Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015031

RESUMO

Food quality and safety problems caused by inefficient control in the food chain have significant implications for human health, social stability, and economic progress and optical sensor arrays (OSAs) can effectively address these challenges. This review aims to summarize the recent applications of nanomaterials-based OSA for food quality and safety visual monitoring, including colourimetric sensor array (CSA) and fluorescent sensor array (FSA). First, the fundamental properties of various advanced nanomaterials, mainly including metal nanoparticles (MNPs) and nanoclusters (MNCs), quantum dots (QDs), upconversion nanoparticles (UCNPs), and others, were described. Besides, the diverse machine learning (ML) and deep learning (DL) methods of high-dimensional data obtained from the responses between different sensing elements and analytes were presented. Moreover, the recent and representative applications in pesticide residues, heavy metal ions, bacterial contamination, antioxidants, flavor matters, and food freshness detection were comprehensively summarized. Finally, the challenges and future perspectives for nanomaterials-based OSAs are discussed. It is believed that with the advancements in artificial intelligence (AI) techniques and integrated technology, nanomaterials-based OSAs are expected to be an intelligent, effective, and rapid tool for food quality assessment and safety control.

2.
Anal Bioanal Chem ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416157

RESUMO

Toxic ginkgolic acids (GAs) are a challenge for Ginkgo biloba-related food. Although a detection method for GAs is available, bulky instruments limit the field testing of GAs. Herein, by assembling gold nanoclusters with copper tannic acid (CuTA), CuAuTA nanocomposites were designed as peroxidase mimics for the colorimetric determination of GAs. Compared with single CuTA, the obtained CuAuTA nanocomposites possessed enhanced peroxidase-like properties. Based on the inhibitory effect of GAs for the catalytic activity of CuAuTA nanozymes, CuAuTA could be utilized for the colorimetric sensing of GAs with a low limit of quantitation of 0.17 µg mL-1. Using a smartphone and the ImageJ software in conjunction, a nanozyme-based intelligent detection platform was developed with a detection limit of 0.86 µg mL-1. This sensing system exhibited good selectivity against other potential interferents. Experimental data demonstrated that GAs might bind to the surface of CuAuTA, blocking the catalytically active sites and resulting in decreased catalytic activity. Our CuAuTA nanozyme-based system could also be applied to detect real ginkgo nut and ginkgo powder samples with recoveries of 93.12-111.6% and relative standard deviations less than 0.3%. Our work may offer a feasible strategy for the determination of GAs and expand the application of nanozymes in food safety detection.

3.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275543

RESUMO

The intelligent detection of chili peppers is crucial for achieving automated operations. In complex field environments, challenges such as overlapping plants, branch occlusions, and uneven lighting make detection difficult. This study conducted comparative experiments to select the optimal detection model based on YOLOv8 and further enhanced it. The model was optimized by incorporating BiFPN, LSKNet, and FasterNet modules, followed by the addition of attention and lightweight modules such as EMBC, EMSCP, DAttention, MSBlock, and Faster. Adjustments to CIoU, Inner CIoU, Inner GIoU, and inner_mpdiou loss functions and scaling factors further improved overall performance. After optimization, the YOLOv8 model achieved precision, recall, and mAP scores of 79.0%, 75.3%, and 83.2%, respectively, representing increases of 1.1, 4.3, and 1.6 percentage points over the base model. Additionally, GFLOPs were reduced by 13.6%, the model size decreased to 66.7% of the base model, and the FPS reached 301.4. This resulted in accurate and rapid detection of chili peppers in complex field environments, providing data support and experimental references for the development of intelligent picking equipment.


Assuntos
Capsicum , Algoritmos
4.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462236

RESUMO

Since fresh foods include a significant amount of water, fat, and protein, it is more likely to become infected by microorganisms causing a major loss of quality. Traditional detection techniques are less able to meet customer expectations owing to the limitations of high cost, slow response time, and inability to permit dynamic monitoring. Intelligent non-destructive detection technologies have emerged in recent years, which offer the advantages of small size and fast response at low cost. However, dynamic monitoring of fresh food quality based on intelligent detection technologies on the consumer side has not been rigorously evaluated yet. This paper discussed the application of intelligent detection technologies based on the consumer side in the dynamic monitoring of fresh food freshness, microorganisms, food additives, and pesticide residues. Furthermore, the application of intelligent detection technologies combined with smartphones for quality monitoring and detection of fresh foods is evaluated. Moreover, the challenges and development trends of intelligent fresh food quality detection technologies are also discussed. Intelligent detection technologies based on the consumer side are designed to detect in real-time the quality of fresh food through visual color changes in combination with smartphones. This paper provides ideas and recommendations for the application of intelligent detection technologies based on the consumer side in food quality detection/monitoring and future research trends.

5.
Environ Res ; 216(Pt 4): 114812, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395862

RESUMO

Water quality parameters (WQP) are the most intuitive indicators of the environmental quality of water body. Due to the complexity and variability of the chemical environment of water body, simple and rapid detection of multiple parameters of water quality becomes a difficult task. In this paper, spectral images (named SPIs) and deep learning (DL) techniques were combined to construct an intelligent method for WQP detection. A novel spectroscopic instrument was used to obtain SPIs, which were converted into feature images of water chemistry and then combined with deep convolutional neural networks (CNNs) to train models and predict WQP. The results showed that the method of combining SPIs and DL has high accuracy and stability, and good prediction results with average relative error of each parameter (anions and cations, TOC, TP, TN, NO3--N, NH3-N) at 1.3%, coefficient of determination (R2) of 0.996, root mean square error (RMSE) of 0.1, residual prediction deviation (RPD) of 16.2, and mean absolute error (MAE) of 0.067. The method can achieve rapid and accurate detection of high-dimensional water quality multi-parameters, and has the advantages of simple pre-processing and low cost. It can be applied not only to the intelligent detection of environmental waters, but also has the potential to be applied in chemical, biological and medical fields.


Assuntos
Técnicas de Química Analítica , Monitoramento Ambiental , Qualidade da Água , Redes Neurais de Computação , Análise Espectral , Monitoramento Ambiental/métodos , Técnicas de Química Analítica/métodos
6.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299894

RESUMO

In tunnel lining construction, the traditional manual wet spraying operation is labor-intensive and can be challenging to ensure consistent quality. To address this, this study proposes a LiDAR-based method for sensing the thickness of tunnel wet spray, which aims to improve efficiency and quality. The proposed method utilizes an adaptive point cloud standardization processing algorithm to address differing point cloud postures and missing data, and the segmented Lamé curve is employed to fit the tunnel design axis using the Gauss-Newton iteration method. This establishes a mathematical model of the tunnel section and enables the analysis and perception of the thickness of the tunnel to be wet sprayed through comparison with the actual inner contour line and the design line of the tunnel. Experimental results show that the proposed method is effective in sensing the thickness of tunnel wet spray, with important implications for promoting intelligent wet spraying operations, improving wet spraying quality, and reducing labor costs in tunnel lining construction.


Assuntos
Algoritmos , Trabalho de Parto , Gravidez , Feminino , Humanos , Computação em Nuvem , Inteligência , Lasers
7.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366163

RESUMO

Since drunk driving poses a significant threat to road traffic safety, there is an increasing demand for the performance and dependability of online drunk driving detection devices for automobiles. However, the majority of current detection devices only contain a single sensor, resulting in a low degree of detection accuracy, erroneous judgments, and car locking. In order to solve the problem, this study firstly designed a sensor array based on the gas diffusion model and the characteristics of a car steering wheel. Secondly, the data fusion algorithm is proposed according to the data characteristics of the sensor array on the steering wheel. The support matrix is used to improve the data consistency of the single sensor data, and then the adaptive weighted fusion algorithm is used for multiple sensors. Finally, in order to verify the reliability of the system, an online intelligent detection device for drunk driving based on multi-sensor fusion was developed, and three people using different combinations of drunk driving simulation experiments were conducted. According to the test results, a drunk person in the passenger seat will not cause the system to make a drunk driving determination. When more than 50 mL of alcohol is consumed and the driver is seated in the driver's seat, the online intelligent detection of drunk driving can accurately identify drunk driving, and the car will lock itself as soon as a real-time online voice prompt is heard. This study enhances and complements theories relating to data fusion for online automobile drunk driving detection, allowing for the online identification of drivers who have been drinking and the locking of their vehicles to prevent drunk driving. It provides technical support for enhancing the accuracy of online systems that detect drunk driving in automobiles.


Assuntos
Intoxicação Alcoólica , Condução de Veículo , Dirigir sob a Influência , Humanos , Reprodutibilidade dos Testes , Intoxicação Alcoólica/diagnóstico , Tecnologia , Sistemas On-Line , Acidentes de Trânsito/prevenção & controle
8.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897886

RESUMO

Facile construction of functional nanomaterials with laccase-like activity is important in sustainable chemistry since laccase is featured as an efficient and promising catalyst especially for phenolic degradation but still has the challenges of high cost, low activity, poor stability and unsatisfied recyclability. In this paper, we report a simple method to synthesize nanozymes with enhanced laccase-like activity by the self-assembly of copper ions with various imidazole derivatives. In the case of 1-methylimidazole as the ligand, the as-synthesized nanozyme (denoted as Cu-MIM) has the highest yield and best activity among the nanozymes prepared. Compared to laccase, the Km of Cu-MIM nanozyme to phenol is much lower, and the vmax is 6.8 times higher. In addition, Cu-MIM maintains excellent stability in a variety of harsh environments, such as high pH, high temperature, high salt concentration, organic solvents and long-term storage. Based on the Cu-MIM nanozyme, we established a method for quantitatively detecting phenol concentration through a smartphone, which is believed to have important applications in environmental protection, pollutant detection and other fields.


Assuntos
Imidazóis , Lacase , Catálise , Cobre/química , Lacase/química , Fenol , Fenóis
9.
Compr Rev Food Sci Food Saf ; 21(6): 5171-5198, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36156851

RESUMO

Fresh-cut fruits and vegetables are healthy and convenient ready-to-eat foods, and the final quality is related to the raw materials and each step of the cutting unit. It is necessary to integrate suitable intelligent detection technologies into the production chain so as to inspect each operation to ensure high product quality. In this paper, several imaging technologies that can be applied online to the processing of fresh-cut products are reviewed, including: multispectral/hyperspectral imaging (M/HSI), fluorescence imaging (FI), X-ray imaging (XRI), ultrasonic imaging, thermal imaging (TI), magnetic resonance imaging (MRI), terahertz imaging, and microwave imaging (MWI). The principles, advantages, and limitations of these imaging technologies are critically summarized. The potential applications of these technologies in online quality control and detection during the fresh-cut processing are comprehensively discussed, including quality of raw materials, contamination of cutting equipment, foreign bodies mixed in the processing, browning and microorganisms of the cutting surface, quality/shelf-life evaluation, and so on. Finally, the challenges and future application prospects of imaging technology in industrialization are presented.


Assuntos
Frutas , Verduras , Fast Foods , Controle de Qualidade
10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(3): 519-526, 2020 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-32597095

RESUMO

The number of white blood cells in the leucorrhea microscopic image can indicate the severity of vaginal inflammation. At present, the detection of white blood cells in leucorrhea mainly relies on manual microscopy by medical experts, which is time-consuming, expensive and error-prone. In recent years, some studies have proposed to implement intelligent detection of leucorrhea white blood cells based on deep learning technology. However, such methods usually require manual labeling of a large number of samples as training sets, and the labeling cost is high. Therefore, this study proposes the use of deep active learning algorithms to achieve intelligent detection of white blood cells in leucorrhea microscopic images. In the active learning framework, a small number of labeled samples were firstly used as the basic training set, and a faster region convolutional neural network (Faster R-CNN) training detection model was performed. Then the most valuable samples were automatically selected for manual annotation, and the training set and the corresponding detection model were iteratively updated, which made the performance of the model continue to increase. The experimental results show that the deep active learning technology can obtain higher detection accuracy under less manual labeling samples, and the average precision of white blood cell detection could reach 90.6%, which meets the requirements of clinical routine examination.


Assuntos
Leucócitos , Leucorreia , Redes Neurais de Computação , Algoritmos , Feminino , Humanos , Leucorreia/diagnóstico , Microscopia , Doenças Vaginais/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA