Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(8): e2305576, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821400

RESUMO

Garnet solid electrolyte Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) is an excellent inorganic ceramic-type solid electrolyte; however, the presence of Li2 CO3 impurities on its surface hinders Li-ion transport and increases the interface impedance. In contrast to traditional methods of mechanical polishing, acid corrosion, and high-temperature reduction for removing Li2 CO3 , herein, a straightforward "waste-to-treasure" strategy is proposed to transform Li2 CO3 into Li3 PO4 and LiF in LiPF6 solution under 60 °C. It is found that the formation of Li3 PO4 during LLZTO pretreatment facilitates rapid Li-ion transport and enhances ionic conductivity, and the LLZTO/PAN composite polymer electrolyte shows the highest Li-ion transference number of 0.63. Additionally, the dense LiF layer serves to safeguard the internal garnet solid electrolyte against solvent decomposition-induced chemical adsorption. Symmetric Li/Li cells assembled with treated LLZTO/PAN composite electrolyte exhibit a critical current density of 1.1 mA cm-2 and a long lifespan of up to 700 h at a current density of 0.2 mA cm-2 . The Li/LiFePO4 solid-state cells demonstrate stable cycling performances for 141 mAh g-1 at 0.5 C, with capacity retention of 93.6% after 190 cycles. This work presents a novel approach to converting waste into valuable resources, offering the advantages of simple processes, and minimal side reactions.

2.
Small ; : e2405514, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221645

RESUMO

Rational construction of high-efficiency photoelectrodes with optimized carrier migration to the ideal active sites, is crucial for enhancing solar water oxidation. However, complexity in precisely modulating interface configuration and directional charge transfer pathways retards the design of robust and stable artificial photosystems. Herein, a straightforward yet effective strategy is developed for compact encapsulation of metal oxides (MOs) with an ultrathin non-conjugated polymer layer to modulate interfacial charge migration and separation. By periodically coating highly ordered TiO2 nanoarrays with oppositely charged polyelectrolyte of poly(dimethyl diallyl ammonium chloride) (PDDA), MOs/polymer composite photoanodes are readily fabricated under ambient conditions. It is verified that electrons photogenerated from the MOs substrate can be efficiently extracted by the ultrathin solid insulating PDDA layer, significantly boosting the carrier transport kinetics and enhancing charge separation of MOs, and thus triggering a remarkable enhancement in the solar water oxidation performance. The origins of the unexpected electron-withdrawing capability of such non-conjugated insulating polymer are unambiguously uncovered, and the scenario occurring at the interface of hybrid photoelectrodes is elucidated. The work would reinforce the fundamental understanding on the origins of generic charge transport capability of insulating polymer and benefit potential wide-spread utilization of insulating polymers as co-catalysts for solar energy conversion.

3.
Nanotechnology ; 35(41)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39025081

RESUMO

Flexible electronics, such as wearable displays, implantable electronics, soft robots, and smart skin, have garnered increasing attention. Despite notable advancements in research, a bottleneck remains at the product level due to the prevalent use of polymer-based materials, requiring encapsulation films for lifespan extension and reliable performance. Multilayer composites, incorporating thin inorganic layers to maintain low permeability towards moisture, oxygen, ions, etc, exhibit potential in achieving highly flexible barriers but encounter challenges stemming from interface instability between layers. This perspective offers a succinct review of strategies and provides atomic-scale interface modulation strategy utilizing atomic layer integration technology focused on enhancing the flexibility of high-barrier films. It delves into bendable multilayers with atomic-scale interface modulation strategies, encompassing internal stress and applied stress modulation, as well as stretchable composite structural designs such as gradient/hybrid, wavy, and island. These strategies showcase significant improvements in flexibility from bendable to stretchable while maintaining high barrier properties. Besides, optimized manufacturing methods, materials, and complex structure design based on atomic-scale interface engineering are provided, better aligning with the future development of flexible electronics. By laying the groundwork for these atomic-scale strategies, this perspective contributes to the evolution of flexible electronics, enhancing their flexibility, durability, and functionality.

4.
Small ; 16(28): e2002212, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510832

RESUMO

Developing efficient earth-abundant MoS2 based hydrogen evolution reaction (HER) electrocatalysts is important but challenging due to the sluggish kinetics in alkaline media. Herein, a strategy to fabricate a high-performance MoS2 based HER electrocatalyst by modulating interface electronic structure via metal oxides is developed. All the heterostructure catalysts present significant improvement of HER electrocatalytic activities, demonstrating a positive role of metal oxides decoration in promoting the rate-limited water dissociation step for the HER mechanism in alkaline media. The as-obtained MoS2 /Ni2 O3 H catalyst exhibits a low overpotential of 84 mV at 10 mA cm-2 and small charge-transfer resistance of 1.5 Ω in 1 m KOH solution. The current density (217 mA cm-2 ) at the overpotential of 200 mV is about 2 and 24 times higher than that of commercial Pt/C and bare MoS2 , respectively. Additionally, these MoS2 /metal oxides heterostructure catalysts show outstanding long-term stability under a harsh chronopotentiometry test. Theoretical calculations reveal the varied sensitivity of 3d-band in different transition oxides, in which Ni-3d of Ni2 O3 H is evidently activated to achieve fast electron transfer for HER as the electron-depletion center. Both electronic properties and energetic reaction trends confirm the high electroactivity of MoS2 /Ni2 O3 H in the adsorption and dissociation of H2 O for highly efficient HER in alkaline media.

5.
Nano Lett ; 19(7): 4518-4526, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185571

RESUMO

Molecular-scale modulation of interfaces between different unilamellar nanosheets in superlattices is promising for efficient catalytic activities. Here, three kinds of superlattices from alternate restacking of any two of the three unilamellar nanosheets of MoS2, NiFe-layered double hydroxide (NiFe-LDH), and graphene are systematically investigated for electrocatalytic water splitting. The MoS2/NiFe-LDH superlattice exhibits a low overpotential of 210 and 110 mV at 10 mA cm-2 for oxygen evolution reaction (OER) and alkaline hydrogen evolution reaction (HER), respectively, superior than MoS2/graphene and NiFe-LDH/graphene superlattices. High activity and stability toward the overall water splitting are also demonstrated on the MoS2/NiFe-LDH superlattice bifunctional electrocatalyst, outperforming the commercial Pt/C-RuO2 couple. This outstanding performance can be attributed to optimal adsorption energies of both HER and OER intermediates on the MoS2/NiFe-LDH superlattice, which originates from a strong electronic coupling effect at the heterointerfaces. These results herald the interface modulation of superlattices providing a promising approach for designing advanced electrocatalysts.

6.
Adv Mater ; 36(40): e2411404, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39188196

RESUMO

Due to the slow dynamics of mass and charge transfer at Zn|electrolyte interface, the stable operation of Zn-air batteries (ZABs) is challenging, especially at low temperature. Herein, inspired by cell membrane, a hydrophilic-hydrophobic dual modulated Zn|electrolyte interface is constructed. This amphiphilic design enables the quasi-solid-state (QSS) ZABs to display a long-term cyclability of 180 h@50 mA cm-2 at 25 °C. Moreover, a record-long time of 173 h@4 mA cm-2 at -60 °C is also achieved, which is almost threefolds of untreated QSS ZABs. Control experiments and (in situ) characterization reveal that the growth of insulating ZnO passivation layers is largely inhibited by tuned hydrophilic-hydrophobic behavior. Thus, the enhanced transfer dynamic of Zn2+ at Zn|electrolyte interface from 25 to -60 °C is attained. As an extension, the QSS Al-air batteries (AABs) with bioinspired interface also show unprecedented discharge stability of 420 h@1 mA cm-2 at -40 °C, which is about two times of untreated QSS AABs. This bioinspired-hydrophilic-hydrophobic dual modulation strategy may provide a reference for energy transform and storage devices with broad temperature adaptability.

7.
ACS Appl Mater Interfaces ; 16(29): 37379-37389, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38981038

RESUMO

Effective management of volatile organic compounds (VOCs) and carbon monoxide (CO) is critical to human health and the ecological environment. Catalytic oxidation is one of the most promising technologies for achieving efficient VOCs and CO emission control. Platinum group metal (PGM)-free catalysts are recently receiving sustainable attention in catalyzing VOCs and CO removal due to their low cost, superior catalytic activity, and excellent stability, but PGM-free catalysts face challenges in low-temperature catalytic efficiency. In this mini-review, starting with discussing the catalytic mechanism of VOCs and CO oxidation, we summarize the surface/interface modulation strategies of PGM-free catalysts to promote oxygen and VOCs/CO molecule activation for enhanced low-temperature oxidation activity, including oxygen vacancy engineering, heteroatom doping, surface acidity modification, and active interface construction. We highlight the currently remaining challenges and prospects of advanced PGM-free catalyst development for highly efficient VOCs and CO emission control in practical applications.

8.
Adv Mater ; 36(21): e2312985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373270

RESUMO

Invasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface-modulated biosensor utilizing an optical fiber for quantitative analysis of fungal biomarkers at the early stage of point-of-care testing (POCT), is reported. By integrating surface refractive index (RI) modulation and plasmon enhancement, the sensor to achieve high sensitivity in a directional response to the target analytes, is successfully optimized. As a result, a compact fiber-optic sensor with rapid response time, cost-effectiveness, exceptional sensitivity, stability, and specificity, is developed. This sensor can successfully identify the biomarkers of specific pathogens from blood or other tissue specimens in animal models. It quantifies clinical blood samples with precision and effectively discriminates between negative and positive cases, thereby providing timely alerts to potential patients. It significantly reduces the detection time of fungal infection to only 30 min. Additionally, this approach exhibits remarkable stability and achieves a limit of detection (LOD) three orders of magnitude lower than existing methods. It overcomes the limitations of existing detection methods, including a high rate of misdiagnosis, prolonged detection time, elevated costs, and the requirement for stringent laboratory conditions.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Fibras Ópticas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Biomarcadores/análise , Biomarcadores/sangue , Humanos , Animais , Fungos , Limite de Detecção , Tecnologia de Fibra Óptica , Micoses/diagnóstico , Testes Imediatos , Camundongos
9.
Adv Mater ; 36(19): e2308007, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38315969

RESUMO

Two-dimensional (2D) lateral heterojunction arrays, characterized by well-defined electronic interfaces, hold significant promise for advancing next-generation electronic devices. Despite this potential, the efficient synthesis of high-density lateral heterojunctions with tunable interfacial band alignment remains a challenging. Here, a novel strategy is reported for the fabrication of lateral heterojunction arrays between monolayer Si2Te2 grown on Sb2Te3 (ML-Si2Te2@Sb2Te3) and one-quintuple-layer Sb2Te3 grown on monolayer Si2Te2 (1QL-Sb2Te3@ML-Si2Te2) on a p-doped Sb2Te3 substrate. The site-specific formation of numerous periodically arranged 2D ML-Si2Te2@Sb2Te3/1QL-Sb2Te3@ML-Si2Te2 lateral heterojunctions is realized solely through three epitaxial growth steps of thick-Sb2Te3, ML-Si2Te2, and 1QL-Sb2Te3 films, sequentially. More importantly, the precisely engineering of the interfacial band alignment is realized, by manipulating the substrate's p-doping effect with lateral spatial dependency, on each ML-Si2Te2@Sb2Te3/1QL-Sb2Te3@ML-Si2Te2 junction. Atomically sharp interfaces of the junctions with continuous lattices are observed by scanning tunneling microscopy. Scanning tunneling spectroscopy measurements directly reveal the tailored type-II band bending at the interface. This reported strategy opens avenues for advancing lateral epitaxy technology, facilitating practical applications of 2D in-plane heterojunctions.

10.
Adv Mater ; 35(13): e2208705, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36661129

RESUMO

Although studies of transition metal sulfides (TMS) as anode materials for sodium-ion batteries are extensively reported, the short cycle life is still a thorny problem that impedes their practical application. In this work, a new capacity fading mechanism of the TMS electrodes is demonstrated; that is, the parasitic reaction between electrolyte anions (i.e., ClO4 - ) and metal sulfides yields non-conductive and unstable solid-electrolyte interphase (SEI) and meanwhile, corrosively turns metal sulfides into less-active oxides. This knowledge guides the development of an electrochemical strategy to manipulate the anion decomposition and construct a stable interface that prevents extensive parasitic reactions. It is shown that introducing sodium nitrate to the electrolyte radically changes the Na+ solvation structure by populating nitrate ions in the first solvation sheath, generating a stable and conductive SEI layer containing both Na3 N and NaF. The optimized interface enables an iron sulfide anode to stably cycle for over 2000 cycles with negligible capacity loss, and a similar enhancement in cycle performance is demonstrated on a number of other metal sulfides. This work discloses metal sulfides' cycling failure mechanism from a unique perspective and highlights the critical importance of manipulating the interface chemistry in sodium-ion batteries.

11.
J Colloid Interface Sci ; 635: 494-502, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599246

RESUMO

Designing an earth-abundant and cost-effective electrocatalyst for oxygen evolution reaction (OER) is the crux to the hydrogen production by water electrolysis on industrial scale. Herein, we developed a trimetallic sulfide hybrid of CoS1.097/Fe1-xS/Ni3S2/NF nanoarrays by the combination of morphology optimization and interface modulation. The unique morphology of ultrathin nanosheets significantly enriches the reaction sites of the catalyst, while the abundant heterogeneous interfaces effectively regulate the local electron structure and thus intrinsically enhances the catalytic activity of the material. As a result, the catalyst delivers the superior OER performance with the ultralow overpotential of 229 mV at the current density of 50 mA cm-2 and Tafel slope of 30.2 mV dec-1. Furthermore, the current density of the material keeps constant for 50 h in 1.0 M KOH. This work proposes a strategy for the synthesis of polymetallic sulfide catalysts with composite structure as an efficient OER catalyst by morphology optimization and interface modulation.

12.
Adv Mater ; 35(12): e2208431, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585902

RESUMO

The interface and crystallinity of perovskite films play a decisive role in determining the device performance, which is significantly influenced by the bottom hole-transporting material (HTM) of inverted perovskite solar cells (PVSCs). Herein, a simple design strategy of polymer HTMs is reported, which can modulate the wettability and promote the anchoring by introducing pyridine units into the polyarylamine backbone, so as to realize efficient and stable inverted PVSCs. The HTM properties can be effectively modified by varying the linkage sites of pyridine units, and 3,5-linked PTAA-P1 particularly demonstrates a more regulated molecular configuration for interacting with perovskites, leading to highly crystalline perovskite films with uniform back contact and reduced defect density. Dopant-free PTAA-P1-based inverted PVSCs have realized remarkable efficiencies of 24.89% (certified value: 24.50%) for small-area (0.08 cm2 ) as well as 23.12% for large-area (1 cm2 ) devices. Moreover, the unencapsulated device maintains over 93% of its initial efficiency after 800 h of maximum power point tracking under simulated AM 1.5G illumination.

13.
ACS Appl Mater Interfaces ; 15(9): 11866-11874, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826809

RESUMO

Integration of extended gate field-effect transistors (EGFET) and photoelectrochemical (PEC) measurement to construct highly sensitive sensors is an innovative research field that was proven feasible by our previous work. However, it remains a challenge on how to adjust the interaction between the extended gate and the analyte and study its influence on EGFET-based PEC sensors. Herein, a new sensing strategy was proposed by a mutual electrostatic interaction. Three-dimensional TiO2 and g-C3N4 core-shell heterojunction on flexible carbon cloth (TCN) was designed as the extended sensing gate. Tetracycline (TC) was also used as a model analyte, and it contains electron-donating groups (-NH2 and -OH) with negative charge. The designed TCN-extended sensing gate was negatively charged in the dark by introducing carbon vacancies with oxygen doping in the g-C3N4 shell, while it was positively charged under illustration due to the aggregation of photogenerated holes on the surface. Therefore, a light-activated PEC sensing platform for the sensitive and selective determination of tetracycline (TC) was demonstrated. Such a PEC sensor exhibited wide linear ranges within 100 pM to 1 µM and 1-100 µM with a low detection limit of 0.42 pM. Furthermore, the sensing platform possessed excellent selectivity, good reproducibility, and stability. The proposed sensing strategy in this work can expand the paradigm for developing a light-regulated FET-based PEC sensor by mutual electrostatic interaction, and we believe that this work will offer a new perspective for the design of interface interaction in PEC devices.

14.
J Hazard Mater ; 460: 132307, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647666

RESUMO

Heterogeneous catalytic ozonation is an efficient approach to remove hazardous and refractory organic contaminants in wastewater. It is crucial to design an ozone catalyst with high catalytic activity, high mass transfer and facile separation properties. Herein, easily separable aluminosilicate (Al2SiO5) fibers were developed as carriers and after interface modulation, Mn-doped carbon-Al2SiO5 (Mn-CAS) fibrous catalysts were proposed for catalytic ozonation. The growth of carbon shells on Al2SiO5 fiber surface and the introduction of metal Mn provided abundant Lewis acid sites to catalyze ozone. The Mn-CAS fiber/O3 system exhibited superior reactivity to degrade oxalic acid with a rate constant of 0.034 min-1, which was about 19 times as high as Al2SiO5/O3. For coal gasification wastewater treatment, Mn-CAS fibers also demonstrated high catalytic activity and stability and the COD removal was over 56%. Computational fluid dynamic simulations proved the high mass transfer properties of fibrous catalysts. Hydroxyl radicals (•OH) were identified as the predominant active species for organic degradation. Particularly, the catalytic pathways of O3 to •OH on Mn-O4 sites were revealed by theoretical calculations. This work provides a novel fibrous catalyst with high reactivity and mass transfer as well as easy separation characteristics for catalytic ozonation and wastewater purification.

15.
J Colloid Interface Sci ; 611: 327-335, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34965487

RESUMO

Palladium (Pd) is supposed to be one of the most promising catalytic metals towards ethanol (C2H5OH) oxidation reaction (EOR). However, Pd electrocatalysts easily suffer from the poisoning of the intermediates (especially CO), resulting in the quick decay of EOR catalysis. Herein, inspired by the Brønsted-Lowry acid-base theory, a "attraction-repulsion" concept is proposed to guide the surface structure engineering toward EOR catalysts. Specifically, we induce Bi(OH)3 species as Brønsted base onto PdBi nanoplates to effectively repel the adsorption of CO intermediates. The PdBi-Bi(OH)3 nanoplates show an impressive mass activity of 4.46 A mgPd-1 during the EOR catalysis and keep excellent stability. Both the stability and enhanced performance are attributed by the interfacial Brønsted base Bi(OH)3 which can selectively attract and repel reactants and intermediates, as evidenced from in situ measurements and theoretical views.

16.
ACS Appl Mater Interfaces ; 14(28): 32412-32419, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35816428

RESUMO

Revealing the light-matter interaction of molybdenum disulfide (MoS2) and further improving its tunability facilitate the construction of highly integrated optoelectronics in communication and wearable healthcare, but it still remains a significant challenge. Herein, polyvinylidene fluoride and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (PVDF-EMIM-TFSI) ion-gel are employed to replace the oxide to fabricate a MoS2-based phototransistor. The high capacitance enables a large tunability of the carrier concentration that results in ambipolar transport of MoS2. It is found that the photoelectrical effect of the MoS2 ion-gel phototransistor can be greatly tuned by the gate voltage including its photoresponsivity, detectivity, and response wavelength. An abnormal negative photoelectrical effect in both the electron branch and the hole branch is observed which is due to the adsorption/desorption of the C2F6NO4S2- ion. By tuning the carrier concentration, the photoresponse can be extended from the visible region to the short infrared region. At 1200 nm, the photoresponse and detectivity can be tuned as large as 0.90 A/W and 1.88 × 1011 Jones, respectively. Ultimately, by combining the tunability of gate voltage and wavelength, it is demonstrated that the photoelectrical effect is dominated by the photogating effect in the hole carrier, while it is coregulated by a photogating and photothermal effect in electron carrier. This study provides new insights for developing a highly tunable broadband photodetector with low consumption.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35641883

RESUMO

Fabricating heterojunction photocatalysts for H2 production is promising for the development of clean energy. For boosting the photocatalytic activity, modulating the heterojunction interface can facilitate the electron-hole separation and solar energy utilization, but it is highly challenging in synthesis. In this work, by facilely exfoliating the bulk C3N5, ultrathin C3N5 nanosheets (N-CN) with large surface area, improved light absorption, and efficient charge transport were synthesized and further applied to the construction of NH2-UiO-66/N-CN heterojunctions. The optimized NH2-UiO-66/N-CN-2 exhibits high hydrogen evolution rate and cycling stability with Pt as the cocatalyst. Combined with the experimental results, the density functional theory calculation reveals that the high photocatalytic performance is attributed to the promoted photogenerated carrier transfer by the formation of well-contacted and stable Z-scheme heterojunction interface. This contribution renders an insight into the modulation of the heterojunction interface for enhancing the activity of MOF-based photocatalysts.

18.
ACS Appl Mater Interfaces ; 11(12): 12142-12153, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30834737

RESUMO

Making full use of the interface modulation-induced interface polarization is an effective strategy to achieve excellent microwave absorption (MA). In this study, we develop an interfacial modulation strategy for achieving this goal in the commonly reported dielectric carbon nanotubes@polyaniline (CNTs@PANi) hybrid microwave absorber by optimizing the CNT nanocore structure. The heterogeneous interfaces from PANi and CNTs can be well regulated by longitudinal unzipping of the walls of CNTs to form 1D CNT- and 3D CNT-bridged graphene nanoribbons and 2D graphene nanoribbons. By controlling the oxidation peeling degree of CNTs, their interface area and defects are enhanced, thus producing more polarization centers to generate interfacial polarization and polarization relaxation, and also introducing more PANi loadings. Furthermore, more interface contact area can be produced between CNTs and PANi. This could induce a strong dielectric resonant and further improve the impedance matching, leading to significant enhancement of MA performance. With filler loading of only 10 wt % and a thinner coating thickness of 2.4 mm, the optimized CNTs@PANi exhibits excellent MA performance with the minimum reflection loss (RLmin) value of -45.7 dB at 12.0 GHz and the effective bandwidth is from 10.2 to 14.8 GHz. Meanwhile, the broadest effective bandwidth reaches 5.6 GHz, covering the range of 12.4-18.0 GHz with a thin thickness of 2.0 mm and its RLmin reaches -29.0 dB at 14.6 GHz. It is believed that the proposed interfacial modulation strategy can provide new opportunities for designing efficient MA absorbers.

19.
Adv Mater ; 30(30): e1802065, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29894006

RESUMO

Two-dimensional (2D) in-plane p-n junctions with a continuous interface have great potential in next-generation devices. To date, the general fabrication strategies rely on lateral epitaxial growth of p- and n-type 2D semiconductors. An in-plane p-n junction is fabricated with homogeneous monolayer Te at the step edge on graphene/6H-SiC(0001). Scanning tunneling spectroscopy reveals that Te on the terrace of trilayer graphene is p-type, and it is n-type on monolayer graphene. Atomic-resolution images demonstrate the continuous lattice of the junction, and mappings of the electronic states visualize the type-II band bending across the space-charge region of 6.2 nm with a build-in field of 4 × 105 V cm-1 . The reported strategy can be extended to other 2D semiconductors on patternable substrates for designed fabrication of in-plane junctions.

20.
ACS Appl Mater Interfaces ; 7(5): 3216-23, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25594311

RESUMO

Interface modulation for broad-band light trapping and efficient carrier collection has always been the research focus in solar cells, which provides the most effective way to achieve performance enhancement. In this work, solution-processed 3D ordered ZnO/Cu2O nanoheterojunctions, consisting of patterned n-ZnO nanorod arrays (NRAs) and p-Cu2O films, are elaborately designed and fabricated for the first time. By taking advantage of nanoheterojunctions with square patterned ZnO NRAs, solar cells demonstrate the maximum current density and efficiency of 9.89 mA cm(-2) and 1.52%, which are improved by 201% and 127%, respectively, compared to that of cells without pattern. Experimental analysis and theoretical simulation confirm that this exciting result originates from a more efficient broad-band light trapping and carrier collection of the 3D ordered ZnO/Cu2O nanoheterojunctions. Such 3D ordered nanostructures will have a great potential application for low-cost and all oxide solar energy conversion. Furthermore, the methodology applied in this work can be also generalized to rational design of other efficient nanodevices and nanosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA