli. The species showed different sensibility to the EO, being E. crus-galli the most resistant. Experiments were performed against A. fatua testing T. capitata EO and carvacrol applied by spraying or by irrigation. It was verified that the EO was more active at the same doses in monocotyledons applied by irrigation and in dicotyledons applied by spraying. Carvacrol effects on Arabidopsis root morphology were also studied.


Assuntos
Avena/crescimento & desenvolvimento , Echinochloa/crescimento & desenvolvimento , Herbicidas , Lamiaceae/química , Óleos Voláteis , Portulaca/crescimento & desenvolvimento , Herbicidas/química , Herbicidas/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Plântula/crescimento & desenvolvimento
7.
J Econ Entomol ; 109(1): 49-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26352752

RESUMO

Stinging nettle (Urtica dioica L.) is the most important host plant for both phytoplasma associated with Bois noir disease of the grapevine and its vector Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). Vector abundance in vineyards is favored by stinging nettle growing in surrounding areas. Nettle control by herbicides or cutting can reduce vector population in vineyards. However, chemical weeding can cause environmental problems. Many authors suggest that stinging nettle control applied during H. obsoletus flight could force adults to migrate into vineyards. We evaluate if cutting of nettle growing along ditches during adult flight favors vineyard colonization by H. obsoletus. Three different weed management regimes ("no cuts," "one cut" just before the beginning of adult flight, and "frequent cuts" over the whole vegetative season) were applied to the herbaceous vegetation in ditches bordering two vineyards. The flight dynamics of H. obsoletus were recorded by placing yellow sticky traps on the vegetation along the ditches and at different positions in the vineyards. Frequent stinging nettle cuts (compared with a single cut) in surrounding areas favored the dispersion of vectors inside the vineyards. Stinging nettle control should be based on an integration of a single herbicide application before H. obsoletus emergence followed by frequent cuts to minimize negative side effects of chemical weeding. In organic viticulture, a frequent-cuts strategy should avoid cuts during H. obsoletus flight period, at least in the first year of adoption.


Assuntos
Agricultura/métodos , Hemípteros/fisiologia , Urtica dioica , Vitis , Animais , Itália , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Dinâmica Populacional , Estações do Ano
8.
Plant Sci ; 345: 112104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38685454

RESUMO

Weeds are the primary biotic constraint affecting sesame growth and production. Here, we applied EMS mutagenesis to an elite sesame cultivar and discovered a novel point mutation in the sesame SiALS gene conferring resistance to imidazolinone, a group of acetolactate-synthase (ALS)-inhibitors. The mutant line exhibited high resistance to imazamox, an ALS-inhibitor, with hybrid plants displaying an intermediate response. Field-based validation confirmed the mutant line's substantial resistance, leading to a significantly higher yield under imazamox treatment. Under pre-emergence application of imazapic, the mutant plants sustained growth, whereas wild-type and weed were effectively controlled. Field trials using s-metolachlor and imazapic combined resulted in weed-free plots compared to untreated controls. Consequently, this treatment showed a significantly greater yield (2280 vs. 880 Kg ha-1) than the commercial practice (s-metolachlor). Overall, our study unveils the potential of utilizing this point mutation in sesame breeding programs, offering new opportunities for integrated weed management strategies for sesame cultivation. Developing herbicide-resistant crop plants holds promise for supporting sustainable production and addressing the challenges of weed infestations in sesame farming.


Assuntos
Resistência a Herbicidas , Herbicidas , Sesamum , Controle de Plantas Daninhas , Controle de Plantas Daninhas/métodos , Resistência a Herbicidas/genética , Sesamum/genética , Sesamum/crescimento & desenvolvimento , Herbicidas/farmacologia , Acetolactato Sintase/genética , Plantas Daninhas/genética , Plantas Daninhas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento
9.
Pest Manag Sci ; 80(11): 5843-5851, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39007446

RESUMO

BACKGROUND: A 4-year experiment evaluated the effects of different integrated weed management (IWM) programs on the evolution of a Echinochloa crus-galli population resistant to acetolactate synthase (ALS) inhibitors in a maize cropping system. The programs included the continued use of ALS inhibitors, mixing them with alternative herbicides, or without ALS-inhibitors, in all cases under maize monocrop or a biennial crop rotation. RESULTS: IWM programs that relied solely on non-ALS-inhibitors usually achieved high control levels across years (> 90%). Additionally, Trp574Leu-resistant plants became prevalent (> 90%) in programs only using ALS inhibitors, while in the rest the frequency of susceptible plants did not substantially decrease below 40%. Regarding the other monitored grass weeds, Digitaria sanguinalis and Panicum dichotomiflorum were effectively controlled in programs using ALS-inhibitors without soybean rotation or in programs without ALS-inhibitors altogether, excepting the program relying on an 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor under maize monocrop for the latter species (0%). CONCLUSION: At the end of the experiment, the only IWM programs that reduced infestation levels were the one without ALS-inhibitors under soybean rotation, and the one with standard pre-emergence treatments. These findings highlight the effectiveness of crop rotation and alternative herbicides both pre- or post-emergence in controlling E. crus-galli. ALS-inhibitors, while challenged by resistance in E. crus-galli, remain valuable tools for managing other grass weed species in maize. It is crucial to adapt IWM strategies for herbicide-resistant E. crus-galli and other grass weed populations to mitigate the further evolution of resistance. © 2024 Corteva Agriscience. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Acetolactato Sintase , Echinochloa , Resistência a Herbicidas , Herbicidas , Plantas Daninhas , Controle de Plantas Daninhas , Zea mays , Echinochloa/efeitos dos fármacos , Echinochloa/genética , Zea mays/crescimento & desenvolvimento , Herbicidas/farmacologia , Controle de Plantas Daninhas/métodos , Plantas Daninhas/efeitos dos fármacos , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Agricultura/métodos
10.
Pest Manag Sci ; 80(7): 3470-3477, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38415813

RESUMO

BACKGROUND: This study introduces a wild radish population collected from Yelbeni in the Western Australian grainbelt that evolved an early silique abscission (shedding) trait to persist despite long-term harvest weed seed control (HWSC) use. In 2017, field-collected seed (known herein as Yelbeni) was compared to surrounding ruderal and field-collected populations in a fully randomized common garden study. RESULTS: The Yelbeni population exhibited a higher rate of silique abscission when compared to the ruderal populations collected from the site before wheat (Triticum aestivum L.) harvest (assessed at soft dough stage, Zadoks 83). A similar common garden study was conducted in the subsequent season (2018) using progeny reproduced on a single site without stress. The HWSC-selected progeny (Yelbeni P) shed 1048 (±288) siliques before wheat maturity at the soft dough stage (Zadoks 83) compared to 25 (±7) siliques from the pooled control populations. The Yelbeni P population only flowered 6 days earlier (FT50 as determined by log-logistic analysis) than pooled control populations, which is unlikely to fully account for the increased rate of silique abscission. The Yelbeni P population also located its lowest siliques below the lowest height for harvest interception (10 cm), which is likely to increase HWSC evasion. The mechanism inducing early silique-shedding is yet to be determined; however, wild radish is known for its significant genetic variability and has demonstrated its capacity to adapt to environmental and management stresses. CONCLUSION: This study demonstrates that the repeated use of HWSC can lead to the selection of HWSC-avoidance traits including early silique-shedding before harvest and/or locating siliques below the harvest cutting height for interception. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fenótipo , Raphanus , Sementes , Controle de Plantas Daninhas , Raphanus/crescimento & desenvolvimento , Raphanus/genética , Raphanus/fisiologia , Austrália Ocidental , Sementes/crescimento & desenvolvimento , Controle de Plantas Daninhas/métodos , Flores/crescimento & desenvolvimento
11.
Front Plant Sci ; 15: 1375164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855471

RESUMO

The massive use of herbicides since the 1950s has resulted in increasing problems with herbicideresistant weeds and pollution of the environment, including food, feed, and water. These side effects have resulted in political pressures to reduce herbicide application. The European Commission aims to reduce the use and risk of chemicals and more hazardous pesticides in the EU. Therefore, new weed control methods are in demand. Laser weeding might be an alternative to replace or supplement herbicides and other weed control methods in an Integrated Weed Management (IPM) strategy. This work aimed to investigate how increasing laser energy affected common weeds when the apical meristem was exposed to irradiation at the early stages of development. A 50 W thulium-doped fibre laser with a diameter of 2 mm and a wavelength of 2 µm was used. The highest efficacy of laser irradiation was achieved when the grass weed (Alopecurus myosuroides) had one leaf and the dicot species were at the cotyledon stage. There was a large difference between the species' susceptibility to irradiation probably caused by differences in morphology and growth habit. At the 4-leaf stage, most of the species regrew after irradiation. Laser weeding may be a solution to replace or supplement other weed control methods in some crops, but in general the weeds must be irradiated when they are at the cotyledon to 2-leaf stage to avoid regrowth.

12.
Sci Rep ; 14(1): 11173, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750179

RESUMO

Laser weeding may contribute to less dependency on herbicides and soil tillage. Several research and commercial projects are underway to develop robots equipped with lasers to control weeds. Artificial intelligence can be used to locate and identify weed plants, and mirrors can be used to direct a laser beam towards the target to kill it with heat. Unlike chemical and mechanical weed control, laser weeding only exposes a tiny part of the field for treatment. Laser weeding leaves behind only ashes from the burned plants and does not disturb the soil. Therefore, it is an eco-friendly method to control weed seedlings. However, perennial weeds regrow from the belowground parts after the laser destroys the aerial shoots. Depletion of the belowground parts for resources might be possible if the laser continuously kills new shoots, but it may require many laser treatments. We studied how laser could be used to destroy the widespread and aggressive perennial weed Elymus repens after the rhizomes were cut into fragments. Plants were killed with even small dosages of laser energy and stopped regrowing. Generally, the highest efficacy was achieved when the plants from small rhizomes were treated at the 3-leaf stage.


Assuntos
Lasers , Controle de Plantas Daninhas , Controle de Plantas Daninhas/métodos , Elymus/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
13.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903886

RESUMO

Milk thistle besides being a highly competitive weed is cultivated as a medicinal plant, and the seeds of which have been clinically utilized in several disorders caused in liver. The present study aims to evaluate the effect of duration and storage conditions, population, and temperature on seed germination. The experiment was conducted in Petri dishes with three replications and three factors: (a) wild populations of milk thistle (Palaionterveno, Mesopotamia, and Spata) originating from Greece, (b) duration and storage conditions (5 months at room temperature, 17 months at room temperature, and 29 months in the freezer at -18 °C), and (c) temperature (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, and 30 °C). All three factors significantly affected germination percentage (GP), mean germination time (MGT), germination index (GI), radicle length (RL), and hypocotyl length (HL) and significant interactions among the treatments were noted. In specific, no seed germination was recorded at 5 °C, while the populations showed higher GP and GI at 20 °C and 25 °C after 5 months of storage. Prolonged storage negatively affected seed germination although, cold storage mitigated this effect. Moreover, higher temperatures reduced MGT and increased RL and HL with the populations reacting differently in storage and temperature regimes. The results of this study should be taken into consideration when proposing the appropriate sowing date and storage conditions of the seeds used as propagation material for crop establishment. Moreover, the effects of low temperatures such as 5 °C or 10 °C on seed germination as well as the high decline rate in germination percentage over time could be utilized in the design of integrated weed management systems thereby indicating the importance of the sowing time and the suitable crop rotation system to weed control.

14.
Environ Sci Pollut Res Int ; 30(7): 16984-17008, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622585

RESUMO

A small proportion of the thousands of pesticides on the market today are associated with a disproportionately high incidence of severe acute pesticide poisoning and suicide. Paraquat stands out as one of the most lethal pesticides in common use, frequently involved in fatal incidents due to suicides or accidental exposure. Even though paraquat has been banned in over 67 countries, it is still widely used in many others, particularly in Asia and Latin America. Based on a literature review and consultations, this paper identifies options for replacing paraquat and distils practical lessons from numerous successes around the world. Our aim is to support regulators, policymakers, agronomists and the supply chain sector with practical information related to phasing out paraquat. Production data consistently failed to show any negative effects of banning paraquat on agricultural productivity. A wide range of alternative approaches to weed management and crop defoliation are available, many of which do not rely on herbicides. Over 1.25 million farmers in low- and middle-income countries (LMICs) successfully produce a range of crops for private voluntary standards (PVS) in food and fiber supply chains which prohibit paraquat use. We conclude from the findings of this study that eliminating paraquat will save lives without reducing agricultural productivity. Less hazardous and more sustainable alternatives exist. To enhance successful adoption and uptake of these methods on a wide scale, farmers require training and support within an enabling policy environment.


Assuntos
Herbicidas , Praguicidas , Suicídio , Humanos , Paraquat , Agricultura
15.
Plants (Basel) ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501369

RESUMO

Cyperus aromaticus (Navua sedge) is a problematic perennial weed in pastures and crops including sugarcane, banana, rice, and fruits and vegetables in tropical climates. It reproduces both via rhizomes and seeds. As a regenerative and storage organ, these rhizomes play an important part in the invasion, establishment, and persistence of this weed. To eliminate their regenerative ability, it is important to understand the regrowth potential with respect to rhizome fragment size and burial depth. This study evaluated the emergence of C. aromaticus from rhizomes in a controlled condition. Three different sizes of rhizome fragments were buried at seven depths of up to 20 cm in two soil types. The experimental measurements included (i) the time for tillers to emerge, (ii) the cumulative emergence of tillers, recorded weekly, and (iii) the number of underground emerging tillers. The cumulative shoot emergence and the number of underground tillers produced were found to be positively correlated with the initial length of the rhizome fragments and negatively correlated with the burial depth. The time for the emergence of the tillers was negatively correlated with the burial depth, and soil type had no significant effect on any of the parameters recorded. There was no emergence recorded from rhizomes buried at 15 cm depth and deeper, irrespective of their size. Our results indicate that the combination of the fragmentation of rhizomes into small pieces and a deep burial, below 15 cm, is an important aspect to control the regeneration of C. aromaticus from rhizomes, if tillage is carried out, and can therefore form a part of an integrated weed management strategy for this troublesome weed.

16.
Plants (Basel) ; 10(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200907

RESUMO

Due to natural tolerance to most widely used herbicides for grass weed control, prosulfocarb as pre-emergence or early post-emergence herbicide and mesosulfuron + iodosulfuron as post-emergence herbicide are the mainstays of any chemical control program for Vulpia myuros in Denmark. However, farmers often report variable efficacy of these herbicides on V. myuros compared to other grass weeds. Dose-response experiments were conducted to evaluate the performance of prosulfocarb and mesosulfuron + iodosulfuron on V. myuros. Prosulfocarb was sprayed at different plant growth stages to study the influence of plant growth stage on the performance of prosulfocarb on V. myuros in comparison with the more susceptible grass weed species Apera spica-venti. Doses causing 50% reduction in response variable (ED50) were estimated from the dose-response analysis. The ED50 values revealed a higher tolerance of V. myuros to prosulfocarb and mesosulfuron + iodosulfuron than A. spica-venti. The relative difference in the effectiveness of prosulfocarb between V. myuros and A. spica-venti was constant among plant growth stages studied. The highest levels of V. myuros control were achieved when prosulfocarb was sprayed pre-emergence (BBCH 00), while the control substantially declined at later growth stages. The results from the current study document the tolerance of V. myuros to prosulfocarb and mesosulfuron + iodosulfuron and highlight the importance of optimization of prosulfocarb spray timing for achieving maximum control of V. myuros.

17.
Plants (Basel) ; 10(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34579384

RESUMO

Navua sedge (Cyperus aromaticus (Ridley) Mattf. & Kukenth) is an invasive perennial sedge, native to tropical Africa, which is threatening many natural ecosystems and agroecosystems, especially in northern Queensland, Australia. Crop and pasture production have been impacted by Navua sedge and it is also directly causing reductions in dairy and beef production in affected regions. This review documents the biology, ecology and potential management options to minimise the spread and impact of Navua sedge. The weed reproduces both sexually (seeds) and vegetatively (via underground rhizomes). Its tiny seeds can be spread easily via wind, water, vehicles, farm machinery and animals, whilst the rhizomes assist with establishment of dense stands. The CLIMEX model (which uses distribution and climate data in native and novel ranges) indicates that in Australia, Navua sedge has the potential to spread further within Queensland and into the Northern Territory, New South Wales and Victoria. Several management strategies, including mechanical, chemical and agronomic methods, and their integration will have to be used to minimise agricultural production losses caused by Navua sedge, but most of these methods are currently either ineffective or uneconomical when used alone. Other management approaches, including biological control and mycoherbicides, are currently being explored. We conclude that a better understanding of the interaction of its physiological processes, ecological patterns and genetic diversity across a range of conditions found in the invaded and native habitats will help to contribute to and provide more effective integrated management approaches for Navua sedge.

18.
Plants (Basel) ; 10(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34451550

RESUMO

Annual ryegrass (Lolium rigidum Gaud.), traditionally utilised as a pasture species, has become the most problematic and difficult-to-control weed across grain production regions in Australia. Annual ryegrass has been favoured by the adoption of conservation tillage systems due to its genetic diversity, prolific seed production, widespread dispersal, flexible germination requirements and competitive growth habit. The widespread evolution of herbicide resistance in annual ryegrass has made its management within these systems extremely difficult. The negative impacts of this weed on grain production systems result in annual revenue losses exceeding $93 million (AUD) for Australian grain growers. No single method of management provides effective and enduring control hence the need of integrated weed management programs is widely accepted and practiced in Australian cropping. Although annual ryegrass is an extensively researched weed, a comprehensive review of the biology and management of this weed in conservation cropping systems has not been conducted. This review presents an up-to-date account of knowledge on the biology, ecology and management of annual ryegrass in an Australian context. This comprehensive account provides pragmatic information for further research and suitable management of annual ryegrass.

19.
Pest Manag Sci ; 77(4): 1564-1571, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32893405

RESUMO

The evolution of weed resistance to herbicides is an ever-increasing problem that affects crop yield and food production. In Syngenta, we believe that this difficult and complex issue can be most efficiently addressed through a deep understanding of the evolutionary dynamics and mechanism of resistance. A profound knowledge of resistance is key to developing the next generation of resistance-breaking compounds with existing or novel herbicide sites of action. We use a multidisciplinary laboratory-based, glasshouse and field biology approach to study herbicide resistance and provide strong science-based solutions to delay the onset and manage resistance. We have developed and implemented simple early-season resistance detection methods to allow farmers make an informed decision for effective weed control. We have built mechanistic, individual-based computer models to design profitable, long-term sustainable weed management programs. Our zero tolerance approaches employ herbicides with different sites of action, applied in mixtures and sequences, to minimise the risk of resistance evolution. Weeds are targeted at the right growth stage with optimal herbicide formulation and spray technology for maximising weed control and depleting the seed bank. We are promoting the use of competitive crop varieties and other nonchemical methods for an integrated weed management strategy. We have a global web of external collaborations for studying and managing herbicide resistance. We are committed to farmers' education and training on herbicide resistance, and regularly share our methods and findings via conferences and peer-reviewed scientific publications for the benefit of the wider weed science community and field practitioners. © 2020 Society of Chemical Industry.


Assuntos
Resistência a Herbicidas , Herbicidas , Fazendeiros , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Humanos , Plantas Daninhas/genética , Controle de Plantas Daninhas
20.
Chemosphere ; 281: 130888, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34029964

RESUMO

At present, appearance of herbicide resistant weeds is not new because repeated herbicide treatments per agricultural year/cycle are usual in both perennial and annual crops worldwide. Characterizing resistance mechanisms implied in each herbicide resistant weed is the best tool and the basis to develop integrated weed management (IWM) strategies. The main resistance mechanisms which confer low sensibility to glyphosate in a previously confirmed glyphosate-resistant Chloris radiata population (ChrR), occurring in Colombian rice fields, were characterized. Pure line selection by clone plants showed high resistance levels in ChrR. Comparing with GR50 and LD50 values, ChrR was 9.6 and 10.8 times more resistant with respect to a representative susceptible population (ChrS). The nontarget site mechanisms reduced glyphosate absorption and translocation did not contribute to the glyphosate resistance of the ChrR population. However, enzyme activity assays and DNA sequencing demonstrated that at least one target-site resistance mechanism is involved in such resistance. All ten ChrR plants tested had the amino acid substitution Pro-106-Ser. The results may be crucial to decrease the resistance distribution of C. radiata in Colombia by implementing IWM programs. The change in weed control strategies in rice fields from Colombia must include herbicides with different mode of action from glyphosate and non chemical methods to preserve the useful life of glyphosate longer for weed control in the country.


Assuntos
Herbicidas , Oryza , Colômbia , Glicina/análogos & derivados , Glicina/toxicidade , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Oryza/genética , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA